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Abstract. Mathematics and computer programming have a major contribution to chemistry. 

Two directions can be identified: one that searches and tries (rich) to explain the structural binding and 
shape of the chemical compounds [1] with major applications in QSPR/QSAR studies [2], and applied 
sciences such as engineering of materials or agriculture [3]; the second direction is to models the 
kinetic processes that are involved in chemical reactions [4]. Many such models are available here. The 
present paper describes three variants of well the known kinetic models and presents the mathematical 
equations associated with them. The differential equations are numerically solved and fitted with 
MathCad program. 
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1. Introduction 
 The oscillating reactions are the most spectacular and essential for life. All live processes 
are based on one or more oscillating reactions.  
 The possibility of periodically altering the concentrations of the reactants, the agents and 
the product, in space and time, is a result of the autocatalysis. Fig. 1 represents two temporary 
aspects of the space distribution (distribution in space) of the reaction products through the 
concentration wave front in the proximity of the electron participates in the reaction as a reactant. 
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Fig. 1 Concentration gradient in an oscillating reaction (a) at the t, (b) at the t + ∆t moments 

 The oscillating reactions are more than a laboratory curiosity. If in the industrial processes 
they appear in few cases, in biochemical systems there are numerous examples of oscillating 
reactions. For instance, the oscillating reactions maintain the rhythm. 
 A general characteristic of the oscillating reactions in that, under the same conditions, all 
the participants from the reaction chain oscillate with the same frequency but a different 
displacement (lagging) shift. 
 
 2. Lotka – Volterra autocatalytic oscillator model 
 For the first time Lotka [5] suggested a mechanism of a complex reaction, în 
homogeneous phase (stage), which shows damped oscillations. Ten years later, in his paper, [6] 
Lotka modified the mechanism suggested in 1910 in order to generate undamped oscillations.  
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The mechanism is named Lotka-Volterra and it is further presented. The following pattern 

of reactions is considered: 
  R + X → 2X, υ = κ1·[R]·[X] (a) 
  X + Y → 2Y, υ = κ2·[X]·[Y] (b) 
  Y → P,  υ = κ3·[Y]  (c) 
  P → ,  υ = κ4·[P] (d)     (1) 
 The last equation (1d), represents an extraction process of the reaction product P, while 
the stages (1a) and (1b) are autocatalytic. In Lotka–Volterra model of the reaction mechanism, 
concentration of the reactant R is maintained constant, (for example either by an addition in the 
reaction vessel or by an equilibrium between two non-miscible phases when necessary). These 
restrictions cause the concentrations of X and Y intermediaries/agents to be 
variable/changeable/unsteady: 

  
dt

]X[d = υ(29a) − υ(29b) = κ1·[R]·[X] − κ2·[X]·[Y]    (2) 

  
dt

]Y[d = υ(29b) − υ(29c) = κ2·[X]·[Y] − κ3·[Y]    (3) 

 (2) and (3) equations form a system of differential equations with the functions [X] = 
[X](t) and [Y] = [Y](t). This system can be simply solved by a numerical method [7]. Thus the 
equations (2) and (3) became: 
  xn+1 = xn+ (tn+1-tn)·xn·(κ1·[R]-κ2·yn)      (4) 
  yn+1 = yn+(tn+1-tn)·yn·(κ2·xn-κ3)      (5) 
 With numerical values: 
  x0 = [X]0 = 1, y0 = [Y]0 = 1, κ1 = 3, κ2 = 4, κ3 = 5, [R] = 2   (6) 
there can be produced/generated the numerical series/systems (xn)n≥0 şi (yn)n≥0 corresponding to the 
temporal  series (tn)n≥0. 
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Fig. 2 The oscillation of the intermediaries in 

L-V mechanism 
Fig. 3 The  variation path ([X],[Y]) in the L-V 

mechanism 
 In order to obtain an as faithful representation of the mechanism as possible a very 
fine/careful division of the temporal coordinate in the numerical simulation is required. Thus, 
considering the series tn = n/105 with n = 0,1..5·105 there are obtained the representations from fig. 
2 and 3 for the  concentration of the intermediaries [X] = (xn)n≥0 şi [Y] = (yn)n≥0. 
 In the fig. 4 the concentration of the reaction product [P] develops/grows in the time 
through Pn (the equations 1c and 1d, taking κ4 = 3). Carrying out/performing the regression 
resulted from the equation (1c) and represented in fig. 5, by pn , according to the concentration [P] 
and depending on time, the regression slope gives the average rate of formation equal to 1.481. 
 There are a few remarks to be made, namely: the sum of average concentrations of the 
agents is maintained in time as the regression equation xyn also shows (the slope of the regression 
equation is null). This average sum M([X]) + M([Y]) = 1.365; hence it results that the average 
concentrations of the agents also remain constant in time; the values of the average concentrations 
are M([Y]) = 1.468 şi M([Y]) = 1.263. 
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Fig. 4 The variation  of the product concentration in 

L-V mechanism 
Fig. 5 Product storage in  

L-V mechanism 
 
 3. A model of damped oscillations 
 Let it be a chemical process that takes place according to the following model of a 
reaction mechanism: 
  R1 → X,  υ = κ1·[R1] (a) 
  2X + Y → 3Y,  υ = κ2·[X]2·[Y] (b) 
  R2 + X → Y + P1, υ = κ3·[R2]·[X] (c) 
  Y → P2,  υ = κ4·[Y] (d)    (7) 
 As in Lotka – Volterra, model, the concentrations of the R1 şi R2 reacting substances 
remain constant during the process. 
 The solving of the model begins by writing the variation equation for the intermediaries: 

 
dt

]X[d = υ(34a) − 2·υ(34b) − υ(34c) = κ1·[R1] − 2·κ2·[X]2·[Y] − κ3·[R2]·[X]  (8) 

 
dt

]Y[d = 2·υ(34b) + υ(34c) − υ(34d) = 2·κ2·[X]2·[Y] + κ3·[R2]·[X] − κ4·[Y]  (9) 

 The equations (8) and (9) form a system of differential equations having the functions [X] 
= [X](t) şi [Y] = [Y](t). This system may also be easily solved by a numerical method. The 
equations (8, 9) are written thus: 
  xn+1 = xn+(tn+1-tn)·(κ1·[R1]-xn·(2·κ2·xn·yn+κ3·[R2]))    (10) 
  yn+1 = yn+(tn+1-tn)·(xn·(2·κ2·xn·yn+κ3·[R2])-κ4·yn)    (11) 
 Having the numerical value: 
  x0 = 0, y0 = 1, κ1 = 3, κ2 = 4, κ3 = 5, κ4 = 7, [R1] = 2, [R2] = 2  (12) 
there can be generated the numerical series (xn)n≥0 şi (yn)n≥0 corresponding to the temporal series 
(tn)n≥0. Taking into account the series tn = n/100000 cu n = 0,1..300000 there are obtained the 
representation from fig. 6 for the concentrations of the intermediaries [X] = (xn)n≥0 şi [Y] = (yn)n≥0. 
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Fig. 6 The damped oscillations in chem. reactions (a) the conc. of the intermediaries X, (b) the 

concentration of the intermediaries Y 
Fig. 6 shows that the system tends towards a state of equilibrium state characterized a 

ratio of the concentrations of the two intermediaries. The system of the agents practically causes 
damped oscillations around of the equilibrium ratio for two intermediaries. 
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 The chart representing the agent concentration [Y] depending on the agent concentration 
[X] from fig. 7 shows the same thing. 

0.177

0.175

yn

2.322.31 xn

2.31 2.315 2.32
0.175

0.176

0.177

 
Fig. 7 The damped oscillation path ([X],[Y]) 

 The values obtained for the equilibrium concentration are [X] = 2.315 and [Y] = 0.176 
and the equilibrium ratio are [X]/[Y] = 13.53. 
 The dependence on time (tn)n≥0 of the accumulation of the reaction products [P1] = (p1n)n≥0 
şi [P2] = (p2n)n≥0 is given in fig. 8.  
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Fig. 8 The linear variation of the amount of products in damped oscillating reactions 

Fig. 8 shows that this time the concentration of the reaction products changes linearity 
even if the concentrations of the agents X şi Y oscillate towards the equilibrium value. 

 
 4. The brussel model of autocatalytic oscillation 
 The brussel model was initiated by a group from Bruxelles directed by Ilya Prigogine it 
introduce for the first time, mechanism of a reaction whose scheme of evolution converged on an 
attractor [8]. More authors have changed this variant and have studied the systems running 
according to this mechanism [9,10]. Further, a simplified variant is presented: 
  R → X,   υ = κ1·[R] (a) 
  X + 2Y → 3Y,  υ = κ2·[X]·[Y]2 (b) 
  Y → P,   υ = κ3·[Y] (c)    (13) 
 As in the previous situations it is supposed that the concentration of the reacting substance 
R remains constant and the product P may be extracted from the system by a reaction of the type 
(7d). 
 X and Y are the intermediaries again. Their speed equations written on the basis of the 
mechanism (13) are: 

  
dt

]X[d = υ(39a) − υ(39b) = κ1·[R1] − κ2·[X]·[Y]2     (14) 

  
dt

]Y[d = υ(39b) − υ(39c) = κ2·[X]·[Y]2 − κ3·[Y]    (15) 

Though the equations (14) and (15) seem simpler, at first sight, they are even more 
difficult to be solved by integration than (2-3) or (8-9). Moreover, the literature has not recorded 
their integration into the general case described by (14-15). Besides, the equations (14-15) do not 
lead to an attractor model not matter by values of the constants of speed and of the concentrations 
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[R], [X]0 and [Y]0. The attempt of solving (14-15) is full of surprises. For most of the values a 
system which develops towards a position of equilibrium is obtained; there are values for which 
damped oscillations to equilibrium are found again; the undamped periodical oscillations have 
also an important role, which is confirmed by the majority of the organisms in which the cellular 
biochemical processes are based on such oscillations. The processes taking place within the heart 
are a conclusive example; the periodical heart beats are due to processes of this type. The 
importance of these processes is great. This was the reason for which Ilya Prigogine was awarded 
the Nobel Prize for chemistry in 1977, namely for his theories on the dissipative systems. 
 The equations (14-15) are simplified [11] if [R] = 1, κ1 = 1 şi κ3 = 1, are chosen and when 
the differential system of equations becomes: 
  = 1 – κx& 2·x·y2; = κy& 2·x·y2 – y      (16) 

 
4

0

x1n

x2n

1.50 tn

0 0.75 1.5
0

2

4 4

0

y1n

y2n

1.50 tn

0 0.75 1.5
0

2

4

 
Fig. 9 The concentrations of the intermediaries up to the attractor for two cases with different I.C. 
where the derivate related to the time of the x variable was . This system of the differential 
equation (16) does not offer more chances for an exact resolution either. However, the numerical 
simulation is made in the same way. Thus the iteration equation of variation for (16) is written: 

x&

  xn+1 = xn+(tn+1-tn)·(1-κ2·xn·yn
2); yn+1 = yn+(tn+1-tn)·(κ2·xn·yn

2-yn) (17) 
 Now choosing κ2 = 0.88 and taking into consideration two cases, the first one in which the 
initial concentrations of the agents are x10 = [X]1,0 = 1.5 and y10 = [Y]1,0 = 2 and second case in 
which x20 = [X]2,0 = 2 şi y20 = [Y]2,0 = 2.5 and the series tn = n/100 with n = 0,1..150 following 
representations for the concentrations of the agents [X] = (xn)n≥0 and [Y] = (yn)n≥0 are obtained (fig. 
9). And the variation diagram of [Y] depending on [X] and the variation in time of the storage of 
reaction product is (fig. 10). 
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Fig. 10 (a) The entrance of  [Y] related to [X] on the same gravitational orbit for  

(b) different product quantities obtained in two cases having different initial conditions 
 If the fig. 9a and b are not very conclusive and fig. 10b seems to confirm this, fig. 10b 
shows that, though the two systems start from different values of the concentrations of the agents, 
in both cases the system comes to evolve rather early on the same trajectory. Now, increasing the 
time interval by choosing another n = 0,1..3000 the following concentrations of the agents are 
obtained [X]1 = (x1n)n≥0, [X]2 = (x2n)n≥0, [Y]2 = (y2n)n≥0 şi [Y]2 = (y2n)n≥0 for the two cases 1 and 2 
of the chosen system (fig. 11). It is noticed that, even if they do not evolve according the same 
values, same period and amplitude of the oscillations are recorded. Fig. 12 gives the dependence 
of [Y] under [X] for the cases as well as the accumulation of the product. 
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Fig. 11 The periodical evolution having the same oscillation period 

T = 0.226 of: (a) [X] and (b) [Y], for two cases having different initial conditions 
 
 The difference between the Lotka-Voltera model and Bruxelles model one is the 
following: The Lotka-Voltera model oscillates around the initial values of the concentrations of 
the agents, whereas the Bruxelles one converges, in time on the same variation equation 
irrespective of the initial values of the concentrations of the agents. In fact the attractor does not 
appear for any of their values; for a given k2 there are minimum y0,min şi x0,min values from which 
the periodical oscillations arise and the system tends towards the curve given in  fig. 12. 
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Fig. 12 (a) Convergence at atractor of brusselator system independent from initial conditions and 

(b) different quantities of resulted product 
The convergence on the attractor of the brusselator system independent of the initial 

conditions and (b) different quantities of the product obtained. 
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