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We improve a recently developed Replacement Method (RM) for the selection of an optimal set of molecular
descriptors from a much greater pool of such regression variables. Our approach yields almost optimal results
with a much smaller number of linear regressions than the full search. We test our method on four different
experimental full data sets and four sub datasets. The resulting algorithm, which was named Enhanced
Replacement Method (ERM), resembles a simulated annealing procedure and improves our RM, yielding
models with better statistical parameters than the ones previously published. The number of linear
regressions increases only to a small extent so that the new algorithm is still suitable for databases with as
many as 63912 descriptors.
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1. Introduction

A generally accepted remedy for overcoming the lack of experi-
mental data in complex chemical phenomena is the analysis based on
Quantitative Structure-Property/ActivityRelationships (QSPR/QSAR) [1].
For that reason, there exists a permanently renewed interest focused on
the development of such kind of predictive techniques [2–5]. The
ultimate role of the QSPR/QSAR theory is to suggest mathematical
models capable of estimating relevant properties of interest, especially
when those cannot beexperimentally determined for somereason. Such
studies rely on the basic assumption that the structure of a compound
determines entirely its properties, which can therefore be translated
into so-called molecular descriptors. These parameters are calculated
throughmathematical formulae obtained from several theories, such as
Chemical Graph Theory, Information Theory, Quantum Mechanics, etc
[6,7].

Nowadays, there are thousands of descriptors available in the
literature [8], and one has to decide how to select those that
characterize the property/activity under consideration in the most
efficient way. One is thus faced to the mathematical problem of
selecting a subset d of d descriptors from a much larger set D of D≫d
ones.

The search for the optimal set of descriptors may be monitored by
the minimization or maximization of a chosen statistical parameter;
for example, wemay be interested in a model that makes the Standard
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Deviation (S) as small as possible. In otherwords, we look for the global
minimum of S(d), where d is a point in a space of D!/ [d!(D−d)!] ones.
Consequently, a full search (FS) of the optimal variables is impractical
because it requires D!/ [d!(D−d)!] linear regressions.

Some time agowe proposed the Replacement Method (RM) [9–11]
that produces linear QSPR–QSAR models that are quite close the FS
ones with much less computational work. This technique approaches
the minimum of S by judiciously taking into account the relative
errors of the coefficients of the least-squares model given by a set of d
descriptors d={X1, X2,…, Xd}. It has been shown [12] that the RM gives
models with better statistical parameters than the Forward Stepwise
Regression (FSW) procedure [13] and similar or better ones than the
more elaborated Genetics Algorithms (GA) [14]. We believe that the
RM is preferable to the GA [11,15] because the former takes into
account the error in the regression coefficient and as a result the
replacement of the descriptor is not at random as in the GA. In
addition to it, the practical application of the GA requires the tuning of
some parameters such as mutation probability, crossover probability,
generation gap, etc., which is not a simple problem [16].

The RM is a rapidly convergent iterative algorithm that produces
linear regression models with small S in a remarkably little computer
time [11,12,17]. However, in some cases, the RM can get trapped in a
local minimum of S that is not able to leave without some kind of
constraint. Although such local minima provide acceptable models, as
shown in all earlier applications of the RM [11,12,17], there is still room
for improvement.

In this paper we propose a Modified Replacement Method (MRM)
that follows the same RM philosophy but exhibits less propensity for
remaining in local minima and at the same time is less dependent on
the initial solution.
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Wewill also discuss the resemblance of the newalgorithmwith the
Simulated Annealing (SA) which is an adaptation of the Metropolis–
Hastings algorithm, a Monte Carlo Method [18] to generate sample
states of a thermodynamic system. The name and inspiration come
from annealing in metallurgy, a technique involving heating and
controlled cooling of a material to increase the size of its crystals and
reduce their defects. The heat causes the atoms to become unstuck
from their initial positions (a local minimum of the internal energy)
and wander randomly through states of higher energy; the slow
cooling gives themmore chances of finding configurations with lower
internal energy than the initial one [19].

In Section 2 we discuss the data sets and develop the method. In
Section 3 we apply the alternative algorithms to some QSPR problems
and compare the results. Finally, in Section 4 we draw conclusions.

2. Experimental data and theoretical methods

2.1. Data sets

Four different experimental data sets already previously ana-
lyzed were used to test and contrast the performance of both RM
and MRM: a fluorophilicity data set (FLUOR), consisting of 116
organic compounds characterized by 1268 theoretical descriptors
[12]; a Growth Inhibition data set (GI), with growth inhibition
values to the ciliated protozoan Tetrahymena pyriformis by 200
mechanistically diverse phenolic compounds and 1338 structural
descriptors [17]; a GABA receptor data set (GABA), containing 78
inhibition data for flavone derivatives and 1187 molecular descrip-
tors [20] and a 100 ED50 MES mice ip for enaminones (MES) with
1306 descriptors [21–23]. Additionally a data set of 209 Polychlori-
nated Biphenyls (PCB) with measured Relative Response Factor
containing 63912 molecular descriptors [24] was used to test whe-
ther the application of the improved algorithm on an extremely
large dataset is possible.

In all cases the structures of the compounds were firstly pre-
optimized with the Molecular Mechanics Force Field (MM+) proce-
dure included in Hyperchem version 6.03 [25], and the resulting
geometries were further refined by means of the semi empirical
method PM3 (Parametric Method-3) using the Polak–Ribiere algo-
rithm and a gradient norm limit of 0.01 kcal/Å. More than a thousand
molecular descriptors were calculated using the software Dragon 5.0
[26], including parameters of all types such as constitutional, topo-
logical, geometrical, quantum mechanical, etc. Most of the 62,873
descriptors of the last dataset were calculated by the molecular
Fig. 1. Standard deviation vs. n
descriptors family methodology [24]. All the algorithms were
programmed in the computer system Matlab 5.0 [27].

2.2. The algorithm

Since present algorithm is a slight variant of the RM [9] we begin
with the discussion of the latter. We have a large set D={X1, X2,…, XD}
of D descriptors provided by some available commercial program. It is
our purpose to choose an optimal subset dm={Xm1, Xm2,…, Xmd} of
d≪D descriptors with minimum standard deviation S:

S ¼ 1
N � d� 1ð Þ

XN

i¼1

res2i ð1Þ

where N is the number of molecules in the training set, and resi the
residual for molecule I (difference between the experimental and
predicted property). Notice that S(dn) is a distribution on a discrete
space of D!/d!(D−d) disordered points dn. The full search (FS) that
consists of calculating S(dn) on all those points always enable us to
arrive at the global minimum, but it is computationally prohibitive if D
is sufficiently large. The RM consists of the following steps:

• We choose an initial set of descriptors dk at random, replace one of
the descriptors, say Xki, with all the remaining D−d descriptors, one
by one, and keep the set with the smallest value of S. That is what we
define as a ‘step’

• From this resulting set we choose the descriptor with the greatest
standard deviation in its coefficient (we do not consider the one
changed previously) and substitute all the remaining D -d descrip-
tors, one by one, for it. We repeat this procedure until the set
remains unmodified. In each cycle we do not modify the descriptor
optimized in the previous one. Thus, we obtain the candidate dm(i)
that comes from the so-constructed path i.

• It should be noticed that if the replacement of the descriptor with
the largest error by those in the pool does not decrease the value of
S, then we do not change that descriptor.

• We carry out the process above for all the possible paths i=1, 2,…,
d and keep the point dm with the smallest standard deviation:
min iS d ið Þ

m

� �
:

The MRM follows the same strategy except that in each step we
substitute the descriptor with the largest error even if that substitu-
tion is not accompanied by a smaller value of S (we choose the next
smallest value of S). The MRM converges to different solutions and
commonly bounces from one point to another, occasionally repeating
umber of steps of the RM.



Fig. 2. Standard deviation vs. number of steps of the MRM.
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some of them; in such a case we find that a plausible solution is the
first one that appears four times.

If convergence is too slow we stop the process after 350 steps,
which does not lead to a great loss because the resulting S is always
sufficiently small.

A descriptive example was included in the Appendix A to illustrate
the difference between MRM and RM.

3. Results and discussion

With the purpose of providing a graphical visualization of the
behavior of our two algorithms, Figs. 1 and 2 show S as a function of
the number of steps for both RM and MRM, respectively, and for the
optimization of a seven-parameter model using the FLUOR data set
[12]. The graphs reveal that the MRM simulates a higher temperature
or ‘a higher noise’ than the RM, although maintaining the overall
decreasing tendency of the S function. This apparent thermal agitation
makes the MRM less likely to get trapped by a local minimum at the
cost of slower convergence and more computer time.

The behaviour of the RM and MRM shown in the aforementioned
figures suggested us to implement a further optimization routine that
Fig. 3. Standard deviation vs. num
integrates the two algorithms, associating the MRM to a thermal
agitation of the RM. We tried the following combinations: MRM-RM,
RM-MRM and RM-MRM-RM. For instance, when RM is applied after
MRM (MRM-RM), the starting solution for RM consists of the best set
of variables obtained from the previous application of the MRM
algorithm. After several runs we decided to discard the MRM-RM-
MRM simply because it increases the number of linear regressions
significantly without achieving appreciable improvements in the
statistical results. As illustrative examples, Figs. 3–5 display S vs. the
number of steps for the three optimization cases, resorting again to
the FLUOR dataset.

In order to carry out a FS in a reasonable time we selected 75
molecular descriptors from the pool and thus reduced the set D to just
those D=75 variables. We then applied the search algorithms
described in the preceding section and obtained the optimal sets of
d=1, 2,…, 7 descriptors with the same random initial solution for
each of them. All the models include the constant term. In this waywe
can compare our approximate search algorithms with the exact FS.
Our results are summarized in Table 1 that compares the minimal
values of S obtained by all those algorithms. The exact minimal value
of S appears in boldface to facilitate the comparison.
ber of steps of the RM-MRM.



Fig. 4. Standard deviation vs. number of steps of the MRM-RM.
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It follows from Table 1 that SRM either agrees or is in close agree-
ment with SFS. It can also be appreciated that for all cases MRM
provides better results than RM and can be further improved by the
different alternation options; in fact, the RM-MRM-RM composite
appears to produce the best results. The number of linear regressions
and computation time (shown as an average at the end of Table 1)
required for the alternative algorithms are greater than the RM ones
but they remain smaller than the FS calculations for dN2. The
difference between the number of calculations for the approximate
algorithms and the FS increases as D increases. Remember that we
chose D=75 for this manageable benchmark experiment, but in actual
applications DN1000.

In what follows we apply all the algorithms, the RM and its
improvements, to real-life problems; in this case the four full datasets.
It is not possible for us to carry out a FS because even for the smallest
database (GABA, D=1187) the number of linear regressions for d=7
amounts to 6.47×1017 thatwould take about 3.4×106 years in a PCwith
an AMD Athlon 64 2800+ processor. Even in a much more powerful
computer the solution would not be reached in a reasonable time.

We carried out all the numerical tests for d=7 as an example of a
high computational demanding search with a reasonable number of
descriptors for a potential model in common QSPR/QSAR studies. It
should be mentioned that in the application of the method in QSAR/
QSPR studies, models with increasing number of descriptors are easily
Fig. 5. Standard deviation vs. number o
searched using the algorithm and the optimal d is afterward de-
termined using a criteria that selects the model with better statistical
parameters and at the same time avoids models that overfit the data
[17]. The selection of d optimal descriptors for all the databases and
algorithms is not presented in this work for space reasons. Another
thing to consider in practical use of the algorithm is the correlation of
the descriptors that can be easily avoided by taking out of the pool
those descriptors that have a correlation higher than a set limit.

Since the approximate optimal models normally depend on the
initial set of descriptors, we chose the same three random initial sets
for all the algorithms and show the results in Table 2. The last column
of Table 2 shows the results provided by the well-known FSW
regression algorithm [13] as an external comparison point. This
procedure consists of a step-by-step addition of descriptors to the
model, initially without any independent variable, until there is no
variable left outside the equation that minimizes the value of S. No
initial set is necessary for this approach.

Table 2 also shows the average percentage improvement over the
RM to facilitate visualization of the performance of the alternative
algorithms proposed in this paper. At the end of the table we see the
ratio of the number of linear regressions for the new algorithms with
respect to the RM ones.

As a theoretical validation of the models we used the well-known
Leave-One-Out (loo) [28], the results can be appreciated between
f steps of the ERM (RM-MRM-RM).



Table 1
Standard deviation (S), number of linear regressions and computation time for the FS,
RM, MRM, RM-MRM, MRM-RM and RM-MRM-RM, for four sub data sets of D=75
descriptors. The bar “/” separates algorithms that give identical results

Algorithm S

d 1 2 3 4 5 6 7

MES

FS 0.3 991 0. 3666 0 .3536 0.3443 0.3361 0 .3254 0.3169
RM 0.3 991 0. 3666 0 .3536 0.3480 0.3361 0 .3327 0.3268
MRM/
MRM-RM

0.3 991 0. 3666 0 .3536 0.3443 0.3361 0 .3290 0.3169

RM-MRM/
RM-MRM-RM

0.3 991 0. 3666 0 .3536 0.3443 0.3361 0 .3254 0.3169

GI

FS 0.6494 0.6000 0.5693 0.5605 0.5487 0.5324 0.5214
RM 0.6494 0.6000 0.5875 0.5605 0.5512 0.5415 0.5350
MRM 0.6494 0.6000 0.5693 0.5605 0.5492 0.5324 0.5214
RM-MRM 0.6494 0.6000 0.5875 0.5605 0.5492 0.5350 0.5214
MRM-RM 0.6494 0.6000 0.5693 0.5605 0.5492 0.5324 0.5214
RM-MRM-RM 0.6494 0.6000 0.5875 0.5605 0.5492 0.5324 0.5214

FLUOR

FS 1.1192 0. 7587 0.7294 0.6901 0.6440 0.6200 0.5971
RM 1.1192 0. 7891 0.7329 0.6901 0.6549 0.6451 0.6253
MRM/Rest 1.1192 0. 7587 0.7329 0.6901 0.6440 0.6200 0.5971

GABA

FS 0.8289 0.7335 0.6421 0.5918 0.5719 0.5383 0.5083
RM 0.8289 0.7335 0.6421 0.5918 0.5719 0.5398 0.5120
MRM 0.8289 0.7335 0.6421 0.5918 0.5719 0.5383 0.5088
RM-MRM 0.8289 0.7335 0.6421 0.5918 0.5719 0.5398 0.5120
MRM-RM/
RM-MRM-RM

0.8289 0.7335 0.6421 0.5918 0.5719 0.5383 0.5083

Average Number of linear regressions

FS 75 2775 67,525 1.22E+06 1.73E+07 2.01E+08 1.98E+09
RM 75 1260 2850 4756 7638 10,086 14,739
MRM 75 4674 16,095 89,464 81,380 110,958 240,149
RM-MRM/
MRM-RM

75 5934 18,945 94,220 89,018 121,044 254,888

RM-MRM-RM 75 7194 21,795 98,976 96,655 131,130 269,627

Average computation time in minutes⁎

FS 2.07E−04 7.67E−03 1.87E−01 3.36E+00 4.77E+01 5.57E+02 5.49E+03
RM 2.07E−04 3.48E−03 7.88E−03 1.31E−02 2.11E−02 2.79E−02 4.07E−02
MRM 2.07E−04 1.29E−02 4.45E−02 2.47E−01 2.25E−01 3.07E−01 6.64E−01
RM-MRM/
MRM-RM

2.07E−04 1.64E−02 5.24E−02 2.60E−01 2.46E−01 3.35E−01 7.05E−01

RM-MRM-RM 2.07E−04 1.99E−02 6.02E−02 2.74E−01 2.67E−01 3.62E−01 7.45E−01

FS results are given in boldface numbers.
⁎ Using an AMD Athlon 64 2800+ processor.

Table 2
Standard deviation, R from Leave-One-Out validation (between parentheses), number
of linear regressions and computational time (between parentheses) for the RM, MRM,
RM-MRM, MRM-RM, RM-MRM-RM, and FSR, for the four full data sets with three
different initial seven-descriptor sets

Algorithm RM MRM RM-
MRM

MRM-
RM

RM-MRM-RM FSR

S (Rloo)

MES 0.3089
(0.685)

0.2896
(0.726)

0.2919
(0.722)

0.2896
(0.726)

0.2919 (0.722) 0.3409
(———)

0.3077
(0.692)

0.2973
(0.722)

0.2973
(0.722)

0.2973
(0.722)

0.3209 (0.722)

0.3008
(0.695)

0.2954
(0.710)

0.2896
(0.726)

0.2951
(0.710)

0.2896 (0.726)

GI 0.4421
(0.835)

0.4421
(0.835)

0.4421
(0.835)

0.4421
(0.835)

0.4421 (0.835) 0.4937
(0.789)

0.4648
(0.821)

0.4421
(0.835)

0.4367
(0.837)

0.4421
(0.835)

0.4367 (0.837)

0.4445
(0.835)

0.4445
(0.835)

0.4445
(0.835)

0.4445
(0.835)

0.4445 (0.835)

GABA 0.4465
(0.891)

0.4045
(0.91)

0.4269
(0.898)

0.4045
(0.91)

0.4142 (0.903) 0.46797
(0.876)

0.4683
(0.878)

0.3961
(0.912)

0.4121
(0.903)

0.3961
(0.912)

0.3961 (0.912)

0.4160
(0.905)

0.3961
(0.912)

0.3961
(0.912)

0.3961
(0.912)

0.3961 (0.912)

FLUOR 0.4936
(———)

0.4572
(0.981)

0.4339
(0.983)

0.4470
(0.982)

0.4328 (0.983) 0.5718
(0.970)

0.4328
(0.983)

0.4647
(0.981)

0.4328
(0.983)

0.4606
(0.981)

0.4328 (0.983)

0.4985
(0.976)

0.4426
(0.983)

0.4619
(0.979)

0.4408
(0.983)

0.4470 (0.982)

Average
Improvement

0% (0%) 4.76%
(1.8%)

4.94%
(1.8%)

5.05%
(1.9%)

5.73% (2.0%) −10.31%
(−2.5%)

Number of linear regression s (Computation time in minutes⁎)

Average 283878
(0.78)

1629938
(4.51)

1725873
(4.77)

1828165
(5.05)

1926775 (5.33) 8923
(0.02)

Ratio 1 5.74 6.08 6.44 6.79 0.031

The best solutions appear in boldface numbers.
⁎Using an AMD Athlon 64 2800+ processor.

Table 3
Standard deviation, R from Leave-One-Out validation (between parentheses), number
of linear regressions and computational time (between parentheses) for the RM and
ERM for the PCB data set with three different initial solutions

Algorithm RM ERM

S (Rloo)

PCB 0.1616 (0.883) 0.1616 (0.883)
0.1718 (0.866) 0.1616 (0.883)
0.1616 (0.883) 0.1610 (0.884)

Average Improvement 0% (0%) 2.1% (0.7%)

Number of linear regressions (Computation time in minutes⁎)

Average 1.42E+07 (39.25) 7.42E+07 (205.18)
Ratio 1 5.23

The best solutions appear in boldface numbers.
⁎Using an AMD Athlon 64 2800+ processor.
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parenthesis in Tables 2 and 3. There are two cases (one on RM and the
other on FSR) that are impossible to calculate since they present
problems in the implementation of the loo methodology. This is an
extra proof of the superiority of the new methods over RM and FSR
(the average improvement percentage based on loo does not take this
into account). Additional validation methods as Leave-More-Out
Cross-Validation [28] and external test set validation have shown in
the past the prediction ability of models obtained by the presented
methodology [10–12,15,17,20] and were not used since they would
have been extremely time consuming for the number of models
employed in this work.

It follows from Table 2 that the RM gives better results than FSW,
confirming previous comparative studies [12]. We appreciate that the
MRM outperforms or equals the RM for all cases except for one of the
initial solutions of the FLUOR dataset. This particular case appears to
be fortuitous since the MRM is clearly better than the RM for the other
two initial solutions of that dataset. It has to be kept in mind that the
results of the approximate methods depend on the initial solutions,
and, therefore, it is always possible that a method may give a smaller
value of S than a supposedly better algorithm. What is more, there is
low but nonzero probability that the poorer method may even hit the
global minimum. The improvement percentage in Table 2 suggests
that the proposed algorithm combinations are better than the RM
alone. In particular, the sequence RM-MRM-RM emerges as the best



Table 4
Evolution of the MRM. Number of the descriptors in the model with the corresponding relative errors in the regression coefficients, S and R for each step of the algorithm

Step No. Descriptor number/relative errors of the regression coefficients S R

0 C 1 2 3 4 5 6 7 0.771 0.952
28.29 90.12 38.95 59.59 20.36 194.94 84.91 50.21

1 C 1068 2 3 4 5 6 7 0.689 0.962
21.34 18.58 41.89 67.67 15.74 66.44 796.66 35.89

2 C 1068 2 3 4 5 40 7 0.634 0.968
15.62 16.69 31.43 43.14 10.58 35.56 22.60 27.24

3 C 1068 2 411 4 5 40 7 0.602 0.971
16.16 15.48 19.93 23.67 6.45 9.06 20.34 82.96

4 C 1068 2 411 4 5 40 697 0.574 0.974
8.76 17.92 12.77 18.99 5.29 7.07 18.49 28.74

5 C 1068 1110 411 4 5 40 697 0.580 0.973
9.24 23.11 13.12 18.97 6.49 6.91 21.53 23.96

6 C 1068 1110 411 4 394 40 697 0.593 0.972
6.50 26.58 10.69 16.79 7.41 7.14 23.55 15.56

7 C 1068 204 411 1050 394 40 697 0.545 0.974
45.13 27.90 25.83 21.09 4.84 5.85 13.76 12.49

222 C 425 240 40 200 480 1095 256 0.457 0.984
414.91 16.10 8.35 6.05 3.37 10.05 11.34 12.30

C stands for regression constant.
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algorithm which we will call Enhanced Replacement Method (ERM)
from now on. This conclusion is in line with the idea that the ERM is
the only algorithm that goes through a complete simulated annealing
cycle [19], as shown by Fig. 5. The ERM computational demand is
comparable to the MRM one and is almost seven times greater than
the RM one. This is the pricewe have to pay for obtaining QSPRmodels
with better statistical parameters than the ones obtained previously
[12].

Table 2 suggests that the ERM results are less sensitive to the initial
point than the RM ones. However, the ERM solutions also depend on
the starting point and we plan to study this aspect of the algorithm in
the future.

As a further test of the ERM on a much more demanding problem,
we tried it on the PCB database than contains as many as 63912
descriptors [24]. The ERM converged in a reasonable time and Table 3
shows the results. As expected the ERM gave smaller values of S for
the same three random initial solutions chosen in the preceding tests.

4. Conclusions

In this paper we propose an improvement on the RM [9–11], which
we call MRM, as well as some composite algorithms that resemble a
simulated annealing [19]. The most efficient one appears to be
ERM=RM-MRM-RM that yields better statistical parameters and is
Table 5
Information about the descriptors in the best model found in the example shown in the
Appendix A

Descriptor

Number Name Type Meaning

X425 MATS1p 2D Autocorrelations Moran autocorrelation− lag
1/weighted by atomic
polarizabilities

X240 piPC03 Topological Molecular multiple path count
of order 03

X40 IAC Topological Total information index of
atomic composition

X200 SEigv Topological Eigenvalue sum from van der
Waals weighted distance matrix

X480 AROM Aromaticity indices Aromaticity (trial)
X1095 R3u+ GETAWAY R maximal autocorrelation of

lag 3/unweighted
X256 D/Dr10 Topological Distance/detour ring index of

order 10
less sensitive to the starting point of the iterative procedure. The
greater computational demand of this new algorithm does not appear
to counterbalance its advantages and we plan to try it on many
interesting problems in the future. Here, we have improved previous
results derived earlier from the RM for real problems [12]. In order to
show that the greater number of necessary linear regressions is not an
obstacle for the application of the ERM to actual problems of chemical
and biological interest we tested its performance on a large dataset of
63912 descriptors provided by Jäntschi [24].
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Appendix A

In order to illustrate the difference between MRM and RM we
apply them to the fluorophilicity data set (FLUOR), that consists of 116
organic compounds characterized by 1268 theoretical descriptors. We
will obtain the optimal model with d=7 topological descriptors out of
the pool of D=1268 ones.

We arbitrarily choose the initial set d={X1, X2, X3, X4, X5, X6, X7} which
yields S(0)=0.771 and follow path 1 that leads to the results in Fig. 2.

Table 4 displays a summary of the procedurewhere one can see the
relative error of the regression coefficients for de descriptors and
regression constant (C), and how S decreases and R increases in each
step of the algorithm.

In path 1 we first change X1; each change is indicated by the
notation (Xold, Xnew) Of all the 1261 (D−d) variables, the substitution
that minimizes S is (X1, X1068) yielding S(1)=0.689.

We now replace the variable with the greatest relative error X6

with all the 1261descriptors (X1068 is now out of the descriptor pool
and X1 is in it) and find that the substitution (X6, X40) that yields the
smallest standard deviation S(2)=0.634.

Now the variable with greatest relative error is X3. After its re-
placement by all the 1261 descriptors, we conclude that the substitution
(X3, X411) yields the minimal value S(3)=0.602.

In the following step the variable with greatest relative error is X7

and after its replacement by all the 1261 descriptors, we have (X7,
X697) and S(4)=0.574.

Of all the variables not yet replaced, X2 is the one with the largest
relative error. The replacement by all the 1261 descriptors does not
lead to a model with lower S.
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Up to this point MRM and RM have exactly the same behavior.
From now on their difference will become visible.

First we will describe how RM would have continued. Since the
replacement of X2 did not lead to a model with lower S, X2 remains in
its position and is not replaced. Exactly the same situation occurs with
the next descriptors X5 and X4. Restarting the process once again does
not lead to a model with lower S, so the best model found in this case
yields S(4)=0.574.

Nowwewill continuewith the MRM. Even if the replacement of X2

does not lead to a model with lower S, the descriptor is replaced
anyway by the descriptor that leads to the lowest S from the 1261
remaining descriptors; thus we have (X2, X1110) with S(5)=0.580.
Notice that in this step S has increased slightly. As will be seen in the
next steps this is far from being a problem since an even lower S will
be found later on, showing that the increase in S was necessary to get
out of a local S minimum.

In the next step we once again find that the replacement of the
descriptor X5 with higher error in the coefficient that was not
previously replaced by all the 1261 descriptors leads to a substitution
(X5, X394) that yields an even higher standard deviation S(6)=0.593.

Nevertheless in the next step the replacement of X4 (the descriptor
with higher error in the coefficient that remains untouched) by all the
1261 descriptors leads to a substitution (X4, X1050) that yields S(7)=
0.545 which is even lower than the local minimum found in step four:
S(4)=0.574.

As the procedure continues, S continues the decreasing tendency,
as can be seen in Fig. 2, in this case arriving to the lowest value after
222 steps. The best model found yields S(222)=0.4572. and R=0.9835,
having the form:

lnP ¼ 0:065 F0:3ð Þ � 3:9029 F0:6ð ÞX425 � 0:054 F0:005ð ÞX240
� 0:063 F0:004ð ÞX40 � 0:3749 F0:01ð ÞX200 þ 1:7051 F0:2ð ÞX480
� 23:6913 F2:7ð ÞX1095 þ 0:008 F0:001ð ÞX256

The molecular descriptors appearing in the equation combine
several two- and three-dimensional aspects of themolecular structure,
and can be classified as a 2D Autocorrelations, four Topological
descriptors, an Aromaticity Index and a GETAWAY descriptor [26].
The names of this descriptors and their meanings a can be found in
Table 5.
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