

Quantitative Structure-Activity Relationships: Linear Regression Modelling and Validation Strategies by Example

Sorana D. Bolboacă & Lorentz Jäntschi

OUTLINE

- OBJECTIVES
- QUANTITATIVE **S**TRUCTURE-**A**CTIVITY **R**ELATIONSHIPS
- **L**INEAR **R**EGRESSION **M**ODELING
 - ASSUMPTIONS
 - SELECTION AND DIAGNOSTIC
 - VALIDATION
 - PREDICTIVE POWER

OBJECTIVES

- Exploratory data analysis on modeling (structure-activity) relationships: **Linear Regression Models**
- Beyond a LRM model
 - why ... assumptions ... selection ... validation ...
- Model by examples

QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS

- = mathematical models linking chemical structure and pharmacological activity/property in a quantitative manner for a series of compounds [1]
- **Why QSARs?**
 - Identification and development of a new active compound is an extremely expensive and difficult process without a guaranteed result [2] (reflected in time and costs; often requires years before testing the new compound in human subjects)
 - ~ 90% of the initial candidates fail to be produced due to their toxicological properties [3].
 - The time needed to develop a drug varies from 10 to 15 years (Congressional Budget Office, Research and Development in the Pharmaceutical Industry (Washington, DC: CBO, October 2006).

1. Hammett LP. The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives. *J Am Chem Soc* 1937;59(1):96-103

2. Chen X-P, Du G-H. Target validation: A door to drug discovery. *Drug Discov Ther* 2007;1(1):23-29.

3. H. van de Waterbeemd and E. Gifford. Admet in silico modelling: towards prediction paradise? *Nat Rev Drug Discov* 2003;2(3):192-204.

QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS

- Input data:
 - Chemical structure → structural information (descriptors – many approaches)
 - Activity/property (outcome variable)
- Output: model (regression vs. classification)
- Used to:
 - Supplement experimental data
 - Replace testing

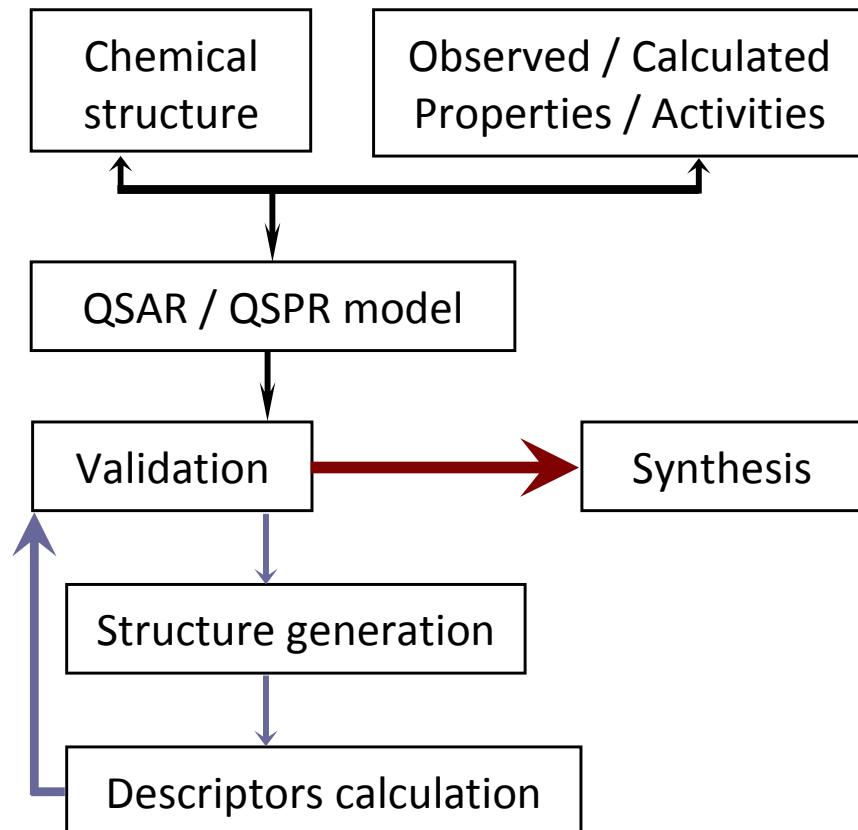


The interrelated concepts of (Q)SAR validity, reliability, applicability and adequacy

- Support priority setting of chemicals
- Guide experimental design (which?)
- Provide mechanistic information

- Group active compounds into chemical categories
- Data gaps for classification, labeling, risk assessment

QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS



- Assumptions:

- structure of chemical compounds contains features responsible for its physical, chemical and/or biological properties
- *similar compounds have similar properties [4]*

QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS

- OECD - Quantitative Structure-Activity Relationships Project
 - Guidance Document on the Validation of (Q)SAR Models [5]
- Principles:
 - a defined endpoint
 - an unambiguous algorithm
 - a defined domain of applicability
 - *appropriate measures of goodness-of-fit, robustness and predictivity*
 - a mechanistic interpretation, if possible

LINEAR REGRESSION

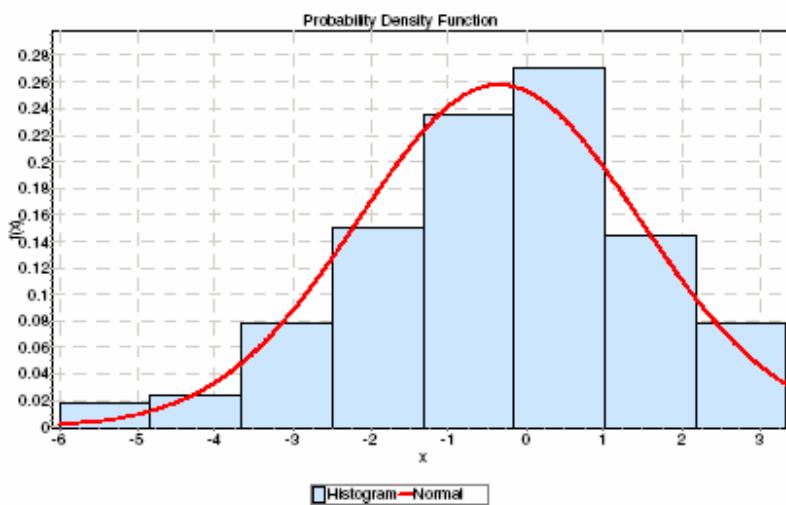
Objectives of linear regression analysis [6]:

- *to describe* - strength of the association between outcome and factors of interest
- *to adjust* - data for covariates or cofounders
- *to identify predictors* - factors that affect the outcome
- *to predict the outcome*

Glaton (1886) [7]	to understand heredity
Pearson (1896) [8]	optimum values of slope and correlation coefficient could be calculated from the product-moment
Yule (1897) [9]	minimizing the sum of squares error

6. Chan YM. Biostatistics 201: Linear Regression Analysis. Singapore Medical Journal 2004;45(2):55.
7. Galton F. Regression towards mediocrity in hereditary stature. J Anthropol Inst Great Brit Ireland 1886;15: 246-263.
8. Pearson K. Mathematical Contributions to the Theory of Evolution. III. Regression, Heredity and Panmixia, Proc R Soc Lond 1896 ;187:253-318.
9. Yule GU. On the significance of Bravais' formulae for regression, &c, in the case of skew correlation. Proc R Soc Lond 1897;60:477-489.

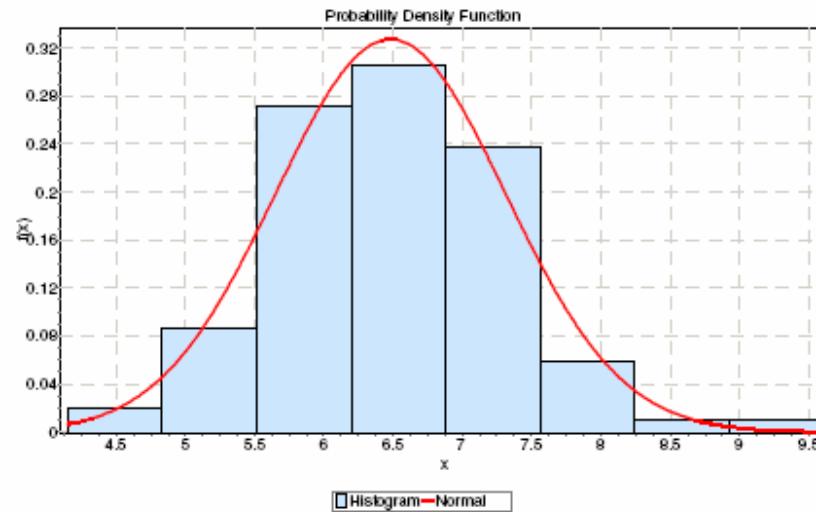
LINEAR REGRESSION MODELING: ASSUMPTIONS



(Duchowicz et al., 2008) - N = 166

Statistic	Value	Probability of observation	Reject the hypothesis of normality
Kolmogorov-Smirnov	0.05508	67.43%	No
Anderson-Darling	0.56539	14.1%; 12.5%; 14.3%	No
Chi Squared	3(df=7)	88.6%	No
Wilks-Shapiro	0.98173	2.8%	Yes
Z _{Skewness}	-2.58	1%	Yes
Z _{Kurtosis}	0.53	59.5%	No
Jarque-Bera	6.61	3.7%	Yes

Statistic	Value	Probability of observation	Reject the hypothesis of normality
Kolmogorov-Smirnov	0.03348	96.91%	No
Anderson-Darling	0.44432	27.2%; 25.2%; 19.2%	No
Chi Squared	11(df=7)	13.8%	No
Wilks-Shapiro	0.98709	5.8%	No
Z _{Skewness}	1.48	14%	No
Z _{Kurtosis}	2.51	1.2%	Yes
Jarque-Bera	7.577	2.3%	Yes



(Jäntschi et al., 2009) - N = 206

- But ... "normal law ... is not valid in a great many cases which are both common and important" [9]

DATA SET BY EXAMPLE

- Endocrine disrupting chemicals with experimental values of relative binding affinity expressed in logarithmic scale (logRBA) [11]
- → binders: weak ($\text{logRBA} < -2.0$), moderate ($-2.0 \leq \text{logRBA} \leq 0$), strong ($\text{logRBA} > 0$) [12]

Set	n	Type of binder: n (% [95%CI])		
		weak	moderate	strong
Training	132	60 (45 [34; 55])	41 (31 [24; 39])	30 (23 [16; 31])
Test	23	3 (13 [5; 36])	16 (70 [48; 87])	4 (17 [5; 39])
External	9	4 (44 [12; 77])	5 (56 [23; 88])	0 (0 [0; 43])

11. Li J, Gramatica P. Mol Divers. 2010 Nov;14(4):687-96.

07/18/2013 12. Blair RM , Fang H, Branham WS, Hass BS, Dial SL, Moland CL, et al. Toxicol Sci 2000;54:138-153.

LINEAR REGRESSION MODELING: ASSUMPTIONS

$$\hat{Y} = b_0 + \sum_{i=1}^k b_i X_i + \varepsilon$$

Assumption	What is the effect?	How to detect it?	How to fix it?
Normality	Unreliable coefficients and confidence intervals	Plot: normal probability plot Statistics: skewness & kurtosis [22] Test ^c : Kolmogorov-Smirnov [23], [24], Anderson-Darling [25], Chi-Squared [26]; Shapiro-Wilks test [27] (n < 50)	Identify and withdrawn the outliers (if any) - Grubs test [28]
Linearity	Estimations and predictions are in error	Plot ▪ observed vs estimated values ▪ residuals versus estimated values	Transformation (see Table 2)
Independence	Important in models where time is important	Plot: autocorelation plot of residuals Test: Durbin-Watson ^a [29], [30]. If no autocorrelation exists in the sample DW ~ 2	D-W < 1.00 > structural problem > reconsider the transformation (if any). Add more independent variables.
Homoscedasticity	Too wide or too narrow confidence intervals	Plot (pattern of errors): residuals vs predicted value Test: Breusch-Pagan ^b [31], Bartlett [32], Levene [33]	Use different variables. Use Generalized Least Square
Collinearity (independent variables)	Predictors are related to each other	▪ Correlation matrix: r ? 0.80 or 0.90 indicates collinearity [34] ▪ VIF ? 10 and/or T(tolerance) < 0.01 indicates the existence of collinearity [34]	Remove the variable that is correlated with others Be aware that collinearity is not bad all time

^a the errors are serially uncorrelated; WD $\in [0, 4]$, DW = 2 > no autocorrelation; ^b the variance of the residuals is the same for all values of Y ; ^c EasyFit program uses it to test the normality of Y ;

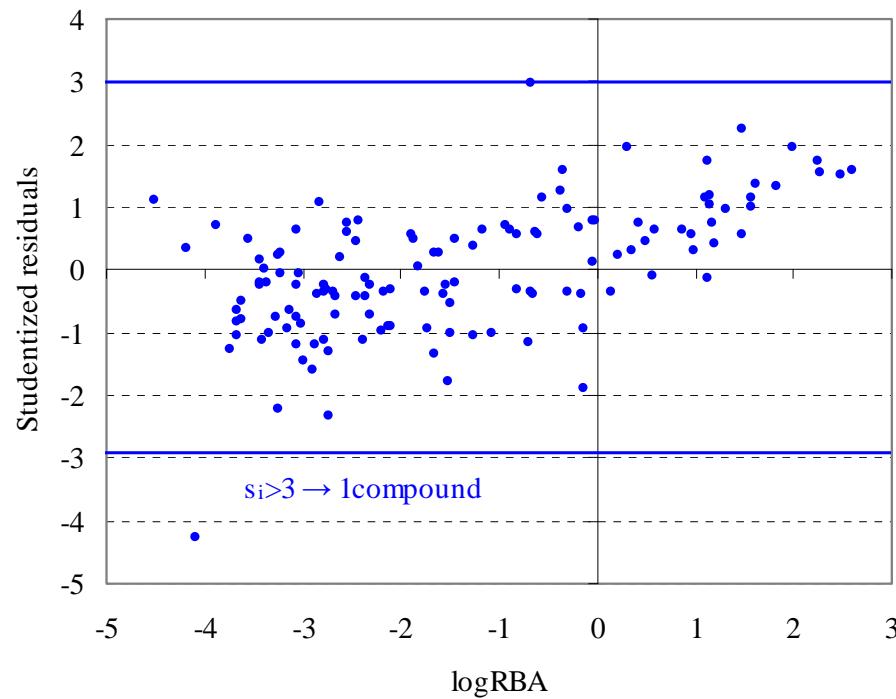
LRM: SELECTION

Unusual data: not identify by usual parameter (r, F)

- Outlier:
 - X's or Y
 - Regression outlier: $\uparrow |\text{residuals}|$
- Leverage point: unusual combination of variables (h_i model – threshold = $2 \cdot (k+1)/n$)
- Influential point: influence on the regression coefficients (D_i model – threshold = $4/n$)
- Neither ignore, nor throw them without thinking
- Think of reason why observation may be different
- Change the model
- Fit the model with and without the unusual data and see the effect

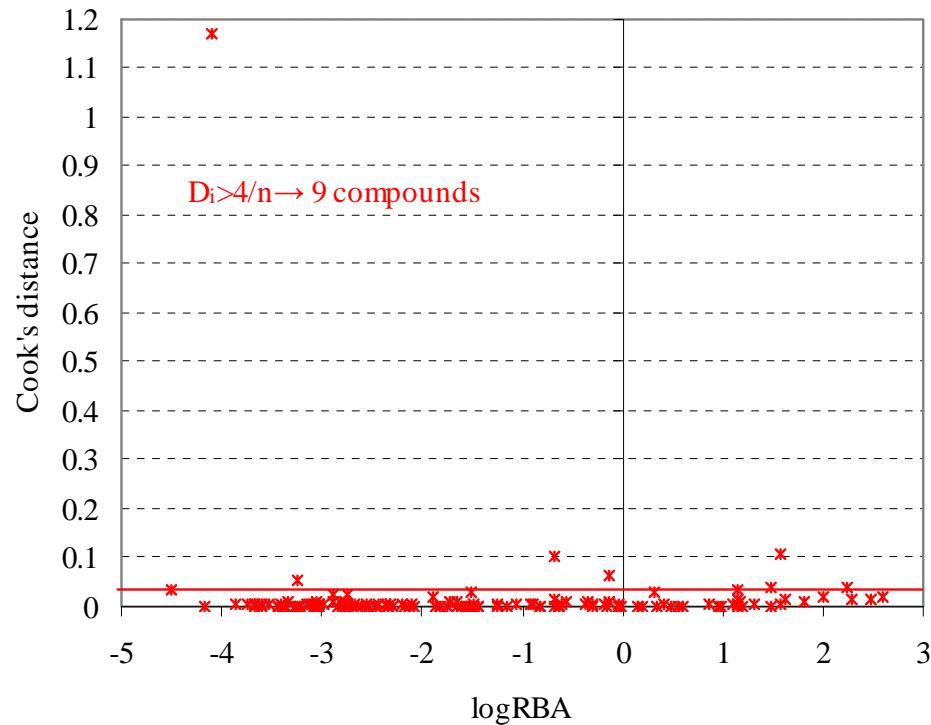
LRM: SELECTION

Studentized residuals (N=132)



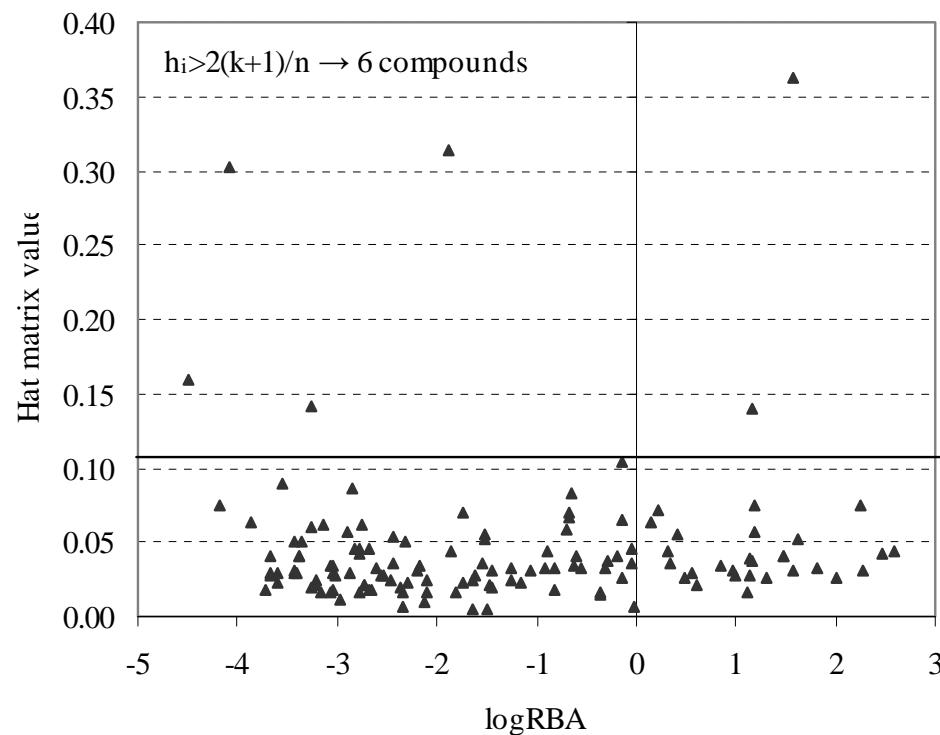
LRM: SELECTION

Cook's distance (N=132)



LRM: SELECTION

Hat matrix (N=132)



LRM: DIAGNOSTIC

Parameter (Abbreviation)	Formula [ref]	Remarks
Residual Mean Square (RMS) - Error variance	$RMS = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n - k}$	RMS: the smaller the better $0 < RMS < \infty$
Average Prediction Variance (APV)	$APV = \frac{RMS}{n} \cdot (n + k) \quad [51]$	The smaller the better
Total Squared Error (TSE)	$TSE = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\hat{\sigma}^2} + 2 \cdot k - n \quad [52]$ $TSE = \frac{SSE}{MSE} - (n - 2 \cdot k) + 2 \quad [39]$	The smaller the better TSE $> (k+1) \rightarrow$ bias due to incompletely specified model TSE $< (k+1) \rightarrow$ the model is over specified (contains too many variables)
Average Prediction Mean Squared Error (APMSE)	$APMSE = \frac{RMS}{n - k - 1} \quad [53]$	The smaller the better
Mean Absolute Error (MAE) - Measures the average magnitude of the errors; could be also used to compare two models	$MAE = \frac{\sum_{i=1}^n y_i - \hat{y}_i }{n}$	MAE = 0 \rightarrow perfect accuracy $0 < MAE < \infty$
Root Mean Square Error (RMSE): - Measures the average magnitude of the error	$RMSE = \sqrt{\frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n}}$	RMSE $>$ MAE \rightarrow variation in the errors exists $0 < RMSE < \infty$
Mean Absolute Percentage Error (MAPE) - Measure of accuracy expressed as percentage	$MAPE = \frac{\sum_{i=1}^n (y_i - \hat{y}_i) / y_i }{n} \quad [54],$ [55]	MAPE $\sim 0 \rightarrow$ perfect fit
Standard Error of Prediction (SEP)	$SEP = \sqrt{\frac{\sum_{i=1}^n (\hat{y}_i - y_i)^2}{n - 1}}$	The smaller the better
Relative Error of Prediction (REP%)	$REP(\%) = \frac{100}{\bar{y}} \sqrt{\frac{\sum_{i=1}^n (\hat{y}_i - y_i)^2}{n}}$	The smaller the better

n = sample size; k = number of independent variables in the model; \bar{y} = the mean of estimated/predicted activity/property; \hat{y}_i = predicted value of the i^{th} compound in the sample; y_i = observed/measured activity/property of i^{th} compound; SSE = sum of squared errors; MSE = mean of squared errors

LRM: PREDICTIVE POWER

Parameter (Abbreviation)	Formula [ref]	Remarks
Predictive Squared Correlation Coefficient in Training Set (Q_{F1}^2)	$Q_{F1}^2 = 1 - \frac{\sum_{i=1}^{n_{TS}} (\hat{y}_i - y_i)^2}{\sum_{i=1}^{n_{TS}} (y_i - \bar{y}_{TR})^2} \quad [56]$	
Predictive Squared Correlation Coefficient in Test Set (Q_{F2}^2)	$Q_{F2}^2 = 1 - \frac{\sum_{i=1}^{n_{TS}} (\hat{y}_i - y_i)^2}{\sum_{i=1}^{n_{TS}} (y_i - \bar{y}_{TS})^2} \quad [58]$	Prediction is considered accurate if the predictive power of the model is > 0.6 [57]
External Predictive Ability (Q_{F3}^2)	$Q_{F3}^2 = 1 - \frac{\sum_{i=1}^{n_{TS}} (\hat{y}_i - y_i)^2 / n_{TS}}{\sum_{i=1}^{n_{TS}} (y_i - \bar{y}_{TR})^2 / n_{TR}} \quad [59]$	
Predictive Power (PP): Fisher's approach	$t = \frac{\bar{res}_{TS} - 0}{\text{stdev}(res_{TS}) / \sqrt{n_{TS}}} \quad [60]$ $p = \text{TDIST}(\text{abs}(t), n_{TS}-1, 1)$	Evaluate if the mean of residual is statistically different by the expected value (0)

n = sample size; v = number of independent variables in the model; \bar{y} = the mean of estimated/predicted activity/property; \hat{y}_i = predicted value of the i^{th} compound in the sample; y_i = observed/measured activity/property of i^{th} compound; \bar{res} = mean of residuals; stdev = standard deviation; TR = training set; TS = test set; EXT = external set; abs = absolute value

LINEAR REGRESSION MODELING: log(RBA)

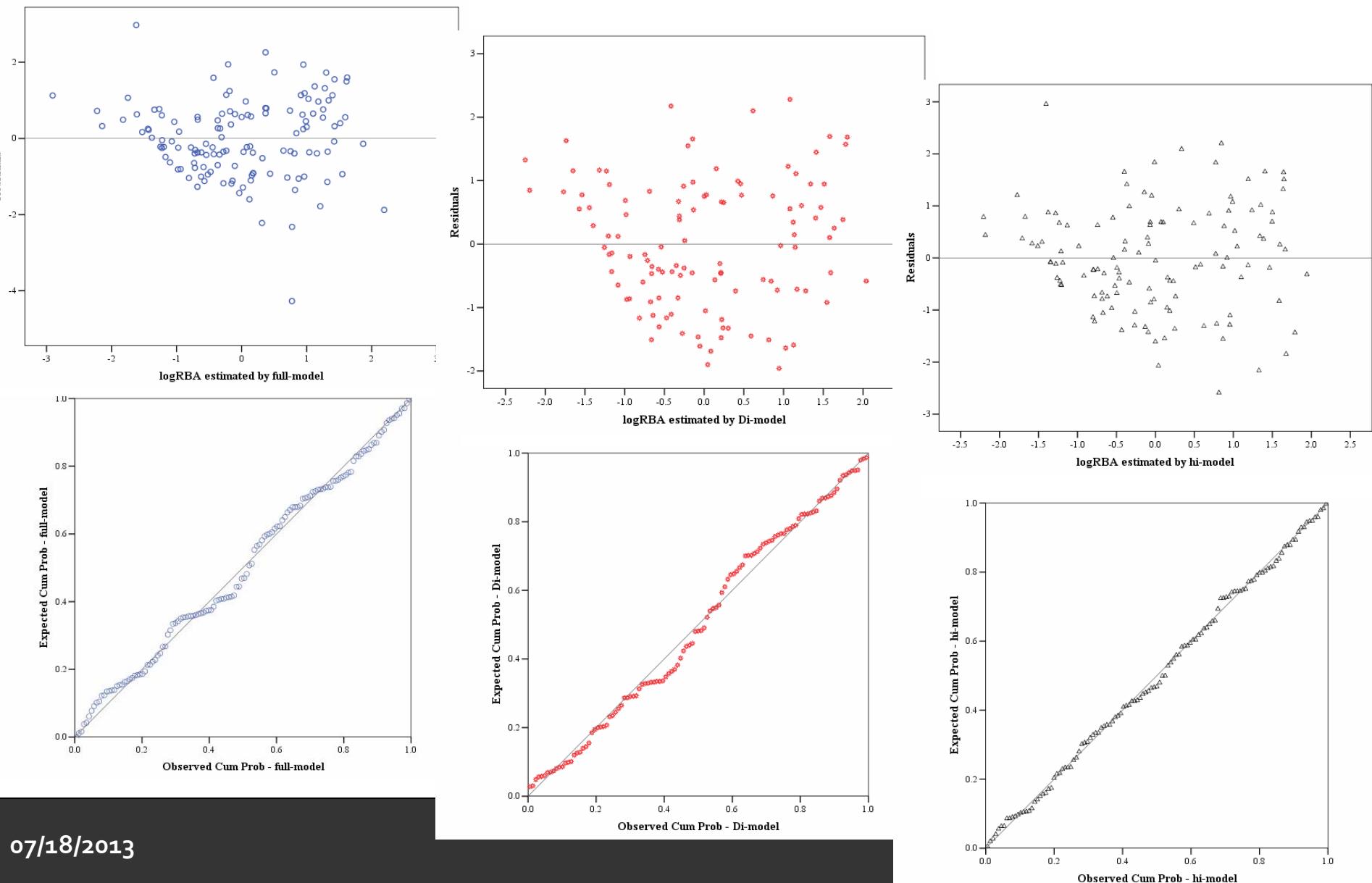
Statistical parameter	Full-model (n=132)	D _i -model (n=115) ^a	h _i -model (n=123) ^b
Normality tests: KS-AD-CS	0.116* - 2.409* - 14.862**	0.124* - 2.432* - 12.613*	0.120* - 2.428* - 12.083*
Durbin-Watson	1.275	1.292	1.263
Collinearity: highest R higher VIF & lower T	0.7700 TIE: 3.367& 0.297	0.7889 ATS4m: 4.082&0.245	0.7752 ATS4m: 4.516&0.221
R ²	0.6559	0.7797	0.6928
R ² _{adj}	0.6394	0.7675	0.6769
s _{est}	1.0701	0.8293	0.9977
F-value (p-value)	39.711 (9.89·10 ⁻²⁷)	63.721 (3.12·10 ⁻³³)	43.59 (1.62·10 ⁻²⁷)
Q ²	0.5832	0.7543	0.6497
s _{loo}	1.1827	0.8764	1.0668
F _{loo} -value (p-value)	28.74 (9.49·10 ⁻²²)	55.17 (1.85·10 ⁻³¹)	(1.62·10 ⁻²⁷)
R ² -Q ²	0.0727	0.0254	0.0431
C _p -statistic	7.00	7.00	7.00
AIC (w _i -AIC)	18.9639 (0.2856)	18.3078 (0.3965)	18.7490 (0.3180)
AIC _{R2} (w _i - AIC _{R2})	8.0504 (0.3137)	7.7421 (0.3659)	8.0077 (0.3204)
AIC _c (w _i - AIC _c)	1.2657 (0.2990)	0.7766 (0.3819)	1.1358 (0.3191)
BIC	52.0750	9.8317 [†]	33.1255
HQC	26.2887	34.7113 [†]	7.8043
FIT	1.3058	2.3097	1.5076

* p ≥0.05; ** p = 0.0378; [†] = absolute values; KS = Kolmogorow-Smirnov; AD = Anderson Darling; CS = Chi-Squared; R = correlation coefficient; VIF = Variance Inflation Factor; T = tolerance; R² = determination coefficient; R²_{adj} = adjusted determination coefficient; s_{est} = standard error of the estimate; F-value = Fisher's statistics; Q² = determination coefficient in leave-one-out analysis; s_{loo} = standard error of the predict; Cp-statistic = Mallows' statistic; AIC = Akaike's information criterion; AIC_{R2} = AIC based on the determination coefficient; AIC_c = AIC corrected by McQuarrie and Tsai; BIC = Bayesian Information Criterion; HQC = Hannan-Quinn Criterion; FIT = Kubinyi's function;

^a 56 weak binders, 35 moderate binders, and 24 strong binders; withdrawn (16 compounds): 4 weak binders, 6 moderate binders and 6 strong binders;

^b 57 weak binders, 38 moderate binders, and 28 strong binders; withdrawn (8 compounds): 3 weak binders, 3 moderate binders and 2 strong binders;

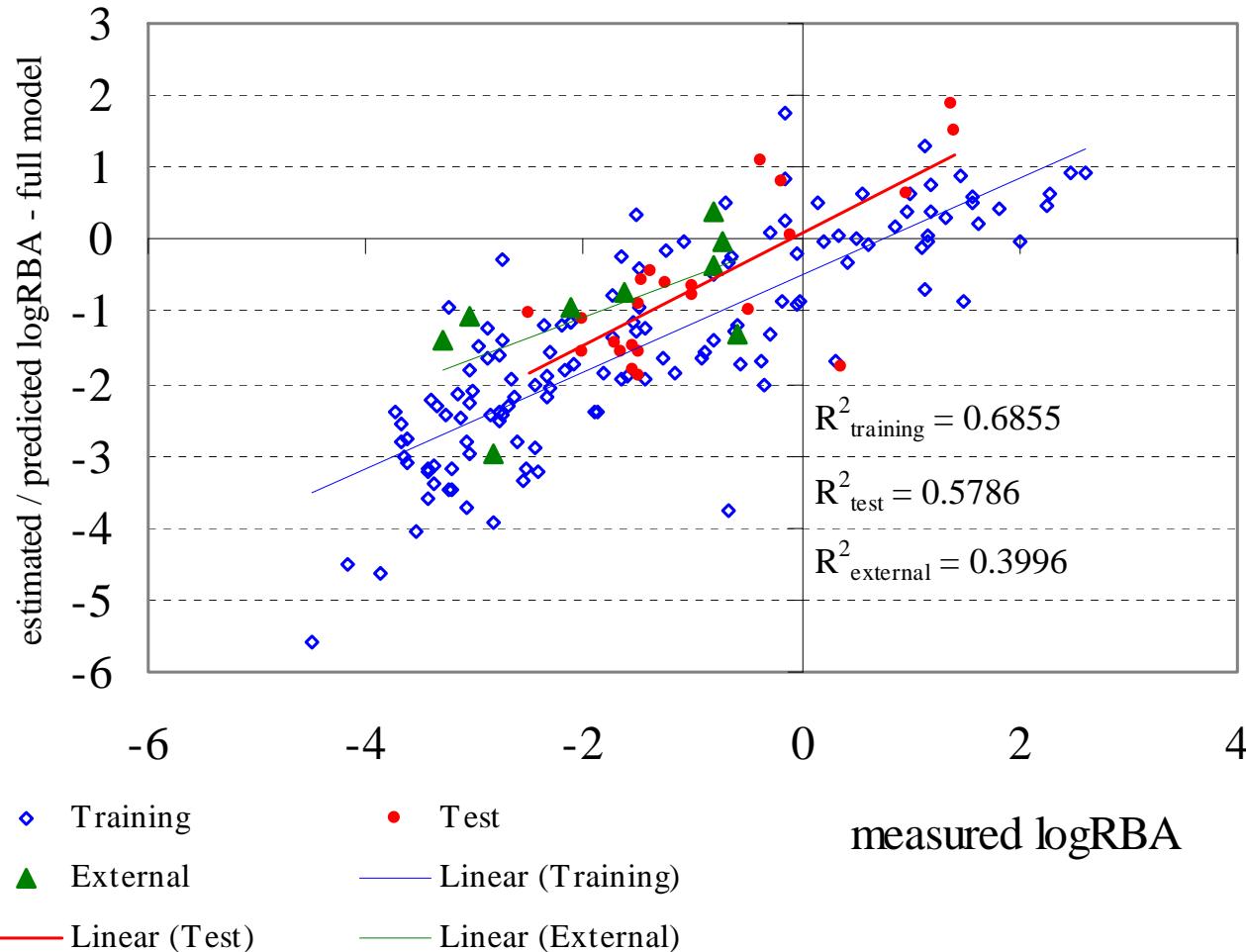
LINEAR REGRESSION MODELING: $\log(\text{RBA})$



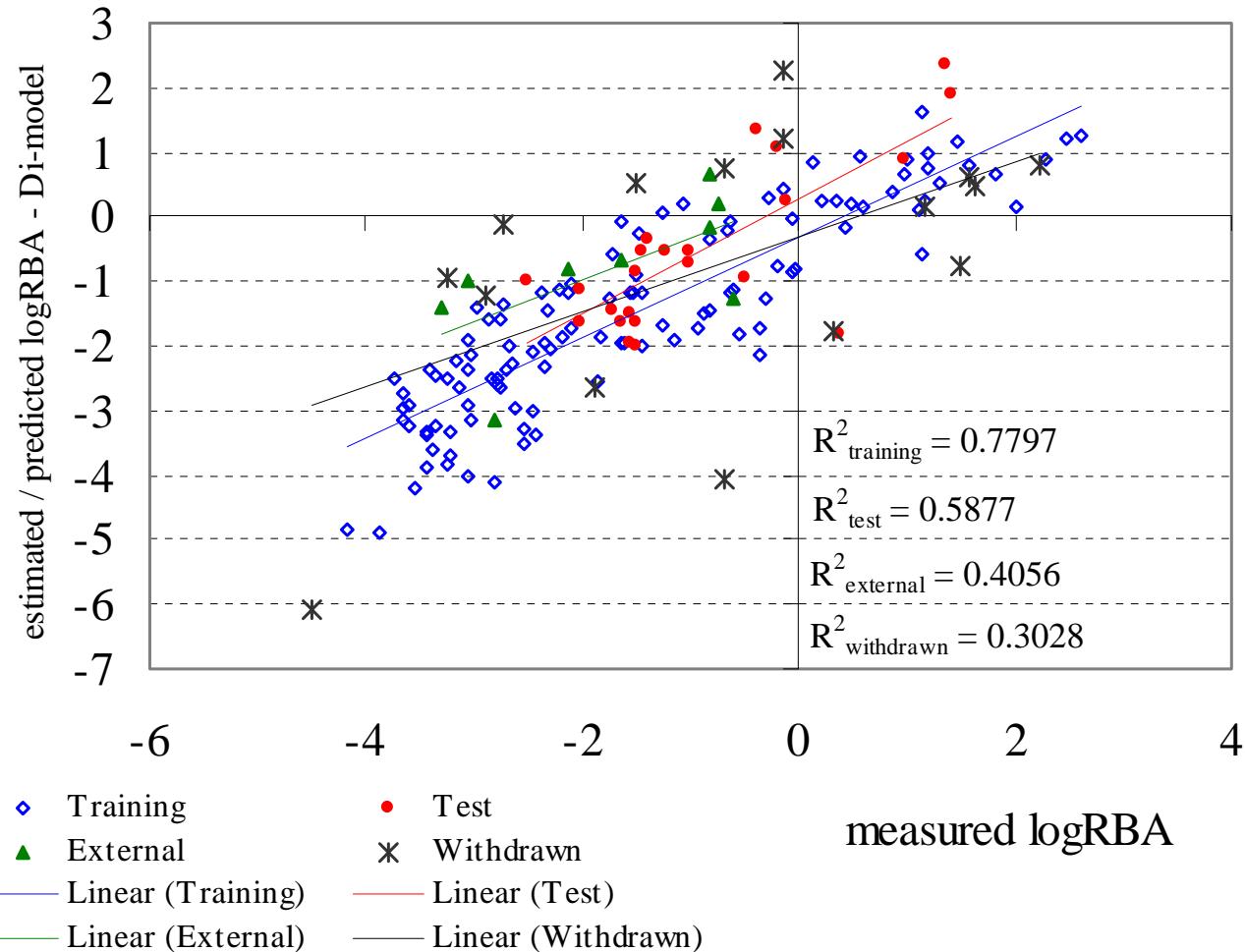
LINEAR REGRESSION MODELING: $\log(RBA)$

Parameter (Abbreviation)	Full-model (n=132)	D _i -model (n=115)	h _i -model (n=123)
Residual Mean Square (RMS)	1.1361	0.6815	0.9870
Average Prediction Variance (APV)	1.1877	0.7170	1.0351
Total Squared Error (TSE)	7.0000	7.0000	7.0000
Average Prediction Mean Squared Error (APMSE)	0.0091	0.0063	0.0085
Mean Absolute Error (MAE)	0.8356	0.6812	0.7827
Root Mean Square Error (RMSE):	1.0414	0.8037	0.9689
Mean Absolute Percentage Error (MAPE)	1.3033	1.0797	1.1649
Standard Error of Prediction (SEP)	1.0453	0.8072	0.9729
Relative Error of Prediction (REP%)	73.9756	58.0395	70.9144

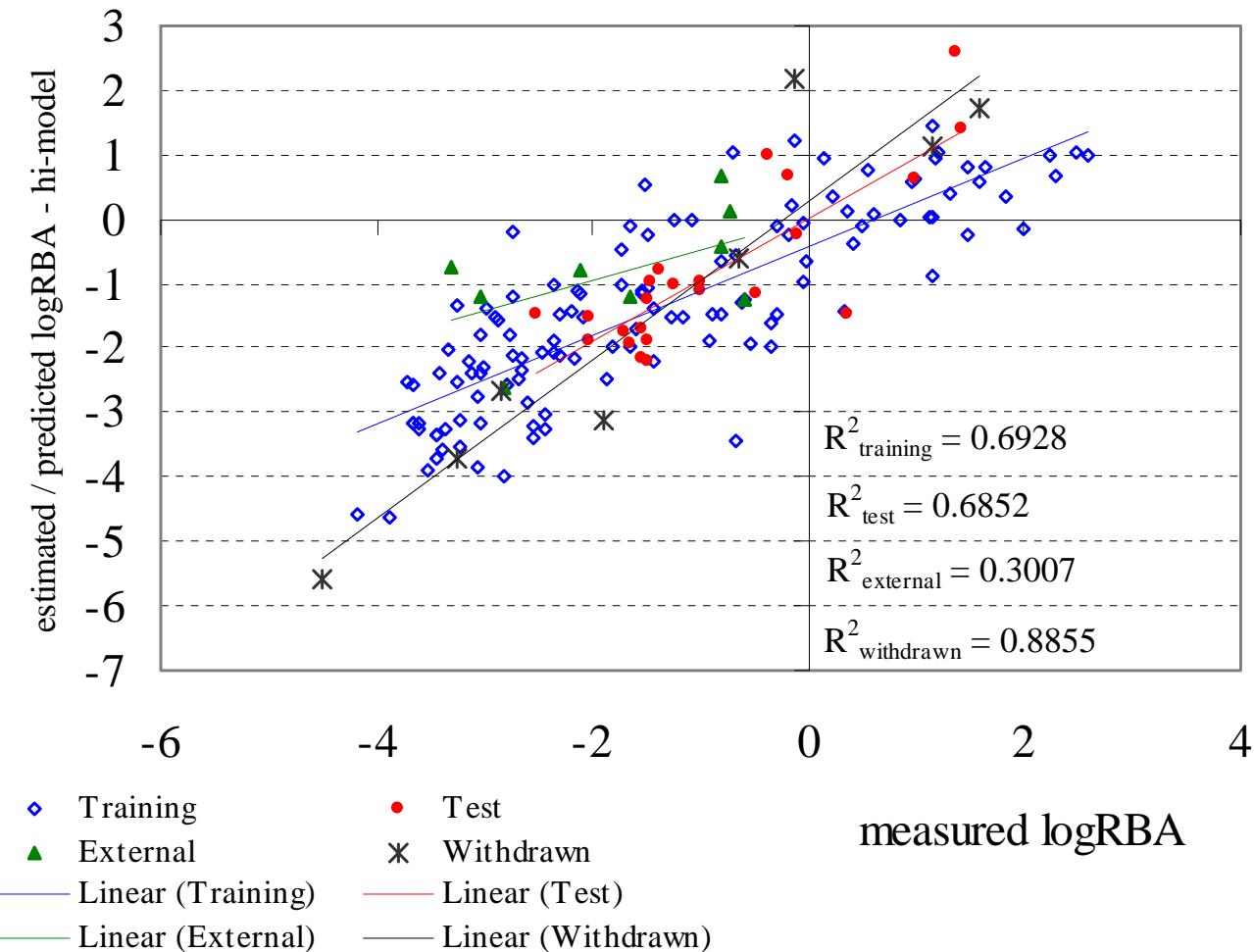
LINEAR REGRESSION MODELING: $\log(\text{RBA})$



LINEAR REGRESSION MODELING: $\log(\text{RBA})$



LINEAR REGRESSION MODELING: $\log(\text{RBA})$



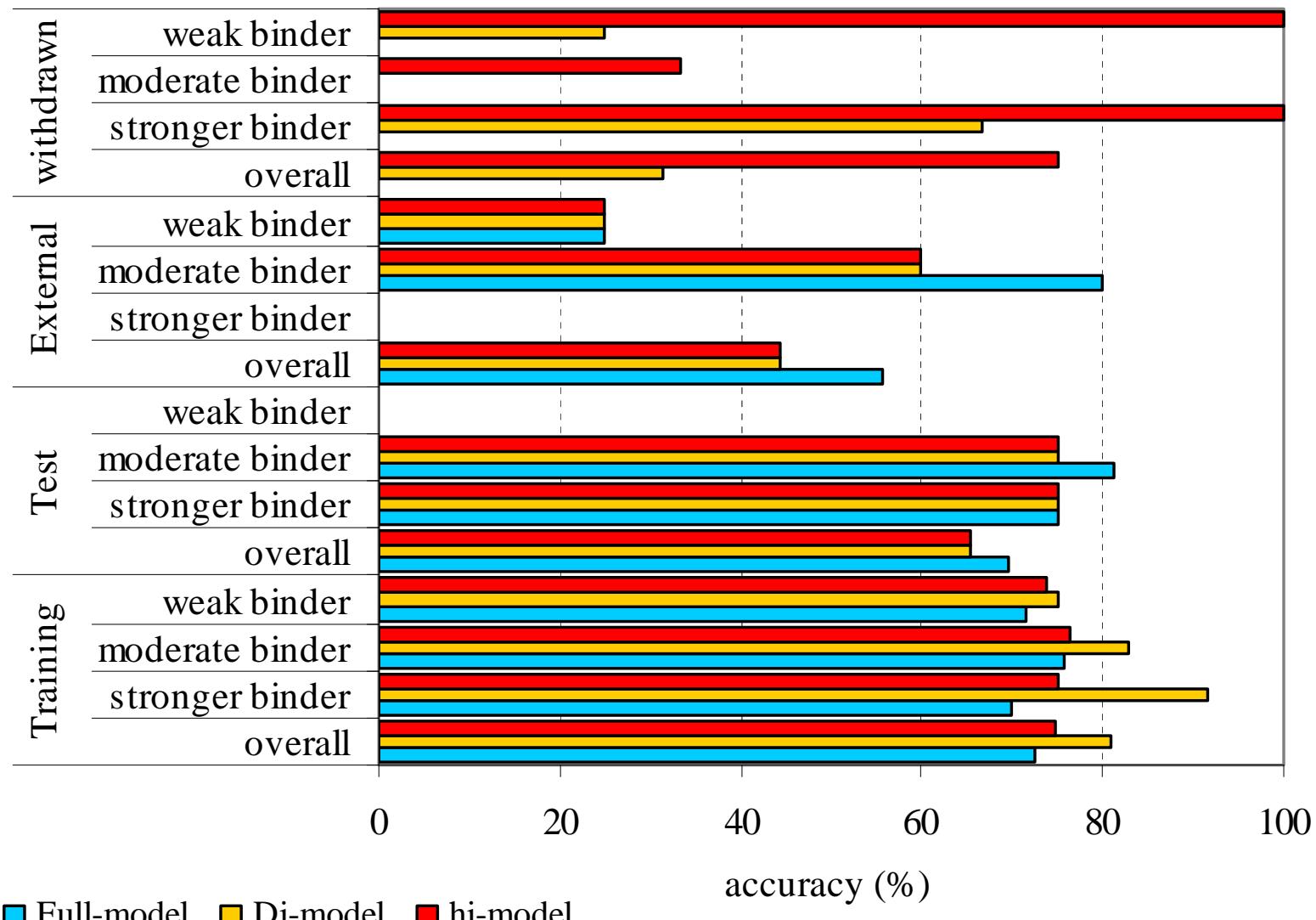
LINEAR REGRESSION MODELING: $\log(RBA)$

Criterion	Full-model (n=132)		D _i -model (n=115)			h _i -model (n=123)		
	test ^a	external ^b	test ^a	external ^b	withdrawn ^c	test ^a	external ^b	withdrawn ^d
Q _{F1} ²	0.5498	-0.1890	0.4796	-0.4581	0.2009	0.6476	-0.4444	0.7434
Q _{F2} ²	0.4804	0.2010	0.3875	0.1450	0.0443	0.5738	0.1112	0.7431
Q _{F3} ²	0.5527	-16.3066	0.7809	-17.6311	-4.4056	0.7813	-18.5792	-2.9125
PP (p)	-1.7852 (0.0440)	-2.8228 (0.0112)	-2.0961 (0.0239)	-3.0020 (0.0085)	0.1039 (0.4593)	-0.4239 (0.3379)	-2.9139 (0.0097)	0.0489 (0.4812)

Q^2_{F1} = predicted squared correlation coefficient in training set;

Q^2_{F2} = predicted squared correlation coefficient in test set; Q^2_{F3} = external predictivity ability; PP = predictive power; PP = Predictive Power: Fisher's approach; ^a n=23; ^b n = 9; ^c n = 16; ^d n = 8

LINEAR REGRESSION MODELING: $\log(\text{RBA})$



SUMMARY

- Choosing a proper linear model is crucial in QSAR analysis: model able to predict accurately the activity of interest of new chemical compounds is desired under the hypothesis that changes in molecular structure directly reflect in the compound activity/property.
- Input data and data preparation for regression analysis are of great importance but these subjects were beyond the aim of the present paper.
- Regression analysis answer to the following questions: *Does the biological activity depend on structural information?* If so, *The nature of the relationship is linear?* If yes, *How good is the model in prediction of the biological activity of new compounds?*

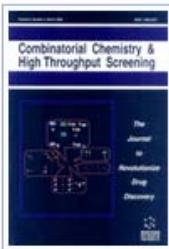
KEY MESSAGE

- ① test the assumption of linear regression (normality, linearity, independence, homoscedascity, and/or collinearity)
- ② construct the model(s) if assumptions are accomplished - analyze the data (choose the best performing model)
- ③ assess and diagnose the alternative models - analyze the LRM
- ④ decide which model fit best to your objectives

KEY MESSAGE

- Following these steps in linear regression analysis certainly led to a performing estimation model **but**
 - the model prediction power will always depend on the structure of compounds on which the model was obtained and on their biological activity
and it will be proper to be applied on
 - similar compounds as structure ± activity/property

SOME USEFUL ARTICLES



Combinatorial Chemistry & High Throughput Screening

ISSN (Print): 1386-2073

ISSN (Online): 1875-5402

VOLUME: 16

ISSUE: 4

DOI: 10.2174/1386207311316040003 Price: \$58

[Back](#)

[Mark Item](#)

[Add to Cart](#)

[Journal List](#) > [Int J Mol Sci](#) > v.12(7); 2011 > PMC3155355

The Effect of Leverage and/or Influential on Structure-Activity Relationships

Author(s): Sorana D. Bolboaca and Lorentz Jantschi

Pages 288-297 (10)

TheScientificWorldJOURNAL
Volume 9 (2009), Pages 1148-1166
doi:10.1100/tsw.2009.131

Methods Paper

Comparison of Quantitative Structure-Activity Relationship Model Performances on Carboquinone Derivatives

Sorana D. Bolboacă¹ and Lorentz Jäntschi²

07/18/2013

[Abstract](#)

[Full-Text](#)

[How to Cite this Article](#)

Environmental Chemistry Letters
August 2008, Volume 6, Issue 3, pp 175-181

Modelling the property of compounds from structure: statistical methods for models validation

Sorana-Daniela Bolboacă, Lorentz Jäntschi

[Download PDF \(279 KB\)](#)

[View Article](#)

International Journal of
MOLECULAR SCIENCES

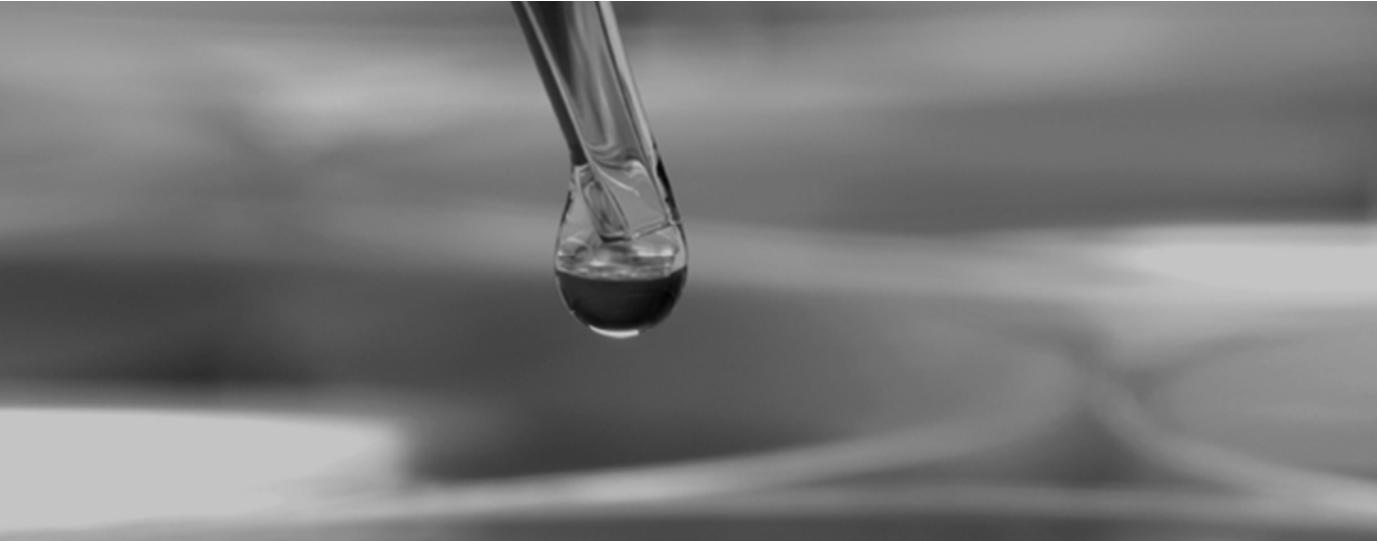
Int J Mol Sci. 2011; 12(7): 4348–4364.

Published online 2011 July 5. doi: [10.3390/ijms12074348](https://doi.org/10.3390/ijms12074348)

PMCID: PMC3155355

Predictivity Approach for Quantitative Structure-Property Models. Application for Blood-Brain Barrier Permeation of Diverse Drug-Like Compounds

Sorana D. Bolboacă¹ and Lorentz Jäntschi^{2,*}



THANK YOU FOR ATTENTION!

