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OBJECTIVES

Exploratory data analysis  on modeling (structure‐
activity) relationships: Linear Regression Models
Beyond a LRM model

why … assumptions … selection … validation …

Model by examples
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QUANTITATIVE STRUCTURE‐ACTIVITY RELATIONSHIPS

= mathematical models linking chemical structure and 
pharmacological activity/property in a quantitative manner 
for a series of compounds [1]
WhyQSARs?

Identification and development of a new active compound is an 
extremely expensive and difficult process without a guaranteed result 
[2] (reflected in time and costs; often requires years before testing the 
new compound in human subjects)
~ 90% of the initial candidates fail to be produces due to their
toxicological properties [3].
The time needed to develop a drug varies from 10 to 15 years  
(Congressional Budget Office, Research and Development in the
Pharmaceutical Industry (Washington, DC: CBO, October 2006).

1. Hammett LP. The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives. J Am Chem Soc 
1937;59(1):96‐103.
2. Chen X‐P, Du G‐H. Target validation: A door to drug discovery. Drug Discov Ther 2007;1(1):23‐29.
3. H. van de Waterbeemd and E. Gifford. Admet in silico modelling: towards prediction paradise? Nat Rev Drug Discov
2003;2(3):192‐204.
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QUANTITATIVE STRUCTURE‐ACTIVITY RELATIONSHIPS

Input data: 
Chemical structure → structural 
information (descriptors – many 
approaches)
Activity/property (outcome 
variable)

Output: model (regression vs. 
classification)
Used to:

Supplement experimental data
Replace testing

• Support priority setting of chemicals
• Guide experimental design (which?)
• Provide mechanistic information

•Group active compounds into chemical categories
• Data gaps for classification, labeling, risk assessment 

(Q)SARs and REACH: 
http://ihcp.jrc.ec.europa.eu/our_labs/predictive_toxicology/background/qsars‐and‐reach
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QUANTITATIVE STRUCTURE‐ACTIVITY RELATIONSHIPS

Assumptions:
structure of chemical 
compounds contains features 
responsible for its physical, 
chemical and/or biological 
properties
similar compounds have similar 
properties [4]

 Chemical 
structure

Observed / Calculated 
Properties / Activities

QSAR / QSPR model 

Validation  Synthesis 

Structure generation

Descriptors calculation

4. Johnson AM, Maggiora GM. Concepts and Applications of Molecular Similarity. New York: John 
Willey & Sons, 1990.
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QUANTITATIVE STRUCTURE‐ACTIVITY RELATIONSHIPS

OECD ‐Quantitative Structure‐Activity Relationships Project 
‐Guidance Document on the Validation of (Q)SAR Models  [5]
Principles: 

a defined endpoint 
an unambiguous algorithm 
a defined domain of applicability 
appropriate measures of goodness‐of‐fit, robustness and 
predictivity 
a mechanistic interpretation, if possible

75. Organisation for Economic Co‐operation and Development  [online] [Accessed February 2, 2012] URL: 
http://www.oecd.org/officialdocuments/displaydocumentpdf?cote=env/jm/mono(2007)2&doclanguage=en
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LINEAR REGRESSION

Objectives of linear regression analysis [6]:
to describe ‐ strength of the association between outcome and factors of 
interest
to adjust ‐ data for covariates or cofounders
to identify predictors ‐ factors that affect the outcome
to predict the outcome

8

Glaton (1886) [7] to understand heredity 

Pearson  (1896) [8] optimum values of slope and correlation coefficient could be 
calculated from the product‐moment 

Yule  (1897) [9] minimizing the sum of squares error 

6. Chan YM. Biostatistics 201: Linear Regression Analysis. Singapore Medical Journal 
2004;45(2):55. 
7. Galton F. Regression towards mediocrity in hereditary stature. J Anthropol Inst Great Brit Ireland 
1886;15: 246-263.
8. Pearson K. Mathematical Contributions to the Theory of Evolution. III. Regression, Heredity and
Panmixia, Proc R Soc Lond 1896 ;187:253-318.
9. Yule GU. On the significance of Bravais’ formulae for regression, &c, in the case of skew 
correlation. Proc R Soc Lond 1897;60:477-489.
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LINEAR REGRESSION MODELING: ASSUMPTIONS

But … "normal law ... is not 
valid in a great many cases 
which are both common and 
important" [9]

10. Jäntschi L, Bolboacă SD. Distribution Fitting 2. Pearson‐Fisher, Kolmogorov‐Smirnov, Anderson‐Darling, 
Wilks‐Shapiro, Kramer‐von‐Misses and Jarque‐Bera statistics. UASVM Horticulture, 2009;66(2):691‐697.
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DATA SET BY EXAMPLE

Endocrine disrupting chemicals with experimental values of 
relative binding affinity expressed in logarithmic scale (logRBA) 
[11]
→ binders: weak (logRBA < ‐2.0), moderate (‐2.0 ≤ logRBA ≤ 0), 
strong (logRBA > 0) [12]

10

0 (0 [0; 43])5 (56 [23; 88])4 (44 [12; 77])9External

4 (17 [5; 39])16 (70 [48; 87])3 (13 [5; 36])23Test

30 (23 [16; 31])41 (31 [24; 39])60 (45 [34; 55])132Training

strongmoderateweak 

Type of binder: n (% [95%CI])
nSet

11. Li J, Gramatica P. Mol Divers. 2010 Nov;14(4):687‐96.
12. Blair RM , Fang H, Branham WS, Hass BS, Dial SL, Moland CL, et al. Toxicol Sci
2000;54:138 153
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LINEAR REGRESSION MODELING: ASSUMPTIONS

Assumption What is the effect? How to detect it? How to fix it? 
Normality Unreliable coefficients 

and confidence 
intervals 

Plot: normal probability plot 
Statistics: skewness & kurtosis [22] 
Testc: Kolmogorov-Smirnov [23], [24], 
Anderson-Darling [25], Chi-Squared [26]; 
Shapiro-Wilks test [27] (n < 50) 

Identify and withdrawn the outliers 
(if any) - Grubs test [28] 

Linearity Estimations and 
predictions are in error 

Plot  
 observed vs estimated values 
 residuals versus estimated values 

Transformation  
(see Table 2) 

Independence Important in models 
where time is important

Plot: autocorelation plot of residuals 
Test: Durbin-Watson a [29], [30]. If no 
autocorrelation exists in the sample DW ~ 2 

D-W < 1.00 ›  structural problem 
›  reconsider the transformation 
(if any). 
Add more independent variables. 

Homoscedasticity Too wide or too narrow 
confidence intervals 

Plot (pattern of errors): residuals vs predicted 
value 
Test: Breusch-Paganb [31], Bartlett [32], 
Levene [33] 

Use different variables. 
Use Generalized Least Square 

Collinearity 
(independent variables) 

Predictors are related to 
each other 

 Correlation matrix: r ? 0.80 or 0.90 indicates 
collinearity [34] 

 VIF ? 10 and/or T(tolerance) < 0.01 
indicates the existence of collinearity [34] 

Remove the variable that is 
correlated with others 
Be aware that collinearity is not 
bad all time 

a the errors are serially uncorrelated; WD ∈ [0, 4], DW = 2 ›  no autocorrelation; b the variance of the residuals is the same for all values of Y; c EasyFit program uses it to 
test the normality of Y; 

 

εXbb Ŷ
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LRM: SELECTION

Unusual data: not identify by usual parameter (r, F)

Outlier: 
X’s or Y
Regression outlier: ↑ |residuals|

Leverage point: unusual 
combination of variables (hi 
model – threshold = 2∙(k+1)/n)
Influential point: influence on 
the regression coefficients (Di
model – threshold = 4/n )

Neither ignore, nor throw 
them without thinking
Think of reason why 
observation may be different
Change the model
Fit the model with and 
without the unusual data and 
see the effect

12
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LRM: SELECTION

13

Studentized residuals (N=132)
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LRM: SELECTION

14

Cook's distance (N=132)
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LRM: SELECTION

15

Hat matrix (N=132)
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LRM: DIAGNOSTIC
Parameter (Abbreviation) Formula [ref] Remarks 

Residual Mean Square (RMS) 
- Error variance kn

)ŷy(
RMS

n

1i
2

ii

−

−
= ∑ =  RMS: the smaller the better 

0 < RMS < ∞ 

Average Prediction Variance (APV) )kn(
n

RMSAPV +⋅=  [51] The smaller the better 

Total Squared Error (TSE)  
nk2

ˆ
)ŷy(

TSE
2

n

1i
2

ii −⋅+
σ

−
=
∑ =  [52] 

2)k2n(
MSE
SSETSE +⋅−−=  [39] 

The smaller the better 
TSE > (k+1) → bias due to incompletely 
specified model 
TSE< (k+1) → the model is over specified 
(contains too many variables)  

Average Prediction Mean Squared Error 
(APMSE) 1kn

RMSAPMSE
−−

= [53] The smaller the better 

Mean Absolute Error (MAE) 
- Measures the average magnitude of the 
errors; could be also used to compare two 
models 

n
|ŷy|

MAE
n

1i ii∑ =
−

=  MAE = 0 → perfect accuracy 
0 < MAE < ∞ 

Root Mean Square Error (RMSE): 
- Measures the average magnitude of the 
error 

( )
n

ŷy
RMSE

n

1i
2

ii∑=
−

=  
RMSE > MAE → variation in the errors 
exists 
0 < RMSE < ∞ 

Mean Absolute Percentage Error (MAPE) 
- Measure of accuracy expressed as 
percentage 

n
|y/)ŷy(|

MAPE
n

1i iii∑ =
−

=  [54], 

[55] 
MAPE ~ 0 → perfect fit 

Standard Error of Prediction (SEP) ( )
1n

yŷ
SEP

n

1i
2

ii

−

−
= ∑ =  The smaller the better 

Relative Error of Prediction (REP%) ( )
n

yŷ
y

100(%)REP
n

1i
2

ii∑ =
−

=  The smaller the better 

n = sample size; k = number of independent variables in the model; y = the mean of estimated/predicted activity/property; iŷ  = predicted value of the ith compound 
in the sample; yi = observed/measured activity/property of ith compound; SSE = sum of squared errors; MSE = mean of squared errors 
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LRM: PREDICTIVE POWER
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LINEAR REGRESSION MODELING: log(RBA)
Statistical parameter Full-model (n=132) Di-model (n=115)a hi-model (n=123)b 
Normality tests: KS-AD-CS 0.116* - 2.409* - 14.862** 0.124* - 2.432* - 12.613* 0.120* - 2.428* - 12.083* 
Durbin-Watson 1.275 1.292 1.263 
Collinearity: highest R  
higher VIF & lower T 

0.7700 
TIE: 3.367& 0.297 

0.7889 
ATS4m: 4.082&0.245 

0.7752 
ATS4m: 4.516&0.221 

R2 0.6559 0.7797 0.6928 
R2

adj 0.6394 0.7675 0.6769 
sest 1.0701 0.8293 0.9977 
F-value (p-value) 39.711 (9.89·10-27) 63.721 (3.12·10-33) 43.59 (1.62·10-27) 
Q2 0.5832 0.7543 0.6497 
sloo 1.1827 0.8764 1.0668 
Floo-value (p-value) 28.74 (9.49·10-22) 55.17 (1.85·10-31) (1.62·10-27) 
|R2-Q2| 0.0727 0.0254 0.0431 
Cp-statistic 7.00 7.00 7.00 
AIC (wi-AIC) 18.9639 (0.2856) 18.3078 (0.3965) 18.7490 (0.3180) 
AICR2 (wi- AICR2) 8.0504 (0.3137) 7.7421 (0.3659) 8.0077 (0.3204) 
AICc (wi- AICc) 1.2657 (0.2990) 0.7766 (0.3819) 1.1358 (0.3191) 
BIC 52.0750 9.8317† 33.1255 
HQC 26.2887 34.7113† 7.8043 
FIT 1.3058 2.3097 1.5076 
* p ≥0.05; ** p = 0.0378; † = absolute values; KS = Kolmogorow-Smirnov; AD = Anderson Darling; CS = Chi-Squared; R = correlation coefficient; VIF = 
Variance Inflation Factor; T = tolerance;  R2 = determination coefficient; R2

adj = adjusted determination coefficient; sest = standard error of the estimate; F-value = 
Fisher's statistics; Q2 = determination coefficient in leave-one-out analysis; sloo = standard error of the predict; Cp-statistic = Mallows’ statistic; AIC = Akaike’s 
information criterion; AICR2 = AIC based on the determination coefficient; AICc = AIC corrected by McQuarrie and Tsai; BIC = Bayesian Information Criterion; 
HQC = Hannan-Quinn Criterion; FIT = Kubinyi's function; 
a 56 weak binders, 35 moderate binders, and 24 strong binders; withdrawn (16 compounds): 4 weak binders, 6 moderate binders and 6 strong binders; 
b 57 weak binders, 38 moderate binders, and 28 strong binders; withdrawn (8 compounds): 3 weak binders, 3 moderate binders and 2 strong binders; 
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LINEAR REGRESSION MODELING: log(RBA)
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LINEAR REGRESSION MODELING: log(RBA)
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LINEAR REGRESSION MODELING: log(RBA)
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LINEAR REGRESSION MODELING: log(RBA)
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LINEAR REGRESSION MODELING: log(RBA)
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LINEAR REGRESSION MODELING: log(RBA)
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LINEAR REGRESSION MODELING: log(RBA)
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SUMMARY

Choosing a proper linear model is crucial in QSAR analysis: 
model able to predict accurately the activity of interest of 
new chemical compounds is desired under the hypothesis 
that changes in molecular structure directly reflect in the 
compound activity/property.
Input data and data preparation for regression analysis are of 
great importance but these subjects were beyond the aim of 
the present paper.
Regression analysis answer to the following questions: Does 
the biological activity depend on structural information? If so, 
The nature of the relationship is linear? If yes, How good is the 
model in prediction of the biological activity of new 
compounds?
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KEY MESSAGE

test the assumption of linear regression (normality, 
linearity, independence, homoscedascity, and/or collinearity)

construct the model(s) if assumptions are accomplished ‐
analyze the data (choose the best performing model)

assess and diagnose the alternative models ‐ analyze the 
LRM

decide which model fit best to your objectives
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KEY MESSAGE

Following these steps in linear regression analysis certainly 
led to a performing estimation model but

the model prediction power will always depend on the structure 
of compounds on which the model was obtained and on their 
biological activity 

and it will be proper to be applied on
similar compounds as structure ± activity/property



07/18/2013 29

SOME USEFUL ARTICLES
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