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DEFINITION 

Topological description of a molecule requires storing the adjacencies (the bonds) 
between the atoms as well as the identities (the atoms). If this problem is simplified 
at maximum, by disregarding the bond and atom types then adjacencies are simply 
stored with 0 and 1 in the vertex adjacency matrix ([Ad]) and the identities are stored 
with 0 and 1 into the identity matrix ([Id]). The characteristic polynomial (ChP) is the 
natural construction of a polynomial in which the eigenvalues of the [Ad] are the 
roots of the ChP as it follows: 

λ is an eigenvalue of [Ad] ↔ it exists [v] ≠ 0 eigenvector such that λ·[v] = [Ad]·[v] → 
(λ·[Id]-[Ad])·[v] = 0; since v ≠ 0 → [λ·Id - Ad] is singular → det([λ·Id - Ad]) = 0 

AdIdChP
def

−⋅λ=  
The characteristic polynomial is a polynomial in λ of degree the number of atoms. 
Please note that this definition allows extensions. A natural extension is to store in 
the identity matrix (instead of unity) non-unity values accounting for the atom types, 
as well as to store in the adjacency matrix (instead of unity) non-unity values 
accounting for the bond types. 
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HISTORICAL ORIGIN(S) 

First reports relating to the use of the characteristic polynomial in relation with the 
chemical structure appears shortly after the discovery of wave-based treatment of 
microscopic level in (Hückel 19311). The Hückel's method of molecular orbitals it is 
actually the first extension of the Charact-poly definition. It uses the 'secular determinant', 
the determinant of a matrix which is decomposed as [E·Id - Ad], standing with the energy of 
the system (E in the place of λ), for approximate treatment of π electron systems in organic 
molecules. In this approximate treatment of the Schrödinger's (Schrödinger 19262) equation (Eψ 
= Ĥψ), the wavefunction (ψ) of the system configuration is defined as a linear combination (ci 
stands for unknown, to be determined, coefficients) of the π electrons (pi, each assigned to an 
atom), ψ = Σicipi and the components of the molecular Hamiltonian (Ĥ) are identified based on 
the orthogonal states of the electrons (‹pi׀pj› = δi,j; δi,j = 1 when i = j and δi,j = 0 when i ≠ j): Hi,j = 
‹pi׀ Ĥ׀pj› when Hi,i = ‹pi׀ Ĥ׀pi› = α (if i = j, the same for all atoms) and Hi,j = ‹pi׀ Ĥ׀pj› = β if 
[Ad]i,j =1 and Hi,j = ‹pi׀ Ĥ׀pj› = 0 if [Ad]i,j = 0. The roots of this extended version of Charact-poly 
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are assigned to the individual electronic energies (εi). For further details please see (Coulson 
19403, Coulson 19404, and Coulson 19505). 

Going in a different direction with the approximation of the wavefunction treatment, 
Hartree (Hartree 1928a6b7) and Fock (Fock 1930a8b9) finds the same eigenvector-eigenvalue 
problem (§20 in Laplace 177610; T1 in Cauchy 182911) in the Slater's treatment (Slater 192912; 
Hartree & Hartree 193513). Here is the second extension of the Charact-poly, the eigenproblem 
(finding of eigenvalues and eigenvectors) being involved to any Hessian (Sylvester 188014) 
matrix [A] ([Ad] → [A]). 

The Charact-poly it is related with the matching polynomial (Godsil & Gutman 
198115), because both polynomials degenerates to same expression for forests (disjoint 
union of trees). Adapting (Godsil 199516) for molecules, a k-matching in a molecule is a 
matching with exact k bonds between different atoms (each set containing a single edge is 
also an independent edge set; the empty set should be treated as a independent edge set 
with zero edges - this set is unique; also due to the constraint of connecting different 
atoms the matching may involve no more than [n/2] bonds, where n is the number of 
atoms - see §3.1 & §3.3 in Diudea et al. 200117). It is possible to count the k-matches 
(Ramaraj & Balasubramanian 198518) - but nevertheless it is a hard problem (Curticapean 
201319), as well as to express the derived Z-counting polynomial (Hosoya 197120) and 
matching polynomial (both are defined using m(k) as the k-matching number of the 
selected molecule): 

Table 1. Polynomials derived from k-matching 
Z-counting polynomial Matching polynomial (where n the number of atoms) 
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NANO-SCIENTIFIC DEVELOPMENT(S)  

There are many methods (algorithms) for calculation of the characteristic polynomial and of 
its roots. A method with complexity of Ο(n4) extracts the coefficients one by one applying the 
Newton's identities (see Figure 1). Please note that the algorithm given below works only for the 
classical version of Charact-poly (ChP ≡ |λ·Id-Ad|), where Trace(·) function sums the elements 
on the main diagonal. 

Input data: adjacency matrix ([Ad]) 
[Bx] ← [Ad] 
c0 ← 1 
For each k from 1 to n-1 do 

ck ← Trace([Bx]) 
ck ← ck·(-1)/k 
[Bx] ← [Bx] - ck·[Id] 
[Bx] ← [Ad]×[Bx] 

End for 
cn ← Trace([Bx]) 
cn ← cn·(-1)/n 
Output data: the series of the coefficients (ck)0≤k≤n for Charact-poly, ChP = Σ0≤k≤nci·λn-k 

Figure 1. Tracing the coefficients of the Charact-poly from adjacencies 
 
When using the previous given algorithm, in order to avoid the lost of the precision 

with increasing of the number of atoms, someone should use the arbitrary-precision 
integer libraries for calculation (note that all coefficients of the Charact-poly are integers) 
of the arithmetic's given in the algorithm such as is bcmath (Morris & Cherry 197521 



Nelson 199122). 
It is possible to reduce the complexity of the calculation of Charact-poly by taking 

the advantage of its symmetry ([Ad]i,j = [Ad]j,i). Budde's method (Givens 195723) is one 
alternative. Following (Rehman & Ipsen 201124), the Budde's method requires first a 
tridiagonalization (Householder 195825) of the adjacency matrix (let us call it Td) and is 
requested a number of significant (of the leading degrees) coefficients. Figure 2 provides 
the algorithm. 

The main inconvenient of the previous given method (Budde's method) is that it 
requires the tridiagonalization of the adjacency, which it means that a series of operations 
including divisions are involved and the resulted matrix no more contains only integers, 
and therefore is lost the feature to work with arbitrary-precision integers and to extract the 
exact values of the coefficients. The results may come only as floating point numbers and 
the precision strongly depends by the number of operations involved, therefore by the 
number of atoms (n). 

On the other hand, the using of arbitrary-precision integer libraries for calculation in 
conjunction with the algorithm given in Figure 1 its expected to increase the complexity of 
the calculation. Indeed, as was resulted from a study conducted on a series of fullerenes, the 
complexity becomes of order Ο(n4·ln(n)) - see Table 2, where some additional information is 
provided too, containing the Total strain energy (from continuum elasticity) in eV (Tománek 
201426). 
Input data: tridiagonalized matrix ([Td], as (αj)1≤j≤n and (βj)2≤j≤n) 
c0 ← 1 
c1,1 ← - α1 
c1,2 ← c1,1 - α2 
c2,2 ← α1·α2 - β2·β2 
For each i from 3 to k do 

c1,i ← c1,i - αi 
c2,i ← c2,i - αi·c1,i-1 - βi·βi 
For each j from 3 to i-1 do 

cj,i ← - αi·ci-1,i-1 - βi·βi·cj-2,i-2 
End for 
ci,i ← - αi·ci-1,i-1 - βi·βi·ci-2,i-2 

End for 
For each i from k+1 to n do 

c1(i) ← c1(i-1) - αi 
If k > 2 then 

c2,i ← c2,i-1 - αi·c1,i-1 - βi·βi 
For each j from 3 to i-1 do 

cj,i ← - αi·ci-1,i-1 - βi·βi·cj-2,i-2 
End for 

End if 
End for 
c0,n ← 1 
Return (cj,n)0≤j≤k 
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Output data: partial series of the coefficients, (cj)0≤j≤k for Charact-poly ChP = Σ0≤j≤nci·λn-j 
Figure 2. Budde's first coefficients of the Charact-poly from adjacencies 

 



Table 2. Calculation times of the Charact-poly on fullerenes 
Fullerene Additional information Calculation times (s) 

 

 

Molecular formula: C20 
Molecular symmetry: Ih 
Total strain energy: 24.204 
(the only one topology) 
Isomers: none 

Run 1: 0 
Run 2: 1 
Average: 0.5 
Estimated: 0.2 

 

 

Molecular formula: C30 
Molecular symmetry: C2v 
Total strain energy: 25.204 
(smallest value among isomers)
Isomers: 3 

Run 1: 2 
Run 2: 2 
Average: 2.0 
Estimated: 1.7 

 

 

Molecular formula: C40 
Molecular symmetry: C2v 
Total strain energy: 25.684 
(smallest value among isomers)
Isomers: 40 

Run 1: 8 
Run 2: 7 
Average: 7.5 
Estimated: 7.0 

 

 

Molecular formula: C50 
Molecular symmetry: D5h 
Total strain energy: 25.474 
(smallest value among isomers)
Isomers: 271 

Run 1: 20 
Run 2: 20 
Average: 20.0 
Estimated: 19.7 

 

 

Molecular formula: C60 
Molecular symmetry: Ih 
Total strain energy: 24.849 
(the only one topology) 
Isomers: none 

Run 1: 43 
Run 2: 48 
Average: 45.5 
Estimated: 45.6 

 

 

Molecular formula: C70 
Molecular symmetry: D5h 
Total strain energy: 26.486 
(the only one topology) 
Isomers: none 

Run 1: 88 
Run 2: 95 
Average: 91.5 
Estimated: 91.7 

 

 

Molecular formula: C80 
Molecular symmetry: D5h 
Total strain energy: 26.274 
(smallest value among isomers)
Isomers: 6 

Run 1: 166 
Run 2: 170 
Average: 168.0 
Estimated: 167.2 

 

 

Molecular formula: C90 
Molecular symmetry: C2 
Total strain energy: 30.066 
(smallest value among isomers)
Isomers: 46 

Run 1: 282 
Run 2: 283 
Average: 282.5 
Estimated: 283.0 

 

 

Molecular formula: C100 
Molecular symmetry: D5 
Total strain energy: 30.446 
(smallest value among isomers)
Isomers: 450 

Run 1: 455 
Run 2: 449 
Average: 452.0 
Estimated: 452.0 



For reproducibility of the study, the calculation was conducted on a 2.33 Ghz dual core 
computer by running a single core tasked program (a PHP implementation) for the data and the 
results given in Table 2. The variability among execution times can be assigned to the 
multitasking operating system (which runs in background other tasks too) as well as to the CPU's 
cache memory (cached in 2 levels, 2×2×32 kBytes in the first and 4096 in the second). 

The estimated times from Table 2 are from the best (among alternatives) fit, as is given in 
Table 3 (where independent variable was tenth part of the number of atoms, x = nC/10, and the 
dependent variable was y = time, in seconds). 

Table 3. Calculation complexity of the Charact-poly on fullerenes 
Model Coefficients & significances Statistics Remarks 
ŷ = a·x4 + b a = 0.045 (ta = 58); b = -7.98 (tb = 2.39) r2 = 0.99794; see = 7.6 pb ≈ 5% 
ŷ = a·x5 + b a = 0.0045 (ta = 58); b = 7.45 (tb = 2.20) r2 = 0.99765; see = 8.1 pb ≈ 6% 
ŷ = a·x4·ln(x) + b a = 0.02 (ta = 1134); b = 0.26 (tb = 1.53) r2 = 0.99999; see = 0.4 pb ≈ 17% 
ŷ = a·x4 a = 0.044 (ta = 59) r2 = 0.996; see = 9.6 
ŷ = a·x5 a = 0.0046 (ta = 58) r2 = 0.996; see = 9.9 
ŷ = a·x4·ln(x) a = 0.01963 (ta = 1346) r2 = 0.999996; see = 0.4 

see below 

 
As can be concluded from the values given in Table 3, all the models with intercept (ŷ = 

a·x4 + b; ŷ = a·x5 + b; ŷ = a·x4·ln(x) + b) are susceptible to have the intercept (the b coefficient) 
not significantly different from zero - actually it is the expected result, since a fullerene with a 
zero size requires no calculations. Thus, is perfectly justified to try and use the models without 
intercept. Before to proceed, it is something else which it should keep our attention. Under 
assumption that exist intercept, then this should be seen as a small time required by the program 
implementing the algorithm for initializations and for displaying the results. But looking at the 
models, only one of them proposes a small value for that time, namely b = 0.26 s in the model ŷ 
= a·x4·ln(x) + b, which it means that if it is a trustable model without intercept, this should be the 
one. Indeed, by conducting the analysis without intercept, the results sustain the hypothesis. The 
standard error of estimate (see) remains almost unchanged when the intercept is removed only 
for this model. Therefore, the best guess for the approximation of the complexity of the 
algorithm for the calculation of the Charact-poly with arbitrary-precision integers given in Figure 
1 is of Ο(n4·ln(n)). For reproducibility of the study, the calculation was conducted on a 2.33 Ghz 
dual core computer by running a single core tasked program (a PHP implementation) for the 
data and the results given in Table 2. 

NANO-CHEMICAL APPLICATION(S)  

 In classical molecular topology the atoms are considered undistinguishable and are 
represented as vertices, the bonds are considered unweighted and are represented as edges and 
the obtained molecular graphs are unweighted and unoriented. In this context, the set of the 
bonds (edges) is a subset of the Cartesian product of the set of the atoms (vertices) by itself and 
the molecules (graph) is defined as the collection of the set of vertices and of the set of edges 
(see Table 4). 

Table 4. Classical molecular graph 
Definition Names (concepts) Cardinality Example 
V: finite set 
E ⊆ V×V 
G = G(V, E) 

V: vertices (atoms) 
E: edges (bonds) 
G: graph (molecule)

|V| = N: number of vertices
|E| = M: number of edges 
∀N, V ↔ {1, 2, ..., N} 

G="A-B-C" 
V={1(↔A), 2(↔B), 3(↔C)} 
E={(1, 2), (2, 3)} 

  
There is something to consider when discuss calculations on molecular graphs. Thus, with 



the increasing of the simplification in the molecular graph representation (neglecting type of the 
atom, bond orders, geometry in the favour of topology) increases the degeneration of the whole 
pool of possible calculations (descriptors) on the graph structure - existing more and more 
molecules possessing same representation as molecular graph. This consequence is favourable 
for the problems seeking for similarities and is unfavourable for the problems seeking for 
dissimilarities. 

 A necessary step to accomplish a better coverage of the similarity vs. dissimilarity dualism 
is to build and use a family of molecular descriptors, large enough to be able to provide answers 
for the all (by its individuals) when is feed with molecules datasets. On the natural way a such 
kind of family should posses a 'genetic code' - namely a series of variables of which values to 
(re)produce a (one by one) molecular descriptor, all descriptors being therefore obtained on same 
way (being breed in the family). All individuals of the family should be independent of the 
numbering of the atoms in molecule (should be molecular invariants). 

 Since these are all restrictions applying, may seem a simple construction, but it is in same 
time a complex one. First, is obviously that such construction - the family of molecular 
descriptors - can be build only with the help of the computer, because requires a great number of 
operations repeatedly (with different augments) applied on the same molecular structure. The 
molecular geometry should be considered too, and for this reason (of obtaining of the models for 
the molecular geometry) this subject will be continued in a later section. 

 In order to reflect the topology of a graph structure, three adjacency matrices can be built. 
If we store the full graph (each pair of vertices stored twice, in both ways) then the rectangular 
matrices reflects 1:1 the graph (these matrices are more convenient when we do matrix 
operations). The matrices of vertex adjacency and of edges adjacency are square matrices and 
the enumerating twice the edges is reflected in symmetry of the matrix relative to its main 
diagonal, which can be rebuild in the absence of the representation, by having only the lists of 
vertices and edges (see Table 4). 

 An extremely important problem in chemistry is to identify uniquely a chemical 
compound. If the visual identification (looking on the structure) seems simple, for compounds of 
large size this alternative is no more viable. The data of the structure of the compounds stored 
into the informational space may provide the answer to this problem. Together with the storing 
of the structure of the compound other issue is raised, namely the arbitrary in the numbering of 
the atoms. Namely for a chemical structure with N atoms stored as a (classical molecular) graph 
exists exactly N! possibilities of different numbering of the atoms. Unfortunately, storing the 
graphs as lists of edges (and eventually of vertices) does not provide a direct tool to check this 
arbitrary differentiation due to the numbering. The same situation applies on the adjacency 
matrices. 

 Therefore, seeking for graph invariants is perfectly justified: an invariant (graph invariant) 
does not depend on numbering. The adjacency matrix is not a graph invariant (and very simple 
examples may be created instantly to proof this). The ideal situation is that the invariant to be 
unique assigned to each (and any) structure, but this kind of invariants are very hardly to be 
found. 

 A procedure to generate an no degenerated invariant is proposed by IUPAC as the 
international chemical identifier (InChI) which converts the chemical structure to a table of 
connectivity expressed as a unique and predictable series of characters (McNaught 200627). 

 An important class of graph invariants are the graph polynomials. To this category belongs 
the characteristic polynomial, a graph invariant encoding important properties of the graph. 
Unfortunately, does not represent a bijective image of the graph, existing different graphs with 
same characteristic polynomial (cospectral graphs), and smallest cospectral graphs occurs for 5 
vertices (Von Collatz & Sinogowitz 195728). In order to count the cospectral graphs, one should 



compare A000088 (Sloane 199629) and A082104 (Weisstein 200330) integer sequences. 
 Let's take a chemical compound, namely hexamine. (Pubchem CID: 4101). Hexamine 

(C6H12N4) it uses in the production of powdery or liquid preparations of phenolic resins and 
phenolic resin moulding compounds. It has been proposed that hexamethylenetetramine could 
work as a molecular building block for self-assembled molecular crystals (Markle 200031). It has 
a cage-like structure similar to adamantine and its representation is given in Figure 3. 
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Figure 3. Hexamine 

 
 In Figure 3 the hydrogen atoms are represented with grey (and are not numbered), carbon 

with light blue, and nitrogen with blue. 
 Let's take the representation in a matrix form by its adjacency matrix by taking it 

conventionally without attached hydrogen atoms as well as by its distance matrix in two 
scenarios: topological and geometrical distances. Please note that this simple case of a molecule, 
but even here the geometrical distance is with a totally different meaning than the topological 
distance. The resulted matrices are given in the Figure 4. 

Ad 1 2 3 4 5 6 7 8 9 10 
1 0 0 0 0 1 1 1 0 0 0 
2 0 0 0 0 1 0 0 1 1 0 
3 0 0 0 0 0 1 0 1 0 1 
4 0 0 0 0 0 0 1 0 1 1 
5 1 1 0 0 0 0 0 0 0 0 
6 1 0 1 0 0 0 0 0 0 0 
7 1 0 0 1 0 0 0 0 0 0 
8 0 1 1 0 0 0 0 0 0 0 
9 0 1 0 1 0 0 0 0 0 0 

10 0 0 1 1 0 0 0 0 0 0  

Ad 1 2 3 4 5 6 7 8 9 10  
1 0 0 0 0 31/46

31/46
31/46 0 0 0 

2 0 0 0 0 31/46 0 0 31/46 31/46 0 
3 0 0 0 0 0 31/46 0 31/46 0 31/46 
4 0 0 0 0 0 0 31/46 0 31/46 31/46 
5 31/46

31/46 0 0 0 0 0 0 0 0 
6 31/46 0 31/46 0 0 0 0 0 0 0 
7 31/46 0 0 31/46 0 0 0 0 0 0 
8 0 31/46

31/46 0 0 0 0 0 0 0 
9 0 31/46 0 31/46 0 0 0 0 0 0 
10 0 0 31/46

31/46 0 0 0 0 0 0  
bonds represented undistinguishable

(with 1) 
bonds represented from geometrical distances 

(inverse of the distance in Å) 
Figure 4. Different adjacency matrices representing hexamine 

 
 The unity (or identity) matrix stores 1 on the main diagonal and is easy to be extended to 

store a atomic property (such as something in relation with atomic mass, electronegativity, 
partial charge or even the number of attached hydrogen atoms, when also 0 is allowed) when the 
new matrices continues to have all non-null values on the main diagonal, but can be different 
from one and different one to each other depending now from the atom type. The result is 
exemplified in Figure 5 (where electronegativity is taken from Pauling scale and was divided by 
4). The general idea when the weights was chosen in the identity matrices exemplified in Figure 
5 is to have (almost everywhere) subunitary numbers, because when on these matrices is applied 
the procedure of calculation of the characteristic polynomial, then for large molecules numbers 
greater than 1 rapidly produces big numbers as coefficients as well as outcomes of the evaluation 



of the polynomial. 
Ad 1 2 3 4 5 6 7 8 9 10 
1 1 0 0 0 0 0 0 0 0 0 
2 0 1 0 0 0 0 0 0 0 0 
3 0 0 1 0 0 0 0 0 0 0 
4 0 0 0 1 0 0 0 0 0 0 
5 0 0 0 0 1 0 0 0 0 0 
6 0 0 0 0 0 1 0 0 0 0 
7 0 0 0 0 0 0 1 0 0 0 
8 0 0 0 0 0 0 0 1 0 0 
9 0 0 0 0 0 0 0 0 1 0 

10 0 0 0 0 0 0 0 0 0 1  

Ad 1 2 3 4 5 6 7 8 9 10  
1 .75 0 0 0 0 0 0 0 0 0 
2 0 .75 0 0 0 0 0 0 0 0 
3 0 0 .75 0 0 0 0 0 0 0 
4 0 0 0 .75 0 0 0 0 0 0 
5 0 0 0 0 .625 0 0 0 0 0 
6 0 0 0 0 0 .625 0 0 0 0 
7 0 0 0 0 0 0 .625 0 0 0 
8 0 0 0 0 0 0 0 .625 0 0 
9 0 0 0 0 0 0 0 0 .625 0 

10 0 0 0 0 0 0 0 0 0 .625  
atoms represented with 1 (undistinguishable) atoms represented by electronegativity (distinguishable) 

Figure 5. Different identity matrices representing hexamine 
  
 Based on the modified forms of the adjacency and identity matrices, the extension of the 

formula of the characteristic polynomial is immediate: 
Pφ,AP,MO(λ) = Pφ(λ,G) = |λ·Id(AP)-Ad(MO)| 

where MO is a certain metric operator (as were exemplified in Figure 4) and AP is a certain 
atomic property (as were exemplified in Figure 5). For a single molecule it results a series of the 
polynomial formulas (given in the next for a clear reading as determinants) which can be 
evaluated for different values of the argument (X). The next figure exemplifies the calculation 
for hexamine. 

 MO from classical topology MO from geometry (a = -31/46) 

AP from 
classical topology 

λ 0 0 0 -1 -1 -1 0 0 0
0 λ 0 0 -1 0 0 -1 -1 0
0 0 λ 0 0 -1 0 -1 0 -1
0 0 0 λ 0 0 -1 0 -1 -1
-1 -1 0 0 λ 0 0 0 0 0
-1 0 -1 0 0 λ 0 0 0 0
-1 0 0 -1 0 0 λ 0 0 0
0 -1 -1 0 0 0 0 λ 0 0
0 -1 0 -1 0 0 0 0 λ 0
0 0 -1 -1 0 0 0 0 0 λ 

λ 0 0 0 a a a 0 0 0 
0 λ 0 0 a 0 0 a a 0 
0 0 λ 0 0 a 0 a 0 a 
0 0 0 λ 0 0 a 0 a a 
a a 0 0 λ 0 0 0 0 0 
a 0 a 0 0 λ 0 0 0 0 
a 0 0 a 0 0 λ 0 0 0 
0 a a 0 0 0 0 λ 0 0 
0 a 0 a 0 0 0 0 λ 0 
0 0 a a 0 0 0 0 0 λ  

AP from 
electronegativities 

(b = 5/8; c = 3/4) 

c·λ 0 0 0 1 1 1 0 0 0
0 c·λ 0 0 1 0 0 1 1 0
0 0 c·λ 0 0 1 0 1 0 1
0 0 0 c·λ 0 0 1 0 1 1
1 1 0 0 b·λ 0 0 0 0 0
1 0 1 0 0 b·λ 0 0 0 0
1 0 0 1 0 0 b·λ 0 0 0
0 1 1 0 0 0 0 b·λ 0 0
0 1 0 1 0 0 0 0 b·λ 0
0 0 1 1 0 0 0 0 0 b·λ 

cλ 0 0 0 a a a 0 0 0 
0 cλ 0 0 a 0 0 a a 0 
0 0 cλ 0 0 a 0 a 0 a 
0 0 0 cλ 0 0 a 0 a a 
a a 0 0 bλ 0 0 0 0 0 
a 0 a 0 0 bλ 0 0 0 0 
a 0 0 a 0 0 bλ 0 0 0 
0 a a 0 0 0 0 bλ 0 0 
0 a 0 a 0 0 0 0 bλ 0 
0 0 a a 0 0 0 0 0 bλ  

Figure 6. Different characteristic-like polynomials for the chemical structure of hexamine 
 
 The outcome of the regression analysis is a model with a certain explanatory power. 

This explanatory power is influenced by the number of the coefficients included in the 
model (nc), as well as by the number of independent variables (nd) used to explain the 
association when the model was feed with a certain number of molecules (m), and 
therefore the adjusted value (r2

adj) of the correlation coefficient (r2) provides a ordering of 
the explanatory powers: 
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 The use of the extended characteristic polynomial is exemplified on a series of 45 C20 
fullerene congeners which were obtained by replacing the carbon atom with nitrogen and boron 
by a certain pattern which is illustrated in Figure 7 (S1 to S4 are shells; on each shell are atoms 
of same type). 

S1 S2 S3 S4  
Figure 7. Pattern for generation of C20 fullerene congener structures 

  
 Are 43 (64) possible arrangements of Carbon, Nitrogen and Boron in the sites defined by 

the shells S1 to S4 in Figure 7, but some of them defines identical molecules as long as the 
structure is free to move (and rotate). Due to this fact, there are only 45 different structures. The 
structures were drawn and stored in separate files. The geometries were build at HF 6-31G level 
of theory and a series of calculated properties were collected for them and are given in the Table 
5 along with the file name (named accordingly to the design from Figure 7, where Homo: highest 
occupied molecular orbital energy, in eV; Lumo: lowest unoccupied molecular orbital energy, in eV; 
Pola: polarizability, in 10-30 m3, DipM: dipole moment, in Debye). 

Table 5. Selected properties from HF 6-31G calculations 
Mol Homo Lumo Pola DipM 
bbbb -0.2461 -0.0385 60.469 0.003541
bbbn -0.2546 -0.095 61.208 1.189393
bbcn -0.2988 -0.0764 60.081 9.954801
bbnb -0.2959 -0.0608 60.272 1.381921
bbnn -0.2747 -0.0603 58.602 7.083818
bcbb -0.2471 -0.0647 62.309 2.179006
bcbn -0.3083 -0.0407 59.187 6.785335
bccb -0.2036 -0.1014 62.714 0.002733
bccn -0.2994 -0.039 59.196 9.030429
bcnb -0.3023 -0.0469 59.881 5.572056
bcnn -0.2578 -0.1307 58.182 0.680023
bnbn -0.3545 -0.0214 54.813 6.939198
bncn -0.3513 -0.006 56.543 4.948867
bnnb -0.3466 -0.0157 57.038 0.008881
bnnn -0.3903 -0.0527 54.572 6.824007
cbbb -0.2621 -0.0498 61.333 3.939499
cbbc -0.2475 0.026 60.198 0.003295
cbbn -0.221 -0.0178 59.654 3.793689
cbcb -0.2836 -0.006 61.228 0.128928
cbcn -0.3008 0.0269 58.345 8.600025
cbnb -0.3269 0.0075 58.474 0.04766 
cbnc -0.3749 0.1273 56.843 0.89975 

 

Mol Homo Lumo Pola DipM 
cbnn -0.3918 0.0903 55.059 8.237555 
ccbb -0.2697 -0.0317 61.306 6.250461 
ccbc -0.3159 0.0574 59.911 0.713889 
ccbn -0.3237 0.074 57.661 5.714922 
cccb -0.2589 -0.0696 61.359 1.960172 
cccc -0.3843 0.1622 58.487 0.000832 
cccn -0.3122 0.1522 57.091 7.334984 
ccnb -0.3265 0.0326 58.372 3.414014 
ccnc -0.3363 0.1803 56.784 1.457706 
ccnn -0.3565 0.1456 54.976 10.170182 
cnbb -0.3004 -0.087 59.378 3.2186 
cnbn -0.3617 0.1144 54.798 8.288544 
cncb -0.3145 -0.0319 59.111 3.170551 
cncn -0.3547 0.171 54.802 6.884452 
cnnb -0.3394 -0.0048 56.511 3.000425 
cnnc -0.334 0.1663 54.992 0.001746 
cnnn -0.3883 0.1159 53.051 9.415604 
nbbn -0.2199 -0.0619 57.786 0.019205 
nbnn -0.4057 0.0636 52.938 0.768984 
ncbn -0.3241 0.0499 55.991 2.259238 
nccn -0.3292 0.1694 54.967 0.003738 
ncnn -0.3882 0.1361 52.906 1.953068 
nnnn -0.454 0.0624 51.084 0.002512  

 The calculations for the extended characteristic polynomial were conducted diversifying 
the atomic property in 8 levels, as given in Table 6. 



Table 6. Atomic properties included in the extension of the Charact-poly 
'A' - atomic mass (/294.0) 'B' - cardinality (always 1) 

'C' - charges (atomic electrostatic charge, ESP) 'D' - solid state density (in kg/m3, /30000) 
'E' - electronegativity (revised Pauling, /4.00) 'F' - first ionization potential (in kJ/mol, /1312.0) 
'G' - melting point temperature (in K, /3820.0) 'H' - attached hydrogen atoms (/4) 
 
The calculations for the extended characteristic polynomial were conducted diversifying the 

adjacency in 3 levels, as well as were used the distance matrix in place of the adjacency when 
the diversification were produced in 6 levels, as given in Table 7. 

 
Table 7. Adjacency weights included in the extension of the Charact-poly 

On 
adjacencies 

'g' - 0 or geometrical 
distance 

't' - (0 or 1) 'c' - 0 or inverse of bond order 

On distances 'G' - geometrical distance 'T' - topological 
distances 

'C' - smallest sum of bond orders 
inverses 

  
A FreePascal program were build to split the work in parallel depending on the number of 

processors available splitting the job by properties (no more than 8 parallel tasks can be 
produced). A huge file containing the descriptors names as well as calculated values of the 
polynomials for the series of the molecules is produced. The descriptors are named as is 
described in the Table 8. 

Table 8. Names of the descriptors calculated using the extended characteristic polynomial 
Variable Description 

L1L2L3L4d1d2d3d4 8 characters, first 4 being letters, last 4 being digits 
d1d2d3d4 4321 dddd  ranges from 0000 to 1000; is evaluated 

)1000/dddd(P 4321L,L, 32
±ϕ

 

L1 is 'I' when the evaluated polynomial value is unchanged (f(x)=x); 
is 'R' when reciprocal (f(x)=1/x) value of the evaluated polynomial is 

calculated; 
is 'L' when logarithm (f(x)=ln(x)) value of the evaluated polynomial is 

calculated; 
L2 encodes the atomic property used to diversify the identity matrix (see 

Table 6) 
L3 encodes the metric operator used to diversify the adjacency matrix 

(see Table 7) 
L4 encoding for negative (N) or positive (P) argument of the polynomial 

 
 It is expected that a diversification like the one considered here to produce degenerations, 

namely identical values of the descriptors for different descriptor names, which is the case in the 
dataset considered here. For instance, one degeneration is immediate, namely between the 
classical topological calculation when 1 is encoded in the adjacency matrix and the diversified 
calculation in which the inverse of the bond order is considered, because all bonds in the 
congener series are single bonds (see Figure 7). This is the reason for which, before regression 
analysis involving the properties from HF 6-31G calculations, a filtering program was designed 
to look for degenerations and to reduce the pool of descriptors eliminating them. Because also 
this program works in parallel, without channelling between tasks, may still contain few 
degenerations, and another program were designed to sort the data (acting in parallel, but all 
tasks are writing in a common shared output file) to clean the descriptors pool by repeated series 
of identical values. 

 The next stage is to test the descriptors in regard to their ability to make simple linear 



regressions, but very different square deviations when the data are normalized have no meaning 
when a linear relation with a measured property is desired. Therefore, in a stage the values are 
normalized and compared the two distributions (of the property and of the descriptor) and the 
association is rejected for a departure with a probability of association less than 1% (this 
procedure should be called normalization) and in the last stage simple linear associations are 
obtained (when some descriptors are removed when possess more than 100 times or less than 
100 times variance than the observed). 

 The Table 9 contains the statistics of the descriptors generated, where stage refers the stage 
applied on the pool of descriptors. 

Table 9. Statistics from preliminary treatment of the descriptors pool 
Stage Number of

descriptors 
Remarks 

Generating 272124 always using the defined configuration 
Filtering 235530 degeneration depends on the complexity of the dataset 
Sorting 230450 degeneration depends on the parallelization level 
Normalization 140447 for Homo 
Normalization 147071 for Lumo 
Normalization 139902 for Pola
Normalization 146134 for DipM 
Simple linear regression 114936 for Homo 
Simple linear regression 115747 for Lumo 
Simple linear regression 119249 for Pola
Simple linear regression 93299 for DipM 

  
A remark is immediate about the results given in Table 9: even if the design of the 

diversification admits the degeneracy (see Table 8) as well as the dataset is a simple pattern on 
which the congener series were constructed (see Figure 7) the level of degeneracy is very low 
(the descriptors pool size is reduced from 272124 to 230450 till the sorting stage included, which 
is about 84.7% of its initial size; a reduction to 40.7% in average for the last stage of simple 
linear regressions) and when is compared with other families of descriptors, such as MDF, for 
similar sample sizes the reduction is much less (in [32] on 40 compounds from 787968 
descriptors after a similar filtering remained 70943 which is about 9%). 

 Regression was conducted with one and two dependent variables taking into account 
additive and/or multiplicative effects among them. The analysis produced more than one 
possible outcome for each case, and were selected the best candidate regressions with the highest 
explanatory power on the molecules subject to investigation for the property with which the 
model was feed. The equations are given in the Table 10. 

 
Table 10. Regressions with highest explanatory power 

No Property Model Descriptors Coefficients r2 r2
adj 

1 Dipole moment Ŷ = a·X1 + d X1 = REtN0841 a = -0.1410 (t = 5.74) 
d = 3.742 (t = 9.78) 

0.434 0.420 

2 Dipole moment Ŷ = c·X1·X2 + d X1 = RDtP0066 
X2 = IDtP0087 

c = 4.221 (t = 8.85) 
d = 1.555 (t = 4.04) 

0.651 0.635 

3 Dipole moment Ŷ = a·X1 + b·X2 + d 
X1 = LFgN0609
X2 = IDcP0908 

a = 5.328·101 (t = 7.10) 
b = 5.434·101 (t = 8.89) 
d = 7.544 (t = 15.1) 

0.689 0.675 

4 Dipole moment Ŷ = a·X1 + b·X2 + c·X1·X2 + d

X1 = LFgN0612 
X2 = RDtN0065 

a = -3.103·101 (t = 3.78) 
b = -5.126·101 (t = 8.79) 
c = -6.851·102 (t = 9.59) 
d = 1.791 (t = 4.54) 

0.725 0.711 

5 HOMO energy Ŷ = a·X1 + d X1 = LFgP0454 a = -0.04027 (t = 8.79) 
d = -0.4028 (t = 36.6) 

0.643 0.634 

6 HOMO energy Ŷ = c·X1·X2 + d X1 = IDTP0633 
X2 = IDTP0653 

c = -7.434·10-7 (t = 11.5) 
d = -2.755·10-1 (t = 50.6) 

0.758 0.747 



No Property Model Descriptors Coefficients r2 r2
adj 

7 HOMO energy Ŷ = a·X1 + b·X2 + d 
X1 = RGTN0155
X2 = LBgN0874 

a = -0.01407 (t = 6.49) 
b = -0.1827 (t = 8.26) 
d = -0.9522 (t = 12.1) 

0.808 0.799 

8 HOMO energy Ŷ = a·X1 + b·X2 + c·X1·X2 + d

X1 = RGCN0182
X2 = LBgP0165 

a = 1.060·10-1 (t = 4.80) 
b = 6.9852·10-2 (t = 11.0) 
c = 2.4080·10-2 (t = 5.51) 
d = -6.947·10-1 (t = 19.7) 

0.830 0.822 

9 LUMO energy Ŷ = a·X1 + d X1 = LBgN0566 a = 1.214 (t = 8.79) 
d = 0.1019 (t = 8.33) 

0.643 0.634 

10 LUMO energy Ŷ = c·X1·X2 + d X1 = IHGN0132
X2 = IHGN0157

c = 5.972·10-11 (t = 13.7) 
d = -5.854·10-2 (t = 7.15) 

0.816 0.808 

11 LUMO energy Ŷ = a·X1 + b·X2 + d 
X1 = LGGN0094
X2 = LBgN0584

a = 7.458·10-2 (t = 7.27) 
b = 1.008 (t = 10.0) 
d = 6.230·10-1 (t = 8.72) 

0.830 0.821 

12 LUMO energy Ŷ = a·X1 + b·X2 + c·X1·X2 + d

X1 = IHGN0150 
X2 = IHGN0131 

a = 4.098·10-6 (t = 10.9) 
b = 4.103·10-6 (t = 11.6) 
c = 6.936·10-11 (t = 12.9) 
d = -6.481·10-2 (t = 7.97) 

0.840 0.832 

13 Polarizability Ŷ = a·X1 + d X1 = IATN0079 a = -38.50 (t = 18.9) 
d = 500.4 (t = 21.4) 

0.893 0.890 

14 Polarizability Ŷ = c·X1·X2 + d X1 = LFTN0225
X2 = LBGP0631

c = 25.09 (t = 24.9) 
d = 71.64 (t = 126) 

0.937 0.934 

15 Polarizability Ŷ = a·X1 + b·X2 + d 
X1 = LBgN0419
X2 = LGGN0488

a = -2.896 (t = 26.1) 
b = 0.6533 (t = 12.7) 
d = 37.82 (t = 43.1) 

0.959 0.957 

16 Polarizability Ŷ = a·X1 + b·X2 + c·X1·X2 + d

X1 = LDGN0394
X2 = LDGN0402

a = 760.6 (t = 14.9) 
b = 735.4 (t = 13.8) 
c = -1.499 (t = 5.76) 
d = -58.45 (t = 3.34) 

0.963 0.961 

 
 In all cases the best model selections were with both additive and multiplicative effects 

included (Ŷ = a·X1 + b·X2 + c·X1·X2 + d), and therefore someone can say that the association 
between the structure as can be described by the characteristic polynomial and the dipole 
moment, HOMO and LUMO energies and polarizability is hardly to be considered as being 
purely linear. Also in all cases linear models (Ŷ = a·X1 + b·X2 + d) were selected as the second 
best alternative in all cases in disfavour of the multiplicative effects models (Ŷ = c·X1·X2 + d), 
suggesting that however the linear component is the predominant one. Test results for significant 
differences among explanatory powers of the models (by using of Fisher Z transformation) are 
given in Table 11. 

Table 11. Z values for comparison of explained variances for models from Table 10 
z(r2

adj) = arctanh(√r2
adj); σ(r2

adj) = 1/√(45-3); zi,j = (zi-zj)/σ√2; z(2.5%) = 1.96 
Dipole moment 

zi,j 1 2 3 4 
1    
2 9.78   
3 12.0 2.20   
4 14.1 4. 73 2.17   

HOMO energy 
zi,j 5 6 7 8
5  
6 6.82 
7 10.8 4.02
8 12.9 6.09 2.07 

LUMO energy 
zi,j 9 10 11 12
9

10 11.6
11 12.8 1.19
12 13.9 2. 72 1.07 

Polarizability 
zi,j 13 14 15 16 
13    
14 8.21    
15 15.0 6.77   
16 16.5 8.30 1.53   

 
Comparison of the explanatory powers of the models reveals only three cases in which the 

differences are not significant, namely for LUMO energy when multiplicative or additive effects 
are used to explain it, and when additive of both additive and multiplicative effects are used to 
explain it, and for polarizability when additive or both additive and multiplicative effects are 
used to explain it. In these cases, using of the larger models (with more coefficients) are not fully 
justified statistically based on what may come from a by chance association. 

 For the Dipole moment (see Table 10) using of a model with multiplicative effects only in 



association with the structure of the compounds selects as a best pair a reciprocal of a 
characteristic polynomial value (RDtP0066) and a directly proportional one (IDtP0087) while 
using a model with additive effects only selects as a best pair a logarithm of a characteristic 
polynomial value (LFgN0609) and a directly proportional one (IDcP0908). Interesting is the fact 
that when a full additive and multiplicative effects model is used, it is kept the transformation of 
the descriptors from both partial effects models, being selected reciprocal (RDtN0065) and a 
logarithmic (LFgN0612) transformed descriptors, when not only the transformation is kept, it is 
kept also the polynomial formula ("Dt" in RDtP0066 and in RDtN0065; "Fg" in LFgN0609 and 
in LFgN0612). The only difference is at values in which the polynomials are evaluated 
(RDtN0065 evaluates the "Dt" polynomial in -65/1000 while RDtP0066 evaluates it in 66/1000; 
LFgN0612 evaluates the "Fg" polynomial in -612/1000 while LFgN0609 evaluates it in -
609/1000). The model reveals and association of the dipole moment with the first ionization 
potential dependent on geometry and solid state density dependent on topology, being able to 
explain about 71.1% of the variability by these factors. 

 Looking at HOMO energy (see Table 10) the additive effects model and the full 
multiplicative and additive effects model have the same composition of descriptors (RGTN0155 
and LBgN0874 for additive effects only; RGCN0182 and LBgP0165 for the full effects one). 
While looking to the descriptors values in the original files in which were placed the evaluation 
results, one can found that actually RGCN0155 and RGTN0155 provides same series of values 
for the molecules on which the calculation were applied. Therefore, in this case, the additive 
effects model and the full effects model possess the same characteristic polynomials formulas 
("GC" and "Bg") and the same operations ("R" and "L") on it, the polynomials being only 
evaluated in different points (RGCN0182 evaluates the "GC" polynomial in -182/100 while 
RGCN0155 evaluates it in -155/1000; LBgP0165 evaluates "Bg" polynomial in 165/1000 while 
LBgN0874 evaluates it in -874/1000). Since no change in the composition of the selected model 
is observed in this case of HOMO energy, it can be said that the multiplicative effects have a 
minor influence on the values of HOMO energy when this is related with the structure with two 
characteristic polynomials. The obtained model shows an association of HOMO energy with the 
melting points and the geometry of the molecules, being able to explain with them about 79.9% 
of the variability.  

 For the LUMO energy the situation is totally reversed than for the HOMO energy. The full 
model borrows its composition from the model with multiplicative effects only (IHGN0132 and 
IHGN0157 descriptors in multiplicative model; IHGN0131 and IHGN0150 descriptors in full 
model). Therefore since no change in the composition of the selected model is observed in this 
case of LUMO energy, it can be said that the additive effects have a minor influence on the 
values of LUMO energy when this is related with the structure with two characteristic 
polynomials. The obtained model shows that for LUMO energy the attached hydrogen atoms 
and the geometry of the molecule plays an important role, and the model is able to explain at 
least 80.8% of the total variability using these factors. 

 When looking at polarizability, all additive, multiplicative and full models keeps the same 
operation (logarithm, "L" letter at the beginning of the descriptors names) while the composition 
is subject to change from one model to another. It is also interesting that the full model selects 
the same polynomial for the both descriptors ("DG" in both LDGN0394 and LDGN0402) while 
the evaluation is in two closer points (-394/1000 and -402/1000). This fact suggests that the best 
model to be used is this model of full effects since is strongly related with the concept of 
polarization - a charge separation - which usually takes small values relative to the total charge 
of an atom or an molecule. The association between the solid state densities as atomic properties 
("D" letter) and polarizability as estimated property requires further studies designed to see more 
about. The model based on solid state density and geometry of the molecule is able to explain 



about 96.1% of the total variability. 

MULTI-/TRANS- DISCIPLINARY CONNECTION(S) 

Other one connected polynomial with the Charact-poly is the Laplacian polynomial 
which use a modified form of the adjacency matrix ([Ad]), the Laplacian matrix ([La]), 
calculated as [La] = [Dg] – [Ad], where [Dg] simply counts on the main diagonal the 
number of atom’s bonds (the rest of its elements are null; for convenience with the graph 
theory related concept were noted [Dg] - from vertex degree). The Laplacian polynomial 
is the Charact-poly of the Laplacian matrix: 

AdDgIdLaIdLaP
def

+−⋅λ=−⋅λ=  

The Laplacian matrix is often used in the analysis of electrical networks. The roots of 
the Laplacian polynomial uses too, under the name of Laplacian spectra. 

OPEN ISSUES  

Based on the conducted study the extension of the characteristic polynomial to take into 
account the type of the atom when is counted as a vertex in its classical approach and to take into 
account the type of the bond when is counted as a adjacency in its classical approach, as well as 
the alternative use of the distance matrix, computed by topologies as well as by geometries are 
fruitful extensions. The case study reveals that useful information may be bring out from the 
structure-property and structure-activity study when the extended characteristic polynomial is 
used. Some disappointments can be recorded as well, one of them being the relatively low (when 
compared with other family-based derived descriptors) as well as the inconvenience of the 
calculation of the polynomial for values of the argument outside of the [-1,1] interval, when 
results of the calculation goes outside of the precision of calculation for any reasonable sized 
molecule.  

RELATED LIST OF ABBREVIATIONS 

The term secular function has been used for what is now called characteristic 
polynomial (in some literature the term secular function is still used). The term comes 
from the fact that the characteristic polynomial was used to calculate secular perturbations 
(on a time scale of a century, i.e. slow compared to annual motion) of planetary orbits, 
according to Lagrange's theory of oscillations. 

Sachs graphs (Sachs 196233) is a possible enumeration of what the characteristic 
polynomial counts as authors of (Graovac et al. 197234) observed. 
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