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OBJECTIVES

= Exploratory data analysis on modeling (structure-
activity) relationships: Linear Regression Models

= Beyond a LRM model
= why ... assumptions ... selection ... validation ...

* Model by examples
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QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS

= =mathematical models linking chemical structure and
pharmacological activity/property in a quantitative manner
for a series of compounds [1]

* Why QSARSs?

= |dentification and development of a new active compound is an
extremely expensive and difficult process without a guaranteed result
[2] (reflected in time and costs; often requires years before testing the

new compound in human subjects)
= ~90% of the initial candidates fail to be produces due to their
toxicological properties [3].

= The time needed to develop a drug varies from 10 to 15 years
(Congressional Budget Office, Research and Development in the
Pharmaceutical Industry (Washington, DC: CBO, October 2006).

1. Hammett LP. The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives. ] Am Chem Soc
1937;59(1):96-103
2. Chen X-P, Du G-H. Target validation: A door to drug discovery. Drug Discov Ther 2007;1(1):23-29.

07/18/2013 3. H. van de Waterbeemd and E. Gifford. Admet in silico modelling: towards prediction paradise? Nat Rev Drug Discov

2003;2(3):192-204.



QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS

* |nput data: :
Reliable \
= Chemical structure — structural Scientifically valid result Model applicable
. . . model \ . to query chemical
information (descriptors — many : Adequsie
approaches) ool

= Activity/property (outcome

Model relevant

varia ble) to regulatory purpose
- OUtpUt: model (reg ression vs. The interrelated concepts of (Q)SAR validity, reliability, applicability and adequacy
classification)
" Usedto: e Support priority setting of chemicals
* Supplement experimental data * Guide experimental design (which?)
= Replace testing * Provide mechanistic information

eGroup active compounds into chemical categories
 Data gaps for classification, labeling, risk assessment

07/18/2013  (3\5ARs and REACH:
http://ihcp.jrc.ec.europa.eu/our labs/predictive toxicology/background/qgsars-and-reach




QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS

= Assumptions:
= structure of chemical

Chemical Observed / Calculated d tains feat
structure Properties / Activities compou.n > Con_ ains e_a ures
1 T responsible for its physical,
{ chemical and/or biological
QSAR / QSPR model properties
| = similar compounds have similar

Validation H Synthesis properties [4]

A 4

Structure generation

A 4

= Descriptors calculation

07/18/2013 4. Johnson AM, Maggiora GM. Concepts and Applications of Molecular Similarity. New York: John
Willey & Sons, 1990.




QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS

= OECD - Quantitative Structure-Activity Relationships Project
- Guidance Document on the Validation of (Q)SAR Models [5]
= Principles:
= adefined endpoint
= an unambiguous algorithm
= adefined domain of applicability

= appropriate measures of goodness-of-fit, robustness and
predictivity

a mechanistic interpretation, if possible

07/18/2013 5. Organisation for Economic Co-operation and Development [online] [Accessed February 2, 2012] URL: 7

http://www.oecd.org/officialdocuments/displaydocumentpdf?cote=env/jm/mono(2007)2&doclanguage=en



LINEAR REGRESSION

Objectives of linear regression analysis [6]:

= todescribe - strength of the association between outcome and factors of
interest

= toadjust - data for covariates or cofounders
= toidentify predictors - factors that affect the outcome

= to predict the outcome

Glaton (1886) [7] to understand heredity

Pearson (2896)[8] optimum values of slope and correlation coefficient could be
calculated from the product-moment

Yule (2897) [9] minimizing the sum of squares error

6. Chan YM. Biostatistics 201: Linear Regression Analysis. Singapore Medical Journal
2004;45(2):55.

7. Galton F. Regression towards mediocrity in hereditary stature. J Anthropol Inst Great Brit Ireland
1886;15: 246-263.

8. Pearson K. Mathematical Contributions to the Theory of Evolution. Ill. Regression, Heredity and
Panmixia, Proc R Soc Lond 1896 ;187:253-318.

9. Yule GU. On the significance of Bravais’ formulae for regression, &c, in the case of skew

07/18/2013

correlation. Proc R Soc Lond 1897:60:477-489.



LINEAR REGRESSION MODELING: ASSUMPTIONS

Probabllity Density Function

Probabiity Dangity Function
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(Duchowicz et al., 2008) - N = 166 (Jantschi et al, 2009) - N = 206
Statistic Value | Probability of observation | Reject the hypothesis of normality
Kolmogorov-Smirnov | 0.05508 67.43% No
Anderson-Darling 0.56339| 14.1%:; 12.5%; 14.3% No
Chi Squared 3(df=7) 88.6% No = PBut... "normal |aW L iS not
Wilks-Shapiro (.98173 2.8% Yes
Zstennes 258 NCE = valid in a great many cases
/JKunosis 0.53 59.5% No
e o i e which are both common and
Statistic Value | Probability of observation | Reject the hypothesis of normality . "
Kolmogorov-Smirnov | 0.03348 96.91% No |mp0rta nt [9]
Anderson-Darling 0.44432 | 27.2%; 25.2%; 19.2% No
Chi Squared 1 1(di=7) 13.8% No
Wilks-Shapiro ().98709 5.8% No
:’{Skewuess 1.48 14% No
7 Kurtosis 2.51 1.2% Yes
Jarque-Bera 7.577 2.3% Yes
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10. Jantschi L, Bolboaca SD. Distribution Fitting 2. Pearson-Fisher, Kolmogorov-Smirnov, Anderson-Darling,

Wilks-Shapiro, Kramer-von-Misses and Jarque-Bera statistics. UASVM Horticulture, 2009;66(2):691-697.



DATA SET BY EXAMPLE

= Endocrine disrupting chemicals with experimental values of
relative binding affinity expressed in logarithmic scale (logRBA)
[11]

= — binders: weak (logRBA < -2.0), moderate (-2.0 < logRBA < 0),
strong (logRBA > 0) [12]

Cot i Type of binder: n (% [95%CI])

weak moderate strong
Training |132 |60 (45 [34; 55]) | 41(31[24;39]) |30 (23 [16; 31])
Test 23 |3(13[5;36])  |16(70[48;87]) | 4 (17[5; 39])
External |9  |4(44[12;77]) |5(56[23;88]) |o(o[o;43])

11. Li J, Gramatica P. Mol Divers. 2010 Nov;14(4):687-96.

07/18/2013 13 Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL, et al. Toxicol Sci



LINEAR REGRESSION MODELING: ASSUMPTIONS

n Kk
Y =b,+> bX +¢
=1

Assumption What is the effect? How to detect it? How to fix it?

Normality Unreliable coefficients | Plot: normal probability plot Identify and withdrawn the outliers
and confidence Statistics: skewness & kurtosis [22] (if any) - Grubs test [28]
intervals Test®: Kolmogorov-Smirnov [?], [24],

Anderson-Darling [25], Chi-Squared [26];
Shapiro-Wilks test [*7] (n < 50)

Linearity Estimations and Plot Transformation
predictions are inerror | = observed vs estimated values (see Table 2)
= residuals versus estimated values
Independence Important in models Plot: autocorelation plot of residuals D-W<1.00> structural problem
where time is important | Test: Durbin-Watson #[29], [30]. If no > reconsider the transformation

autocorrelation exists in the sample DW ~ 2 (if any).
Add more independent variables.

Homoscedasticity Too wide or too narrow | Plot (pattern of errors): residuals vs predicted | Use different variables.
confidence intervals value Use Generalized Least Square
Test: Breusch-Pagan® [31], Bartlett [32],
Levene [33]
Collinearity Predictors are related to | = Correlation matrix: r ? 0.80 or 0.90 indicates | Remove the variable that is
(independent variables) | each other collinearity [34] correlated with others
= VIF? 10 and/or T(tolerance) < 0.01 Be aware that collinearity is not

indicates the existence of collinearity [34] bad all time

“the errors are serially uncorrelated; WD < [0, 4], DW =2> no autocorrelation; ° the variance of the residuals is the same for all values of Y; ¢ EasyFit program uses it to
test the normality of Y;




LRM: SELECTION

Unusual data: not identify by usual parameter (r, F)

= Qutlier: = Neitherignore, nor throw
- X'sorY them without thinking
= Regression outlier: T |residuals| = Think of reason why
= Leverage point: unusual observation may be different
combination of variables (h, = Change the model
model — threshold = 2-(k+1)/n . .
| S (es2)fm) Fit the model with and
= Influential point: influence on without the unusual data and
the regression coefficients (D, see the effect

model —threshold = 4/n)
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LRM: SELECTION

Studentized residuals (N=132)

Studentized residuals
e
4
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LRM: SELECTION

Cook's distance (N=132)

12

X
11 S
1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S
09 - S
Di>4/n— 9 compounds
@ 08 e
Sorlo L —
2
06 F--—f------""""""" - e
w
E05 [ e
(@}
©C 04 e
03 (- e
02 (e e
o1 r-——-—-—-----"-"-"-"-"“"“"“"“"“"-"“"-"-"-"-—-—-—- X = X - -
£ X X X 5 X X
0 X X XX

07/18/2013




LRM: SELECTION

Hat matrix (N=132)
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LRM: DIAGNOSTIC

Parameter (Abbreviation) Formula [ref] Remarks
Residual Mean Square (RMS) Z.nl (v, -9’ RMS: the smaller the better
- Error variance RMS = T n_k 0<RMS <
Average Prediction Variance (APV) APV = RMS. (n+k) [51] The smaller the better

Total Squared Error (TSE)

n _0)\2
TSE:—ZH(){L YD) 5k [52]
(e)

The smaller the better
TSE > (k+1) — bias due to incompletely
specified model

errors; could be also used to compare two
models

n

SSE
TSE=—or ™ (n—2-k)+2 [39] TSE< (k+1) — the model is over specified
(contains too many variables)

Average Prediction Mean Squared Error RMS [53]

APMSE = ———
(APMSE) 1 The smaller the better
Mean Absolute Error (MAE) Z_ﬂ ly. =9, |
- Measures the average magnitude of the | MAE = =""———— MAE =0 — perfect accuracy

0<MAE<®

Root Mean Square Error (RMSE):
- Measures the average magnitude of the
error

n & )2
RMSE _ Z,l(yrl] yl)

RMSE > MAE — variation in the errors
exists
0<RMSE<»

Mean Absolute Percentage Error (MAPE)

zinzl| =¥yl [54],

- Measure of accuracy expressed as MAPE = N MAPE ~ 0 — perfect fit
percentage [55]
2y )
Standard Error of Prediction (SEP) SEP = \/& The smaller the better
n-1

Relative Error of Prediction (REP%)

REP(%) =@\/@
y n

The smaller the better

n =sample size; k = number of independent variables in the model; y = the mean of estimated/predicted activity/property; f/i = predicted value of the i compound
in the sample; y; = observed/measured activity/property of i compound; SSE = sum of squared errors; MSE = mean of squared errors




LRM: PREDICTIVE POWER

Parameter (Abbreviation) Formula [ref] Remarks

Predictive Squared Correlation 02 = ZnTS .- [56]

Coefficient in Training Set (Qx°) H Z-=1 (¥, ~ V= )

D— PES— G )2 Prediction is considered accurate if the
re |(-:t.|ve .quare re aztlon Q =1- = a _Yi 2 [58] predictive power of the model is > 0.6

Coefficient in Test Set (Qg") Y. o~ T )

[57]

ZTT (¥, _Yi)2 /Mg [59]
Zl R ¥ =Y ) /g

External Predictive Ability (Q?) Q2 =l—

3

s -0 [60]

t= Evaluate if the mean of residual is

Predictive Power (PP): Fisher's - /
(PP) stdev(res )/ iz statistically different by the expected
approach -
p=TDIST(abs(t),nys-1,1) value ()

n =sample size; v = number of independent variables in the model; y = the mean of estimated/predicted
activity/property; ; = predicted value of the i compound in the sample; y; = observed/measured

activity/property of i compound; == mean of residuals; stdev = standard deviation; TR = training set; TS = test
set; EXT = external set; abs = absolute value
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LINEAR REGRESSION MODELING: log(RBA)

Statistical parameter

Full-model (n=132)

D;-model (n=115)"

hi-model (n=123)°

Normality tests: KS-AD-CS

0.116 -2.409 -14.862"

0.124 -2.432"-12.613

*

0.120 - 2.428 - 12.083

Durbin-Watson

1.275

1.292

1.263

Collinearity: highest R
higher VIF & lower T

0.7700
TIE: 3.367/& 0.297

0.7889
ATS4m: 4.082&0.245

0.7752
ATS4m: 4.516&0.221

R2

0.6559

0.7797

0.6928

R 0.6394 0.7675 0.6769

Sest 1.0701 0.8293 0.9977

F-value (p-value) 39.711 (9.89-10) 63.721 (3.12:10™%) 4359 (1.62-10")
Q° 0.5832 0.7543 0.6497

Sioo 1.1827 0.8764 1.0668
Fioo-value (p-value) 28.74 (9.49-10°%) 55.17 (1.85-10°") (1.62:10™"
IR*-Q7 0.0727 0.0254 0.0431
C,-statistic 7.00 7.00 7.00

AIC (W-AIC) 18.9639 (0.2856) 18.3078 (0.3965) 18.7490 (0.3180)
AlCg, (Wi~ AlCg,) 8.0504 (0.3137) 7.7421 (0.3659) 8.0077 (0.3204)
AIC, (W;- AIC,) 1.2657 (0.2990) 0.7766 (0.3819) 1.1358 (0.3191)
BIC 52.0750 9.8317' 33.1255

HQC 26.2887 34.7113" 7.8043

FIT 1.3058 2.3097 1.5076

" p>0.05; " p = 0.0378; " = absolute values; KS = Kolmogorow-Smirmov; AD = Anderson Darling; CS = Chi-Squared; R = correlation coefficient; VIF =
Variance Inflation Factor; T = tolerance; R? = determination coefficient; R%g; = adjusted determination coefficient; se = standard error of the estimate; F-value =
Fisher's statistics; Q? = determination coefficient in leave-one-out analysis; S, = standard error of the predict; Cp-statistic = Mallows’ statistic; AIC = Akaike’s
information criterion; AlCg, = AIC based on the determination coefficient; AIC. = AIC corrected by McQuarrie and Tsai; BIC = Bayesian Information Criterion;
HQC = Hannan-Quinn Criterion; FIT = Kubinyi's function;
456 weak binders, 35 moderate binders, and 24 strong binders; withdrawn (16 compounds): 4 weak binders, 6 moderate binders and 6 strong binders;
® 57 weak binders, 38 moderate binders, and 28 strong binders; withdrawn (8 compounds): 3 weak binders, 3 moderate binders and 2 strong binders;




LINEAR REGRESSION MODELING: log(RBA)

o
e 3
29 o - o
o
o o og
o
o o & [ - i
o o . 3 a
°© g 0%0 QOOQ:DQ)S gog o 2 °
o o o o ° 3
o o0 = o o = » & = ; a
@ o O ®
- 2 © Gnpde® é%o o® 000 . " 2 a
Q 8 o 0 o - =
: %o o 8 o @ CJ E N # a s &
'E O% o8 . =] " 14 N 2 s ® % & & & &
" Y &
=5 o 'g " o . i . #* % a B 3
- L o = o & :s ¥ % 1 A = a s & a4
2] = o o 3
o o H * k e " %u ap e & @ a a, a
[ # 8 » ® L e a & EN
0+ ¥ ] = T —E‘ LY & " & & &,
® g L1 = g = & a
] Apa A
@ oy H a® a 4 A
= Y F g * & -1 8, 4
s * : N e » & 5 ° A a, £ & o
a
-4~ z ® fg s L)
o ! L * Ce & 0 4
-1= - &
o B o LA -1 a a - a
& s a2 & a8 oA
,;, & A
" L ® o at a
T T T T T T * o a® .
-3 2 -1 0 1 2 2 2]
. ] o - 2 . .
logRBA estimated by full- model
T T T T T T T T T T &
=235 -20 -l13 -10 05 oo 03 ) 15 20
. N -3
logRBA estimated by Di-model
T T T T T T T T T T T
=25 -2.0 -3 -1.0 035 oo 0.5 1o 15 20 2.5
10=
logRBA estimated by hi-model
~
'é' 1.0+ o
L 05 P
2 &
f A
= T &
£ = B
=4 E -
= g oﬁf 08| ws,asf“
E] a 3 "y
o ' 064 * =z s
3 3 % 5
< 3 2
é = # o Mg‘@
2
b4 5 o = 06
= 044 & 2 c‘@
@ -
E F -
5 g “
5] [ ]
E 044 sﬂé“ﬂ
A
: 0.2 S
Y T T T T B
oo 02 04 06 o8 10 yﬂf 1=
Observed Cum Prob - full model
R
oa T T T T
00 02 04 06 08 10
Observed Cum Prob - Di-model
T T T
04 06 0e )

Ohbserved Cum Prob - hi-maodel



LINEAR REGRESSION MODELING: log(RBA)

Parameter (Abbreviation) Full-model (n=132) | D;model (n=113) | hrmodel (n=123)
Residual Mean Square (RMS) 1.1361 0.6815 0.9870

Average Prediction Variance (APV) 1.1877 0.7170 1.0351

Total Squared Error (TSE) 7.0000 7.0000 7.0000

Average Prediction Mean Squared Error (APMSE) | 0.0091 0.0063 0.0085

Mean Absolute Error (MAE) 0.8356 0.6812 0.7827

Root Mean Square Error (RMSE): 1.0414 0.8037 0.9689

Mean Absolute Percentage Error (MAPE) 1.3033 1.0797 1.1649

Standard Error of Prediction (SEP) 1.0453 0.8072 0.9729

Relative Error of Prediction (REP%o) 73.9756 58.0395 70.9144
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LINEAR REGRESSION MODELING: log(RBA)

=N
\
°

R aining = 0.6855

estimated / predicted logRBA - full model
R

-3 ,
4 RZ.q = 0.5786
o R externa = 0.3996
-5 -
<
-6
-6 -4 -2 0 2 4

o Training °© Test measured logRBA
A External Linear (T raining)

—— Linear (Test)

Linear (External)
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LINEAR REGRESSION MODELING: log(RBA)

estimated / predicted logRBA - Di-model

o Training o Test

a External X  Withdrawn

Linear (Training) Linear (Test)

~—— Linear (External) ——— Linear (Withdrawn)

measured logRBA
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LINEAR REGRESSION MODELING: log(RBA)

estimated / predicted logRBA - hi-model

-6 -4 -2 0 2 4
o Training e Test
a External %X Withdrawn measured |OgRBA
—— Linear (Training) — Linear (Test)

Linear (External) Linear (Withdrawn)
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LINEAR REGRESSION MODELING: log(RBA)

Full-model (n=132)

Diymodel (n=115)

hi-model (n=123)

Criterion test” external’ test” external’ | withdrawn® test” external’ | withdrawn®
Qmﬂ 0.5498 -0.1890 0.4796 -0.4581 0.2009 0.6476 -0.4444 0.7434
Q]:g2 0.4804 0.2010 0.3875 0.1450 0.0443 05738 0.1112 0.7431
QHE 0.5527 -16.3066 0.7809| -17.6311 -4 4056 0.7813| -18.5792 -2.9125
PP (p) -1.7852 -2.8228 | -2.0961 -3.0020 0.1039| -0.4239 -2.9139 0.0489

0.0440)|  (0.0112)| (0.0239)| (0.0085) (0.4593)| (0.3379)| (0.0097) (04812)

Q°r = predicted squared correlation coefficient in training set;

Q’p, = predicted squared correlation coefficient in test set; Q%m = external predictivity ability: PP = predictive power;
PP = Predictive Power: Fisher's approach; * n=23; Ph= 9: “n=16; ‘h=8
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LINEAR REGRESSION MODELING: log(RBA)

weak binder
moderate binder
stronger binder
overall

weak binder
moderate binder
stronger binder
overall

weak binder
moderate binder
stronger binder
overall

weak binder
moderate binder
stronger binder
overall

withdrawn

External

Test

Training

=

0 20 40 60 80 100
accuracy (%)

@ Full-model O Di-model m@ hi-model
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SUMMARY

= Choosing a proper linear model is crucial in QSAR analysis:
model able to predict accurately the activity of interest of
new chemical compounds is desired under the hypothesis
that changes in molecular structure directly reflect in the
compound activity/property.

= |nput data and data preparation for regression analysis are of
great importance but these subjects were beyond the aim of
the present paper.

= Regression analysis answer to the following questions: Does
the biological activity depend on structural information? If so,
The nature of the relationship is linear? If yes, How good is the
model in prediction of the biological activity of new
compounds?

07/18/2013



KEY MESSAGE

@ test the assumption of linear regression (normality,
linearity, independence, homoscedascity, and/or collinearity)

@ construct the model(s) if assumptions are accomplished -
analyze the data (choose the best performing model)

® assess and diagnose the alternative models - analyze the
LRM

@ decide which model fit best to your objectives

07/18/2013



KEY MESSAGE

= Following these steps in linear regression analysis certainly
led to a performing estimation model but

= the model prediction power will always depend on the structure
of compounds on which the model was obtained and on their
biological activity

and it will be proper to be applied on

= similar compounds as structure + activity/property

07/18/2013
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