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Square tori are transformed into hexagonal and other tiling tori by several cutting 
procedures. The toroidal objects thus generated are optimized by a molecular mechanics procedure. 
The strain energy, defined as the difference between the energy of toroidal structure and the energy 
of its corresponding straight, open tube, is shown to decrease as the torus diameter increases, in the 
series 10,n of polyhex tori, up to 5000 atoms. Graph-theoretical characterization of toroidal 
structures including the Hosoya polynomial, Distance Degree Sequence, and Wiener index is also 
given. 
  
 
 
Running Title:     Toroidal Graphenes from 4-Valent Tori 
 
 
 

Graphene is a generic name for the carbon allotropes produced by laser vaporization of 

graphite. They include, besides the famous spherical fullerenes,1-11 nanotubes, and their closed, 

circular forms with toroidal shape.   

Nanotubes12-14 produced in a carbon arc discharge belong to the same class of carbon 

allotropes as fullerenes. Toroidal nanotubes have also been reported15-18  in the products of pure 

carbon laser vaporization and they strongly attracted the interest of scientists19-35 since they could be 

ideal systems for studying interesting electronic and magnetic properties.36,37   

Tubular graphenes are tessellated mainly by hexagons but incorporation of pentagons and 

heptagons into their hexagonal lattice is required for closing or getting suitable curvature.35 Among 

the closed surfaces only tori and Klein bottles can be tiled by a pure polyhex net.38 

A toroidal surface can be tiled with hexagons by cutting out a parallellogram22,23,29,32,33 from 

a graphite sheet, rolling it up to form a tube and finally gluing its two ends to form a polyhex torus.  



 2

      An alternative to the parallelogram procedure is the use of adjacency matrix eigenvectors in 

finding appropriate 3D coordinates of a graph (in particular, a torus).39-41  The method was 

previously used in generating spheroidal fullerenes.10 Polyhex tori are more acceptable to organic 

chemists (perhaps they offer the pure carbon benzenoid model9,35) while the other tiling tori 

(polygons smaller or larger than six) are expected to appear in supramolecular inorganic compounds 

(e.g., polyoxometalates42 )  

Polyhex Tori from Square Tori 

A torus Tc,n,C4 is a combinatorial torus tiled by quadrilaterals. In our procedure, the toroidal 

surface is generated according to an elementary geometry.43 Next, a circulant c-folded cycle, lying 

in a plane perpendicular to the tube, runs along the torus. The n images of the circulant together 

with the edges joining (point by point) the subsequent images form a square lattice covering the 

torus. A simple transformation of the square net leads to a rhomboidal one.44 Figure 1 illustrates a 

square torus T8,12,C4  (a) and its rhomboidal transform (b). 

 
 

T8,12,C4 T8,12,rhC4 

  
 

Fig. 1. Quadrilateral 4-valent tori 

 
The main problem is to change the squares into hexagons or other tiling patterns, suitable from a 

chemical point of view. In this respect, we developed several cutting procedures.45,46 For obtaining 

hexagonal patterns C6, the cutting operation consists in deleting each second horizontal edge and 

alternating edges and cuts in each second row. It results in a standard h,C6 pattern (Fig. 2, a).  After 

optimization by a molecular mechanics program, a phenanthrenoid  (i.e., zigzag) pattern appears on 

the torus (see below). The same algorithm, operating vertically, leads to a standard v,C6 pattern 

(Fig. 2,b), meaning an anthracenoid (i.e., armchair) pattern. Figure 3 illustrates two such 

(optimized) tori. 
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Standard h,C6 pattern (a) Standard v,C6 pattern (b) 
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Fig. 2. Standard hexagonal patterns obtained by h-cutting (a)  
           and v-cutting (b), respectively. 

 
 Note that each hexagon takes exactly two squares in the square lattice. As a consequence, 

the number of hexagons is half the number of squares in the torus Tc,n: on dimension c, in case of 

h,C6 pattern and dimension n, in case of v,C6 pattern. Recall that the above cutting procedure leaves 

unchanged the number of vertices in the original square torus. The type of cutting (h or v) is added 

to the name of torus (see below). By varying the cutting algorithm, C4,C8, C5,C7 and C5,C6,C7 

patterns can be obtained.45,46 

 

T8,24,hC6 T8,24,vC6 

 

 

 

Fig. 3. A phenanthrenoid (zigzag) T8,24,hC6 and an anthracenoid (armchair) T8,24,vC6 
                       toroidal graphene. 
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Energetics in Tori of C6 10,n Series 
 

 In the observed "crop circles",15 most of the individual tubes  appear to be "perfect tori", free 

of topological pentagon-heptagon defects in their lattice, with no obvious kinks, created by these 

defects. Molecular mechanics studies performed by Han47 (molecular systems from 2,000 up to 

30,000 atoms, the torus diameters D of 60 nm and tube diameter d between 0.7 and 1.4 nm) showed 

that the defect-free circular tori are energetically stable structures. He stressed that the larger the 

diameter of the torus, the more energetically stable it is. A linear relation between the strain energy 

and 1/D ² has been obtained. 

 A simple observation that thinner tubes are more easily bent, together with studies on very 

thin tubes,31  encouraged us to consider the series of tubes 10,n (n = 10, 20,...,500). The tubes of h-

type (i.e., zigzag) show a width around 0.4 nm, while those of v-type (i.e., armchair) show a width 

about 0.7 nm. Their constitution, the number of atoms and the number of hexes along the torus, as 

well as their MM+ energy (in kcal/mol), are given in the Table. Note that the number of hexes 

across the tube is 5 and 10 for the h- and v-series, respectively. Also note that the "combinatorial" 

diameter D is obtained by dividing by pi the number of hexes along the torus. The ground data, 

given for tori and their corresponding open tubes, are further used for calculating the strain energy 

in tori. Figure 4 illustrates some representative members of the two sub-series.  

 
 

T10,200,hC6 (outside) & T10,200,vC6 (inside)   T10,200,vC6 (outside) & T10,100,hC6 (inside) 

 
Fig. 4. Tori of  C6 10,n series. 
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Observe that, at T10,200 level, the h-torus is twice as large (see also the Table) and twice as 

thin as the v-torus. In the h-series, the tube cross section, elongated at the beginning (see ref.21), 

becomes circular at T10,100 level. In the v-series, (see Fig. 5) the cross section remains elongated up 

to T10,400 but it becomes circular at T10,500 level  (i.e., 5000 atoms and 250 hexes along the torus). 

 The strain energy is herein defined as the difference between the MM+ energy of the torus 

and its corresponding open tube. Since the linear relation between MM+ energy and constitution is 

almost perfect within this series (see footnotes of the Table), we used it in calculating the energy for 

tubes with  n > 100. Figure 6 illustrates the trend of the strain energy in the above series.  

 
 

Table.  Number of Hexes along the Torus and MM+ Energy 
                                            in Tori and Tubes of  C6 10,n Series. 
 

Energy/kcal⋅mol-1 Energy/kcal⋅mol-1 No. atoms h_Hexes 
h_Tori h_Tubes 

No. atoms v_Hexes
v_Tori v_Tubes 

100 10 6631.2 717.16 100 5 9722.51 178.31
200 20 3979.99 1465.98 200 10 6831.24 371.04
300 30 4119.42 2216.16 300 15 5961.02 564.08
400 40 4505.69 2963.93 400 20 5500.53 756.6
500 50 5018.45 3712.96 500 25 5225.93 949.31
600 60 5597.65 4461.25 600 30 5084.6 1141.93
700 70 6217.51 5210.66 700 35 5029.93 1336.13
800 80 6856.54 5962.41 800 40 5033.92 1527.56
900 90 7517.13 6710.48 900 45 5078.13 1722.46

1000 100 8193 7459.01 1000 50 5150.04 1917.15
1100 110 8881.04 8207.725* 1100 55 5243.29 2109.133**
1200 120 9580.29 8956.775* 1200 60 5351.65 2302.333**
1300 130 10286.62 9705.825* 1300 65 5471.02 2495.533**
1400 140 10994.8 10454.88* 1400 70 5599.11 2688.733**
1500 150 11714.03 11203.93* 1500 75 5734.46 2881.933**
1600 160 12434.14 11952.98* 1600 80 5876.1 3075.133**
1700 170 13162.77 12702.03* 1700 85 6021.43 3268.333**
1800 180 13881.11 13451.08* 1800 90 6169.54 3461.533**
1900 190 14615.64 14200.13* 1900 95 6322.15 3654.733**
2000 200 15401.39 14948.67 2000 100 6477.45 3848.58
2500 250 19022.67 18694.43* 3000 150 7928.85 5779.933**

    4000 200 9379.34 7711.933**
    5000 250 10990.92 9643.933**

 
*  Calculated  by eq:  Energy  = 74.905x - 31.825; R2 = 1. 
** Calculated by eq:  Energy  = 38.64x - 16.067; R2 = 1. 
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T10,200,v,C6  "elongated torus" T10,500,v,C6 "circular torus" 

` 
 

Fig. 5. Cross sections in "elongated" and "circular" tori, respectively. 
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Fig. 6.  Strain energy/atom in tori of C6 10,n series. 
 
 
 

Note that, at the same number of hexes along the torus, the strain energy is higher for the v-

series than for the h-series. This is just the expected trend,  keeping in mind the tori constitution. 

The dependency on the torus diameter is:  Strain energy = 439 D -1.8505  (h-series) and 177.07 D -

1.4413 (v-series), with the same R2 as shown in Fig. 6. 

The fact that the "elongated" 21 tori represent the major population in our series explains the 

departure from the Han's trend of  D -2 obtained for large circular tori. 

At the end of this section we can say that the series of thin tori herein discussed appear as 

possible graphenes, to be found among the graphite laser vaporization products. 

 



 7

Topological Characterization of Polyhex Tori 

 
In 1988 Hosoya proposed a novel graphical polynomial,48 defined as: 

 

    ∑
=

=
)(

0
),(),(

Gd

k

kxkGdxGH      (1) 

with  d(G,0) = v and  d(G,1) = e. In the above relations, v is the number of vertices in the graph G, e 

the number of edges, d(G) the topological diameter (i.e., the longest topological distance in G) and 

d(G,k) the number of pair vertices lying at distance k of each other. The polynomial (called Wiener, 

by its author but Hosoya in the more recent literature49) can be expressed as a function of the vertex 

contributions ),( xiH : 

                               ∑
=
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where d(i,k) is the number of vertices at distance k from the vertex i. Keeping in mind that each path 

has two endpoints (i.e., each path is counted twice), it becomes clear that, in a vertex transitive 

graph, the following relation holds (see also ref.49): 

    

vxGHxivH −= ),(2),(      (3) 

 

The general form of the vertex Hosoya polynomials, for tori of type Tc,n,h,C6 and Tc,n,v,C6, (regular 

graphs, having v = cn), in going from normal h,C6 to normal v,C6 tori, is: 
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Tc,n,h,C6  =  Tc,n,v,C6;  n = c: 
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Tc,n,v,C6;  )1(22 −≤≤+ cnc : 
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Tc,n,v,C6;  n = 2c: 
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"Normal" torus, in the above, means a toroidal net having a number of hexes on the tube 

smaller than that around the torus.  The "normal" status is already reached at n > c, in h,C6 tori, 

while )1(2 +≥ cn  is needed in the case of  v,C6 tori.  

Note that the coefficients of the vertex Hosoya polynomial are just the entries in the LC 

matrix (i.e., Layer matrix of Cardinality )50 or the (vertex) Distance Degree Sequence DDS(i) (i.e., 

the number of vertices lying at distance k from the vertex i).51 Clearly, the vertex decomposition of 

H(G,x) would be more complicated in vertex non-transitive graphs. 

 The polynomial coefficients can be viewed as a "distance degree" spectrum, useful in 

topological characterization of graphenes. In the case of the (normal) C6 10,n series, the spectra are 

shown in Fig. 7. 
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Fig. 7. Distance Degree Sequences DDS of  C6 10,n series. 
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The repeating terms : 11 −+= n,...,c,ck

k ,cx  and  12212 −++= /n,...,c,ck
k ,cx , respectively, are the only 

changes, as n increases, in the spectrum of a given series (i.e., a series of fixed c). If one changes the 

series, the spectrum will drastically change, according to the general formulas (4) -(8). 

The first derivative52 of the Hosoya polynomial (for x = 1) equals the well-known Wiener53 

number W (i.e., the sum of all distances in G):  )1,(' GHW = 48. 

In case of the normal series of tori, the first derivative of the Hosoya polynomial leads to: 
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By expanding the sums one obtains: 
 

  Tc,n,h,C6:                                      )46(
24
1 222 −+= cnncW     (11) 

Tc,n,v,C6:                           )433(
24
1 222 −++= nccnncW    (12) 

 
Expansion of eq. 6 (case v,C6; )1(22 −≤≤+ cnc ) also leads to relation (12). Moreover, the formulas 
for the other two cases:  
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can be deduced from the first derivative of the corresponding polynomials (eqs. 5 and 7, 

respectively), as well as from eq. 12. Relation (13) is also a particular case of eq. (11), proving the 

selfconsistency of the formulas (eqs. 11 and 12) for calculating the Wiener index in polyhex tori. 

 

Conclusion: the generation of toroidal polyhex graphenes from the 4-valent square tori is a very 

simple and reliable method. The resulting tori are characterized by only two topological parameters: 

c (c-folding of the tube) and n (n-folding of the torus). They are further optimized by an MM 

procedure. The strain energy in the 10,n series appears to decrease as the torus diameter increases. 

The topology of the polyhex net of these graphenes can be characterized by the Hosoya polynomial, 

distance degree spectra and Wiener number.  
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