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PREFACE 
 
 
 

Many, yet not all, chemical substances consist of molecules. The fact that molecules 
have a "structure" is known since the middle of the XIX century. Since then, one of the 
principal goals of chemistry is to establish (causal) relations between the chemical and 
physical (experimentally observable and measurable) properties of substance and the 
structure of the corresponding molecules. Countless results along these lines have been 
obtained, and their presentation comprise significant parts of textbooks of organic, 
inorganic and physical chemistry, not to mention treatises on theoretical chemistry.  

The vast majority of such "chemical rules" are qualitative in nature. A trivial 
example: if the molecule possesses a -COOH group then the corresponding chemical 
compound (usually, but not always) exhibits an acidic behavior.  

A century-long tendency in chemistry is to go a step further and to find 
quantitative relations of the same kind. Here, however, one encounters a major problem. 
Molecular structure (to simplify: the features expressed by means of structural formulas) 
is a non-numerical notion. The measured physico-chemical properties of substances are 
quantities that are expressed by numbers (plus units, plus experimental errors). Hence, to 
find a relation between molecular structure and any physico-chemical property, one must 
somehow transform the information contained in the molecular structure into a number 
(or, more generally, into a sequence of numbers). Nobody knows how to make this 
transformation or these transformations. 

At this moment there is no theory that could serve as a reliable guide for solving 
this problem. There have been many many many attempts in this direction. One group of 
them uses so-called topological indices. A topological index is a quantity that is somehow 
calculated from the molecular graph and for which we believe (or, sometimes, are able to 
demonstrate) that it reflects relevant structural features of the underlying molecule. This 
book is aimed at giving a reasonably comprehensive survey of the present, fin de siècle, 
state-of-the-art of the theory and practice of topological indices.  

Some twenty years ago there were a dozen or so topological indices, only few of 
them with noteworthy chemical applications. Nowadays, their number increased 
enormously. The readers of this book are warned that in Chapter 7 the number of distinct 
topological indices will exceed 10,000. An alternative title of our book could be 
"Topological Indices - A Jungle Guide". There are two nasty, but inevitable questions:  Is  
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there any need for topological indices? Is there any real benefit for chemistry (or to 
generalize: for mankind) from the usage of topological indices? 
       Some twenty years ago these authors would certainly offer "yes" as answers, but 
would have a hard time to convince the less gullible part of the chemical community. 
Nowadays, the answers are still "yes", but their justification is much easier. 
       The applications of topological indices reached a level when they are directly used 
for designing pharmacologically valuable compounds. Let the titles of some recently 
published papers speak for themselves: Quantitative Structure-Activity Relationship 
Studies on Local Anesthetics [S.P. Gupta, Chem. Rev. 1991, 91, 1109-1119]; Structure-
Activity Study of Antiviral 5- Vinylpyrimidine Nucleoside Analogs Using Wiener's 
Topological Index [S. Mendiratta, A. K. Madan, J. Chem. Inf. Comput. Sci. 1994, 34, 
867-871]; Structure-Activity Study on Antiulcer Agents Using Wiener's Topological Index 
and Molecular Topological Index [A. Goel & A. K. Madan, J. Chem. Inf. Comput. Sci. 
1995, 35, 504-509]; Modelling Antileukemic Activity of Carboquinones with 
Electrotopological State and Chi Indices [J. D. Gough & L. H. Hall, J. Chem. Inf. 
Comput. Sci. 1999, 39, 356-361]. Of all recent successes made by the aid of topological 
indices we mention just one. The paper G. Grassy, B. Calas, A. Yasri, R. Lahana, J. Woo, 
S. Iyer, M. Kaczorek, R. Floc'h, & R.Buelow, Computer Assisted Rational Design of 
Immunosuppressive Compounds, [Nature Biotechnol. 1998, 16, 748-752] reports on a 
search for peptides possessing immunosuppressive activity. They used 27 structure-
descriptors, of which 12 topological indices. From a combinatorial library of about 
280,000 compounds they selected 26 peptides for which high activity was predicted. Five 
of them were actually synthesized and tested experimentally. The most potent of these 
showed an immunosuppressive activity approximately 100 times higher than the lead 
compound. 
      One may suspect that in pharmaceutical companies many analogous researches have 
been (and are currently being) undertaken, with even better results, but - understandably - 
are not publicized. 

* * * 
 

      Returning to topological indices: They, of course, are not the miraculous 
philosopher's stone of our times. They are far from other powerful tools of theoretical 
chemistry (such as thermodynamics or quantum mechanics). They, however, offer a 
meager hope to connect structure with properties, and to do this in a quantitative manner. 
They, perhaps, deserve the attention of a limited group of chemists. They, perhaps, 
deserve that every chemist should know a bit about them. They, perhaps, deserve to be 
mentioned in (undergraduate) courses of organic, physical and pharmacological 
chemistry. 
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* * * 
 

      Although each author contributed to the entire book, Chapters 1, 2, 4, 6 and 8 were 
written by M.V.D., Chapters 3 and 5 by I.G. and Chapters 7 and 9 by L.J. Each author 
takes responsibility only for the materials outlined in the chapters written by himself.  
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Chapter 1 
 
 
 

INTRODUCTION  TO  MOLECULAR  TOPOLOGY 
 
 
       Graph theory applied in the study of molecular structures represents an 
interdisciplinary science, called chemical graph theory or molecular topology. By using 
tools taken from the graph theory, set theory and statistics it attempts to identify structural 
features involved in structure-property activity relationships. The partitioning of a 
molecular property and recombining its fragmental values by additive models is one of its 
main tasks. Topological characterization of chemical structures allows the classification 
of molecules and modeling unknown structures with desired properties. 
       Before detailing the specific questions of molecular topology, some basic definitions1 
in graph theory are needed. 
 
 

1.1.  GRAPHS 
 

A graph,  G = G(V, E) is a pair of two sets:  V = V(G), a finite nonempty set of N 
points (i.e. vertices)  and E = E(G), the set of Q unordered pairs of distinct points of V. 
Each pair of points (vi, vj) (or simply (i,j) ) is a line (i.e. edge), ei,j, of G if and only if  
(i,j)∈ E(G). In a graph, N equals the cardinality, |V| , of the set V while Q is identical to 
|E|. A graph with N points and Q lines is called a (N, Q) graph (i.e. a graph of order N and 
dimension Q). Two vertices are adjacent if they are joined by an edge. If two distinct 
edges are incident with a common vertex then they are adjacent edges. The angle 
between edges as well as the edge length are disregarded. The term graph was introduced 
by Sylvester.2   
 There is a variety of graphs, some of them being mentioned below. 
A directed graph or digraph consists of a finite nonempty set V of points along with a 
collection of ordered pairs of distinct points. The elements of E are directed lines or arcs.1  
In a multigraph two points may be joined by more than one line. Figure 1.1. shows the 
three types of graphs above mentioned. 
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             A path graph, P, is an unbranched chain.  A tree, T, is a branched structure. A 
star is a set of vertices joined by a common vertex; it is denoted by SN', with N' = N-1. A 
cycle, C, is a chain which starts and ends in one and the same vertex. (Figure 1.2). 
 
  

 

 

 

 

 

A complete graph, KN, is the graph with any two vertices adjacent. The number 
of edges in a complete graph is N(N-1)/2. In Figure 1.3, complete graphs with N = 1 to 5 
are presented  
 

 

      

          

           

 
 
 A bigraph (i.e. bipartite graph) is a graph whose vertex set V can be partitioned 
into two disjoint subsets: V1 ∪ V2 =V; V1 ∩ V2 = ∅ such that any edge (i,j) ∈ E(G) joins 
V1 with V2.1,3 A graph is bipartite if and only if all its cycles are even.4  
 If any vertex i∈V1 is adjacent to any vertex j∈V2 then G is a complete bipartite 
graph and is symbolized by Km,n, with m = |V1|  and n = |V2|  A star is a complete bigraph 
K1,n. It is obvious that Km,n  has mn edges. Figure 1.4 presents some bigraphs. 
 
  

                   

 

                

Figure 1.1.             Graph          Digraph                    Multigraph 

   Figure 1.2.            Path  Tree                  Star                   Cycle  

 Figure 1.3.                    K1             K2                K3                   K4                     K5 

    Figure 1.4.   Bigraphs                K1.3                                        K2.3                                K3.3 
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      A rooted graph is a graph in which heteroatoms or carbons with an unshared electron 
are specified5,6  (Figure 1.5). 
 

N
 

      

 
 A homeomorph of a graph G is a graph resulted by inserting vertices of degree 2 
(Figure 1.6)3  
 

                                   
 

 
 
 
     A planar graph is a graph which can be drawn in the plane so that any two edges 
intersect to each other at most by their endpoints.7 The regions defined by a plane graph 
are called  faces, F, the unbounded region being the exterior face1 (e.g. f4  in Figure 1.7). 
For any spherical polyhedron with |V| vertices, |E| edges and |F| faces the Euler formula 8 

is true: 2=+− FEV . A graph is planar if and only if it has no subgraphs 

homeomorphic to K5 or K3,3 (Kuratowski's theorem).9  
 
     

f1

f2

f3
f4

 

                            

  

 

 

Figure 1.5. Rooted graphs 

Figure 1.6. Homeomorphs of tetrahedron 

Figure 1.7.  A planar graph and its faces 
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            The line graph, L(G), of a graph G, is constructed such that its points represent 
lines of G and two points of L(G) are adjacent if the corresponding lines of G are incident 
to a common point.1 Figure 1.8 illustrates this derivative of a graph (see also Sect. 8.2). 
 
 

 
 

  
 

            The complementary graph of a graph  G = (V, E) is a graph G  = (V, E ), having the 
same set of vertices but joined with edges if and only if they were not present in G. The 

degree of each vertex in G  equals the difference between the vertex degree in the complete 
graph KN  and the corresponding vertex in G.7 (Figure 1.9). 
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        A graph G is labeled, G(Lb), when its points are distinguished (e.g. by their numbers) 
from those of the corresponding abstract graph. 10 There exists N! possibilities of numbering 
a graph of order N, G(Lbi); i = 1,2,...N! 
 Two graphs G=(V, E) and G1=(V1, E1) are isomorphic (written G ≅ G1) if there 
exists a function f : V        V1 which obeys the conditions:7,11,12 

 (1) f is a bijection (one-to-one and onto) 
 (2) for all vertices i, j∈V; (i,j)∈E ↔ (f(i), f(j))∈E1. 
The function f is called an isomorphism. 
 
 
 
 
 
 
 

Figure 1.9. A graph and its complement 

Figure 1.8. A graph and its line graph 
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 If f is the permutation operation, then there exists a permutation for which G(Lb) 
and G1(Lb) coincide (see Figure 1.10 - see also Sect. 8.1). 
 
 

9

8
10

7

3

5

1

6

2 4
1 2 6 9

73

10845

 
 

           
 
 A subgraph of a graph G is a graph G1 = (V1, E1) having V1 ⊂ V and E1 ⊂ E 
(Figure 1.11.).  
  
 

 
 
 
 
 
  A spanning subgraph is a subgraph G1 = (V, E1) containing all the vertices of G 
but E1 ⊂ E (Figure 1.12.).  
 
 

 
 
 
 
 

 

Figure 1.10. Two isomorphic graphs 

Figure 1.11. A graph and one of its subgraphs 

Figure 1.12. A graph and some of its spanning subgraphs 
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1.2.  WALKS 
 

A walk  is a finite string, w1,n = (vi)1≤ i ≤ n , v i ∈ V(G ) such that any pair (vi-1, v i) ∈ 

E(G), ni ...,,2= . Revisiting of vertices and edges is allowed.1,3,13 The walk is closed if v1 

= vn and is open otherwise. When closed, it is also called self -returning walk. The set of 

all walks in G is denoted by )(~ GW . The length  of a walk w1,n = (vi)1≤ i ≤ n equals the 
number of occurrences of edges in it. 

The concept of walk is very extended. If no other conditions are imposed, the 
walk is called a random walk. Additional conditions specify various kinds of walk.14,15  
 A trail (i.e. Eulerian walk ) is a walk having all its edges distinct. Revisiting of 
vertices is allowed. 

A path  (i.e. self -avoiding walk) is a finite string, p1,n = (vi)1≤ i ≤ n , vi ∈ V(G)  such 

that any pair (vi-1, vi) ∈E(G), ni ...,,2=  and vi ≠ vj, (vi-1, vi) ≠ (vj-1, vj) for any 1 ≤ i < j ≤ n. 
Revisiting of vertices and edges, as well as branching is prohibited. The set of all paths in 
G is denoted by P(G).  

A graph is connected if every pair of vertices is joined by a path. A maximal 
connected subgraph of G is called a component. A disconnected graph has at least two 
components.1   

A terminal path,  t p1,n = (vi)1≤ i ≤ n ,  v i ∈ V(G ),  is the path  involving a walk  w 
= v1, v2,...,vn, vk, that is no more a path in G, for any vk∈V(G)  such that (vn, vk ) ∈ E. 

A closed path is a cycle  (i.e. circuit). The girth of a graph, g(G), is the length of a 
shortest cycle (if any) in G. The circumference, c(G) is the length of a longest cycle.1 A 
cycle is both a self-returning and a self-avoiding walk. A n-membered cycle includes n 
terminal paths in it. 

A path is Hamiltonian if n = | V | . In other words, a Hamiltonian path visits once 
all the vertices in G. If such a path is a closed one, then it is a Hamiltonian circuit. Figure 
1.13 illustrates each type of the above discussed walks. 
 

 
      
 
 
      The distance, dij, between two vertices vi and vj is the length of a shortest path joining 
them, if any : dij = min l(pij);  otherwise dij = ∞. A shortest path is often called a geodesic. 
The eccentricity of a vertex i, ecci, in a connected graph is the maximum distance  

Figure 1.13.  Closed walk     path             trail        cycle     Hamiltonian  Hamiltonian 
         path        circuit 
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between i and any vertex j of G: ecci = max dij. The radius of a graph, r(G), is the 
minimum eccentricity among all vertices i in G: r(G) = min ecci = min max dij. 
Conversely, the diameter of a graph, d(G), is the maximum eccentricity in G: d(G) = max 
ecci = max max dij . The set of all distances (i.e. geodesics) in G is denoted by D(G). 

The detour, δij, between two vertices vi and vj is the length of a longest path 
joining these vertices, if any : δij = max l( pij);  otherwise δij = ∞. The set of all detours 
(i.e. longest paths) in G is denoted by ∆(G). 
  In a connected graph, the distance and the detour are metrics, that is, for all 
vertices vi , vj and vk, 
 

1. mij ≥ 0, with mij  = 0 if and only if vi = vj. 
2. mij = mji  
3. mij + mik ≥ mjk 

 
When l(pij) is expressed in number of edges, the distance is called topological 

distance; when it is measured in meters or submultiples:(nm, pm) it is a metric distance. 
Table 1.1 illustrates the two types of distances. 
 
 
 
   Table 1.1. Topological and Metric Distances 

 

Chemical 
Compound 

Topological 
Distance 

Metric Distance 
(pm) 

CH3 - CH3 1 154 

CH2  = CH2 1 134 

CH ≡ CH 1 121 
 

 
An invariant of a graph is a graph theoretical property, which is preserved by 

isomorphism.1 In other words, it remains unchanged, irrespective of the numbering or 
pictorial representation of G. 

The degree, deg vi, (i.e. valency, sometimes denoted by k or δ ) of a vertex vi in G 
is the number of edges incident in vi.1 Since any edge has two endpoints, it contributes 
twice to the sum of degrees of vertices in G, such that ∑ =

i i Qv 2deg , a result which 

was the first theorem of graph theory (Euler, 1736).1 In a (N, Q) graph, 0 ≤ deg vi ≤ N-1, 
for any vertex vi. If all vertices have the same degree, k , the graph is called k-regular;  
otherwise it is irregular (Figure 1.14). The 4-regular graph in Figure 1.14 is both an 
Eulerian and Hamiltonian graph. 
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1.3. CHEMICAL  GRAPHS 
 
 

A chemical graph is a model of a chemical system, used to characterize the 
interactions among its components: atoms, bonds, groups of atoms or molecules. A 
structural formula of a chemical compound can be represented by a molecular graph, its 
vertices being atoms and edges corresponding to covalent bonds. 

Usually hydrogen atoms are not depicted in which case we speak of hydrogen 
depleted molecular graphs. (Figure 1.15). 
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The heavy atoms different from carbon (i.e. heteroatoms) can be represented, as 

shown in Figure 1.5. Similarly, a transform of a molecule (e.g. a chemical reaction) can 
be visualized by a reaction graph, whose vertices are chemical species and edges reaction 
pathways. Within this book, only molecular graphs are considered. 
 
 

Figure 1.14. A regular and an irregular graph 

Figure 1.15. A molecular graph and its hydrogen depleted representation 
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Chapter 2                                                                                                                                                                                                                                                
                                                                      

TOPOLOGICAL  MATRICES 
 

 

 A molecular graph can be represented by: a sequence of numbers, a polynomial, a 
single number or a matrix.1 These representations are aimed to be unique, for a given 
structure. Topological matrices can be accepted as a rational basis for designing 
topological indices.2 The main types of matrix descriptors are listed and illustrated in the 
following. 
 

2.1.  ADJACENCY  MATRIX 
 
 Since early 1874, Sylvester3 has associated to an organic molecule a matrix A(G). 
 This is a square table, of dimensions NxN, whose entries are defined as: 
  

 




∉=
∈≠

=
)(),(orif0
)(),(andif1

][
GEjiji
GEjiji

ijA          (2.1) 

  
 A(G) characterizes a graph up to isomorphism. It allows the reconstruction of 

the graph. A(G) is symmetric vs. its main diagonal, so that the transpose AT(G) leaves 
A(G) unchanged: 

 
 AT(G) = A(G)                 (2.2)  

 
Figure 2.1 illustrates the adjacency matrix for the graph G, and its powers, Ae , 

till e = 3. Note that the entries [Ae ]ij represent walks of length e, ew, 4 whereas the 
diagonal entries, [Ae ]ii count self  returning walks (or closed walks),  esrw. The sum of the 
i-th row, RS, or of the i-th columns, CS of the entries in Ae equals the number of walks (of 
length e) starting from the vertex i. It is called the walk degree, ewi; for e = 1, one retrieves 
the classical vertex degree, degi = 1wi. 
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4

2 3

1

                                                                              

 
               A        1wi = degi       A2           2wi            A3           3wi 
  

     1   0  0  0  1        1         1  1  1  0       3         0  1  1  3       5    
     2   0  0  1  1        2         1  2  1  1       5         1  2  3  4      10   
     3   0  1  0  1        2         1  1  2  1       5         1  3  2  4      10 
     4   1  1  1  0        3         0  1  1  3       5         3  4  4  2      13 

 
     Figure 2.1. Adjacency matrices for the graph G2.1.  

 

 If multibonds are taken into account, a variant of   A(G) , denoted  C(G),   (the 
connectivity matrix) can be written: 
 

 




∉=
∈≠

=
)(),(orif0
)(),(andif

][
GEjiji
GEjijibij

ijC                (2.3) 

 
where bij is the conventional bond order: 1; 2; 3; 1.5 for simple, double, triple and 
aromatic bonds, respectively. 
 In its general form, the walk degree, can be defined as: 
  

 ∑=
j

ij
ew ][Ci

e               (2.4) 

 The raising at a power e, of a square matrix, can be eluded by applying the 
algorithm of Diudea, Topan and Graovac.5 It evaluates a (topological) property of a vertex 
i, by iterative summation of the first neighbors contributions. The algorithm, called eWM , 
is defined as: 
  

    M
ee WWM =+              (2.5) 

  ∑ ==+

j
jjMjjM

e
ijiiM

e 1][);][]([][ 01 WWMW         (2.6) 

               ijijM
e

ijM
e ][][][ 1 MWW ==+            (2.7) 

 

where M is any square matrix and eW is the diagonal matrix of walk degrees. The 
diagonal elements, [eWM]ii equal the RSi of Me, or in other words, they are walk degrees, 
ewM,i (weighted by the property collected by M):5  

G2.1 
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∑ ==
j

ij
e

iiM
e w iM,

e][][ MW             (2.8) 

  
The half sum of the local invariants ewM,i , in a graph, defines a global invariant, 

called  the walk number ,eWM : 
 

 ∑==
i

iM,
e

M
e

M
e WGWW

2
1

)(            (2.9) 

 
 When M = A; C, the quantity eWM

 (or simply eW) represents the so called 
molecular walk count;6 when M = D, (i.e., the distance matrix - see below) then eWM

 

equals the Wiener number of rank e (see Chap. Topological Indices). 
 The sum of diagonal elements in a square matrix is called trace, Tr(Me): 
 

 ∑=
i

ii
eeTr ][)( MM                          (2.10) 

 The half sum of diagonal elements offers a global invariant, eSRWM  (Self 
Returning Walk  number): 
 

 )(][
2
1 MM e

i
ii

e MOM== ∑M
e SRW                      (2.11) 

which equals the moment of order e of the matrix M, MOM(Me). When M = A, the 
elements [Ae]ii count both self returning walks and circuits of length e. MOM(Ae) is 
related to the spectral properties of molecular graphs (e.g., the energy of molecular 
orbitals).7  
 Figure 2.2 illustrates the graphical evaluation of ewi  and eW numbers, by using 

weighted graphs G{ewi}. 
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      Figure 2.2. Graphical evaluation of  ewi and  eW:  e = 1-3.  
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 For indicating the edge adjacency, the EA matrix is used. The edge adjacency can 
be obtained from the line graph, L(G) (see Sect. 8.2). When a relation between vertices 
and edges is needed, the incidency matrix, VEA, can be constructed (Figure 2.3).4, 8  
 
 

4 1

2

3

5

6

7
8

 
         
 
 

         EA(G2.4)               VEA(G2.4) 

       12   13   14   15   56   67   78                 12  13  14   15   56   67   78 
_________________________________________           ________________________________________ 
12      0     1     1     1     0     0     0            1     1     1     1    1     0     0     0 
13      1     0     1     1     0     0     0            2     1     0     0    0     0     0     0 
14      1     1     0     1     0     0     0            3     0     1     0    0     0     0     0 
15      1     1     1     0     1     0     0            4     0     0     1    0     0     0     0 
56      0     0     0     1     0     1     0            5     0     0     0    1     1     0     0 
67      0     0     0     0     1     0     1            6     0     0     0    0     1     1     0 
78      0     0     0     0     0     1     0            7     0     0     0    0     0     1     1 
                                                                  8     0     0     0    0     0     0     1 

 
 

Figure 2.3. Matrices EA and VEA  for the graph G2.4 

 
 
 

2.2. LAPLACIAN  MATRIX 

 

 The Laplacian matrix is defined as:9-14 
 
 La(G) = DEG(G) - A(G)          (2.12) 
 

where DEG is the diagonal matrix of vertex degrees and A is the adjacency matrix.  
In multigraphs, A is changed by C (connectivity) matrix. For the graph G2.5 (3-methyl-
heptan), the Laplacian is shown in Figure 2.4. 
 
 
 
 

G2.4 
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Spectrum of eigenvalues: 

 λ1        λ2            λ3          λ4           λ5           λ6           λ7 

0     0.3983    1.0000    1.0000    3.0000   3.3399   5.2618    

t(G2.5)  = 3 ;  Q(G2.5) = 7 

 

Figure 2.4. The Laplacian matrix of the graph G2.5. 

 
The Laplacian matrix is also referred to as the Kirchhoff matrix.12,15,16 It is involved in the 
matrix-tree theorem.17 Thus, the number of spanning trees, t(G), in a cycle-containing 
structure, is given by: 
 
 t(G) = det ([La]ij)            (2.13) 
 
 where [La]ij is a submatrix of La, from which the row i and column j were 
deleted. The number t(G) can also be calculated from the spectrum of eigenvalues, λi, of 
the Laplacian, by  relation 12 

 

∏
=

=
N

i
iNGt

2
)/1()( λ            (2.14) 

 
 The Laplacian spectrum can be used for calculating the Wiener number9, 13 and 
represents a source of other graph invariants (see  Chap. Wiener- Type Indices).  For 
example, the number of edges, Q, in  a graph can be calculated by14 
 

 )()2/1(
2
1 La

2
TrQ

N

i
i == ∑

=
λ            (2.15) 
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2.3  DISTANCE  MATRIX 
 

 
 Distance Matrix DD(G), was introduced in 1969 by Harary.4 It is a square 
symmetric table, of dimension NxN, whose entries are defined as: 

 

 




=
≠∈

=
ji

jiGDjiN jie
ij if0

if,)(),(;
][ ),(,D             (2.16) 

 
where Ne,(i,j) = dij, the topological distance between i and j. The matrix D, (denoted 
hereafter De by reasons that will become clear in the following), for the graph G2.6. is 
illustrated in Figure 2.5. The RS (De)i denotes the distance from the vertex i to all N -1 
vertices in graph. 
 
 

            

1
2

3
4

5
6

7

8
 

 

           
     De (G2.6 ): 

                            1   2   3   4   5   6   7   8     RSi 
                    ____________________________________________  

              1      0   1   2   3   4   5   2   3      20  
                    2      1   0   1   2   3   4   1   2      14  
                   3      2   1   0   1   2   3   2   1      12  
                  4      3   2   1   0   1   2   3   2      14  
                 5      4   3   2   1   0   1   4   3      18  
                 6      5   4   3   2   1   0   5   4      24  
             7      2   1   2   3   4   5   0   3      20  
             8      3   2   1   2   3   4   3   0      18  

 
 

      Figure 2.5. Distance matrix for the graph G2.6  

 

 

De matrix  can be built up by calculating the boolean powers Ae; e ∈ [1, d(G)], 
where A = I + A, with I being the unity matrix and  d(G) the diameter of graph. The 
procedure is illustrated for the graph G2.4 in  Figure 2.6. 

 

G2.6 
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    De (G2.4)              A1(G2.4) 

 1 2 3 4 5 6 7 8   1 2 3 4 5 6 7 8 

1 0 1 1 1 1 2 3 4  1 1 1 1 1 1 0 0 0 
2 1 0 2 2 2 3 4 5  2 1 1 0 0 0 0 0 0 
3 1 2 0 2 2 3 4 5  3 1 0 1 0 0 0 0 0 
4 1 2 2 0 2 3 4 5  4 1 0 0 1 0 0 0 0 
5 1 2 2 2 0 1 2 3  5 1 0 0 0 1 1 0 0 
6 2 3 3 3 1 0 1 2  6 0 0 0 0 1 1 1 0 
7 3 4 4 4 2 1 0 1  7 0 0 0 0 0 1 1 1 
8 4 5 5 5 3 2 1 0  8 0 0 0 0 0 0 1 1 

  

 
    A2(G2.4)              A 3(G2.4)  

 1 2 3 4 5 6 7 8   1 2 3 4 5 6 7 8 

1 1 1 1 1 1 1 0 1  1 1 1 1 1 1 1 1 0 
2 1 1 1 1 1 0 0 0  2 1 1 1 1 1 1 0 0 
3 1 1 1 1 1 0 0 0  3 1 1 1 1 1 1 0 0 
4 1 1 1 1 1 0 0 1  4 1 1 1 1 1 1 0 0 
5 1 1 1 1 1 1 1 0  5 1 1 1 1 1 1 1 1 
6 1 0 0 0 1 1 1 1  6 1 1 1 1 1 1 1 1 
7 0 0 0 0 1 1 1 1  7 1 0 0 0 1 1 1 1 
8 0 0 0 0 0 1 1 1  8 0 0 0 0 1 1 1 1 

 
  

 

     A 4(G2.4)              A 5(G2.4) 

 1 2 3 4 5 6 7 8   1 2 3 4 5 6 7 8 

1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 0  2 1 1 1 1 1 1 1 1 
3 1 1 1 1 1 1 1 0  3 1 1 1 1 1 1 1 1 
4 1 1 1 1 1 1 1 0  4 1 1 1 1 1 1 1 1 
5 1 1 1 1 1 1 1 1  5 1 1 1 1 1 1 1 1 
6 1 1 1 1 1 1 1 1  6 1 1 1 1 1 1 1 1 
7 1 1 1 1 1 1 1 1  7 1 1 1 1 1 1 1 1 
8 1 0 0 0 1 1 1 1  8 1 1 1 1 1 1 1 1 

 

 
Figure 2.6. The construction of De (G2.4) by using boolean powers, Ae for G2.4.   

 
 
 The entries [De]ij are defined by: 

 

 [De]ij = e : [Ae]ij ≠ [Ae -1]ij ;   e = 1, 2, ...d(G)       (2.17) 
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 By applying the eWM algorithm (eqs 2.5-2.7) on De results in eWDe numbers, 
which are Wiener numbers of rank e,18 (see Chap. Topological Indices). The diagonal 
entries in the matrix (De)e represent degrees of the self returning walks, esrwD,i , weighted 
by distance. 
  Figure 2.7 illustrates the graphical evaluation of ewD,i quantities, by using the 
weighted graph G{eWD,i }. Note that the matrix De can be considered as the connectivity 
matrix of a complete graph, KKN (having the same number, N, of vertices as the initial 
graph) with the weight (i.e., multiplicity) of edges equaling the distance dij. 
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            G2.7                 K5{0wD,i = 1}                     K5{1wD,i}                          K5{2wD,i} 

                 1WD = 20             2WD = 167 
 
 

Figure 2.7. Graphical evaluation of the numbers  ewD,i  and eWD . 
 
 
 
 
 

2.4.  DETOUR  MATRIX 

 

 In cycle-containing graphs, when the shortest path (i.e., geodesic) is replaced by the 
longest path between two vertices i and j, the maximum path matrix, or the detour matrix, 
∆e can be constructed19,20    

  
 [∆e]ij = 





=

≠∈

ji

jiGjiN jie

if0

if),(),(;),(, ?
                        (2.18) 

  
Figure  2.8. illustrates this matrix for 1-Ethyl-2-methyl-cyclopropane, G2.8. 
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1
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          ∆e (G2.8)            ∆-D(G2.8) 

 1 2 3 4 5 6   1 2 3 4 5 6 
1 0 1 3 3 4 5  1 0 1 3 3 4 5 
2 1 0 2 2 3 4  2 1 0 2 2 3 4 
3 3 2 0 2 3 4  3 2 1 0 2 3 4 
4 3 2 2 0 1 2  4 2 1 1 0 1 2 
5 4 3 3 1 0 1  5 3 2 2 1 0 1 
6 5 4 4 2 1 0  6 4 3 3 2 1 0 

 

Figure 2.8.  Detour, ∆e, and detour-distance, ∆-D, matrices for the graph G2.8. 
 
 
 The two types of paths, the shortest and the largest ones, can be combined in one 
and the same square matrix, ∆-D, (originally called Maximum minimum Path ,  MmP,20 
whose entries are defined as: 

 

 [∆-D]ij = 








=

>∈

<∆∈

ji

jiGDjiN

jiGjiN

jie

jie

if0

if),(),(;

if),(),(;

),(,

),(,

                  (2.19) 

 

 It is easily seen that the upper triangle is identical to that in the matrix ∆e while the 
lower triangle coincides to that in the De matrix. 
 
 
 
 

2.5.  3D - DISTANCE  MATRICES 
 
 

 When one considers the genuine distances between atoms (i.e., the distances 
measured through space), one obtains the geometric matrix , G.21, 22 When the distances 
refers to the vertices of a graph embedded on a graphite or a diamond lattice, we speak of 
topographic matrix, T.23  It is exemplified in Figure 2.9, for cis- (G2.9 a ) and trans-
butadiene (G2.9  b ).  
 
 

G2.8 
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Figure 2.9.  (3D) - Distance matrices 

 
 
 Distance / Distance matrix ,24 D / D, (also denoted Distance-Distance matrix) 
reports ratios of the geometric distance (i.e., measured through space, for a graph 
embedded in a 2D or a 3D grid) to graph distances (i.e., measured through bonds). It is 
also exemplified in Figure 2.9. 
 
 

 
 
 
 

 G2.9  a                G2.9  b  

T (G 2.9 a  )    T (G 2.9 b) 

D / D (G 2.9  a ) D / D (G 2.9  b ) 
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2.6.  COMBINATORIAL  MATRICES 
 
 

 Recently, two path-defined matrices have been proposed: the distance-path ,18 Dp,  
and the detour-path,25 ∆p (see also26) whose elements are combinatorially calculated from 
the classical distance (i.e., distance-edge), De and detour (i.e., detour-edge), ∆e matrices 
 





=
≠∈

=
ji

jiGDjiN jip
ijp if0

if,)(),(;
][ ),(,D         (2.20) 





=
≠∈

=
ji

jiG?jiN jip
ijp if0

if,)(),(;
][ ),(,?         (2.21) 

 






 +
=

2
1][

, ),(
ije

jipN
M

= {([Me]ij)
2 + [Me]ij }/2 ,     M = D;  ∆     (2.22) 

 
Np,(i,j)  represents the number of all internal paths27 of length  ),(1 jip ≤≤  included in 
the path (i,j).  
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      Dp                           ∆p 

 1 2 3 4 5 6 7 8 RS
 

  1 2 3 4 5 6 7 8 9 10 

1 0 1 3 6 10 15 3 6 44  1 0 15 21 6 10 15 21 28 28 1 
2 1 0 1 3 6 10 1 3 25  2 15 0 15 10 6 10 15 21 21 21 
3 3 1 0 1 3 6 3 1 18  3 21 15 0 15 21 15 21 28 28 28 
4 6 3 1 0 1 3 6 3 23  4 6 10 15 0 15 10 15 21 21 10 
5 10 6 3 1 0 1 10 6 37  5 10 6 21 15 0 15 21 28 28 15 
6 15 10 6 3 1 0 15 10 60  6 15 10 15 10 15 0 15 21 21 21 
7 3 1 3 6 10 15 0 6 44  7 21 15 21 15 21 15 0 1 1 28 
8 6 3 1 3 6 10 6 0 35  8 28 21 28 21 28 21 1 0 3 36 
           9 28 21 28 21 28 21 1 3 0 36 
           10 1 21 28 10 15 21 28 36 36 0 

 

Figure 2.10. Combinatorial matrices 

G2.6 
 

G2.10 
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 Matrices Dp and ∆p allow the direct calculation of the hyper-Wiener, WW, and 
hyper-detour , ww, indices, respectively. (see Chap. Topological Indices). Matrix Dp, like 
De, allows the immediate reconstruction of the original graph:  entries [1] give A  matrix.  
 
 

2.7.  WIENER  MATRICES 
 

 Randic proposed a square matrix, denominated Wiener matrix,28,29 W, and 
exploited it as a source of structural invariants, useful in QSPR/QSAR. For trees, the non-
diagonal entries in such a matrix are defined as: 
 
 [We/p]ij = Ni,e/p Nj,e/p           (2.23) 
 
where Ni  and Nj denote the number of vertices lying on the two sides of the edge/path, e/p 
(having i and j as endpoints). The diagonal entries are zero.  

Eq. 2.23 defines just the edge/path contributions to a global index: it is the 
Wiener number,30 W, when defined on edge, (i.e., (i,j)∈E(G)) and hyper-Wiener number,31 
WW, when defined on path (i.e., (i,j )∈P(G)) - see Chap. Topological Indices). 
 Wiener matrices are illustrated in Figure 2.10, for the graph G2.10. We is an 
adjacency matrix weighted by the number of external paths which include a given edge, e. 
Note that any topological index  defined on edge, can be written as a weighted adjacency 
matrix. 
 Wp allows the reconstruction of the original graph according to the Randic 
conjecture:29  "take a single line in Wp at once. Identify the largest entry [Wp]ij in that line 
and replace it by 1. After the completion of all lines, make the matrix symmetric. Thus 
results in the matrix A, from which the reconstruction is trivial". 

 

1
2

3
4

5
6

7

8
 

      We               Wp 

 1 2 3 4 5 6 7 8 RSi   1 2 3 4 5 6 7 8 RSi 
1 0 7 0 0 0 0 0 0 7  1 0 7 5 3 2 1 1 1 20 
2 7 0 15 0 0 0 7 0 29  2 7 0 15 9 6 3 7 3 50 
3 0 15 0 15 0 0 0 7 37  3 5 15 0 15 10 5 5 7 62 
4 0 0 15 0 12 0 0 0 27  4 3 9 15 0 12 6 3 3 51 
5 0 0 0 12 0 7 0 0 19  5 2 6 10 12 0 7 2 2 41 
6 0 0 0 0 7 0 0 0 7  6 1 3 5 6 7 0 1 1 24 
7 0 7 0 0 0 0 0 0 7  7 1 7 5 3 2 1 0 1 20 
8 0 0 7 0 0 0 0 0 7  8 1 3 7 3 2 1 1 0 18 

 
Figure 2.11. Wiener matrices for the graph G2.6 

G2.6 



Topological Matrices 23 

2.8.  SZEGED  MATRICES 

 
 Since the Wiener matrix is not defined in cyclic structures, (see eq 2.23) 
Gutman32 has changed the meaning of Ni and Nj as follows: 
 
 ni,e/p  = {vv∈V(G);  div < djv}        (2.24) 
 nj,e/p  = {vv∈V(G);  djv < div}        (2.25)  
 
 Thus, ni,e/p  and nj,e/p denote the cardinality of the sets of vertices lying closer to i 
and to j; vertices equidistant to i and j are not counted. These quantities are the ground for 
the novel invariant, called the Szeged index32-38 (see Chap. 5). 

Consequently, eq 2.23 can be re-written as: 
 
[SZDe/p]ij = ni,e/p nj,e/p             (2.26) 

 
where [SZDe/p]ij are the non-diagonal entries in the new matrices, called the Szeged-
Distance matrices,33 edge-defined (i.e., (i,j )∈E (G )), SZDe, or path-defined, (i.e., (i,j ) ∈ 
P(G )), SZDp. The diagonal entries in these matrices are zero. Figure 2.12 illustrates the 
Szeged-Distance matrices for G2.6 (acyclic) and G2.12 (cyclic). 
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                     SZDe(G2.6)     SZDe(G2.12) 

 1 2 3 4 5 6 7 8 RSi   1 2 3 4 5 6 7 8 
1 0 7 0 0 0 0 0 0 7  1 0 7 0 0 0 0 0 0 
2 7 0 15 0 0 0 7 0 29  2 7 0 12 0 0 0 0 6 
3 0 15 0 15 0 0 0 7 37  3 0 12 0 12 0 0 0 0 
4 0 0 15 0 12 0 0 0 27  4 0 0 12 0 12 0 8 0 
5 0 0 0 12 0 7 0 0 19  5 0 0 0 12 0 7 0 0 
6 0 0 0 0 7 0 0 0 7  6 0 0 0 0 7 0 0 0 
7 0 7 0 0 0 0 0 0 7  7 0 0 0 8 0 0 0 12 
8 0 0 7 0 0 0 0 0 7  8 0 6 0 0 0 0 12 0 

 
            SZDp(G2.6)                                 SZDp(G2.12) 

 1 2 3 4 5 6 7 8 RSi   1 2 3 4 5 6 7 8 
1 0 7 5 15 9 15 1 15 67  1 0 7 5 10 12 12 10 5 
2 7 0 15 9 15 10 7 3 66  2 7 0 12 8 12 10 12 6 
3 5 15 0 15 10 12 5 7 69  3 5 12 0 12 8 12 6 8 
4 15 9 15 0 12 6 15 3 75  4 10 8 12 0 12 6 8 12 
5 9 15 10 12 0 7 9 15 87  5 12 12 8 12 0 7 8 12 
6 15 10 12 6 7 0 15 10 85  6 12 10 12 6 7 0 12 10 
7 1 7 5 15 9 15 0 15 67  7 10 12 6 8 8 12 0 12 
8 15 3 7 3 15 10 15 0 68  8 5 6 8 12 12 10 12 0 
                    

Figure 2.12. Szeged-distance matrice 

G2.6 G2.12 
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Usually, a path (i,j) is characterized by its endpoints i and j, namely, by their 
associated numbers. In Wiener matrices a path is characterized by the numbers Ni and Nj 
(see above). Now, let renounce to the characterization of j and build up a square matrix 
whose entries look at a single endpoint, i. According to this pr inciple, referred to as the 
principle of unsymmetric characterization of a path ,39-41 a new matrix, called the 
unsymmetric Szeged matrix , USZ , was constructed. The entries [UM]ij, M = SZD 

(Szeged-Distance - eq 2.28) and SZ∆ (Szeged-Detour - eq 2.29), are defined as:   
 

 ),(,][ jiiij n=UM            (2.27) 

 }{ jvivjii ddGVvvn <∈= );(),(,          (2.28) 

 }{ jvivjii GVvvn δδ <∈= );(),(,         (2.29) 

 
The diagonal entries in these matrices are zero. Note that the symbol ni,(i,j) recall 

the path (i,j) but the quantity given by eq  2.28 is identical to ni,e/p  , eq 2.24.   Figure 2.13 
illustrates the unsymmetric Szeged matrices for the graph G2.13 
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                            USZD(G2.13)                   USZ∆(G2.13) 
 

 
 
 
 
 
 
 

 
 
          Figure 2.13. Unsymmetric Szeged  matrices for the graph G2.13  

 
 

G2.13  

   1    2     3     4    5     6    7    8  
1    0     4     3     4    2     5    5    5    
2    4     0     4     2    4     3    3    4     
3    3    4      0     4    3    4    4     7     
4    4    2      4     0    4    3    3    4     
5    2    4      3     4    0    5    5    5     
6    3    2      4     2    3    0    1    4     
7    3    2      4     2    3    1    0    4     
8    3    1      1     1    3    2    2    0    
 

           1    2    3    4    5    6    7    8 
    1     0    6    2    6    2    7    7    6     
    2     2    0    3    2    2    3    3    3      
    3     2    5    0    5    2    7    7    7      
    4     2    2    3    0    2    3    3    3      
    5     2    6    2    6    0    7    7    6      
    6     1    1    1    1    1    0    1    1     
    7     1    1    1    1    1    1    0    1      
    8     2    2    1    2    2    2    2    0 
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These matrices can be symmetrized by the procedure 
 

SMp   = UM  • (UM)T           (2.30) 

SMe   = SMp • A           (2.31) 
 

where A is the adjacency matrix. The symbol • indicates the Hadamard (pairwise) matrix  
product42  (i.e., [Ma • Mb]ij = [Ma]ij [Mb]ij ).  For the symmetric matrices, the letter S is 
usually missing.  

Two indices are calculated33, 40, 43 on the  Szeged matrices, M, M = SZD; SZ∆   
 

∑∑ === e jiije ije UMIEMIE ][][)(2][)( UMUMM        (2.32)

  

∑∑ === p ijijp ijp UMIPMIP ][][)(2][)( UMUMM        (2.33) 

 

where summation goes over all edges, e, (resulting an index) and over all paths, p, 
(resulting a hyper-index)33 respectively. The symbol varies by the operator used and by 
the type of matrix: symmetric or unsymmetric (see Sect. 6.1). It is obvious that I(M} = 
I2(UM). Note that IE(SZD) means the classical Szeged index, symbolized Sz by Gutman.  

 
 

 
2.9.  PATH  MATRIX  P 

 
 

Randic 44 defined the entries in the P matrix as the quotient between the number of 
paths P' in a subgraph, G' = G-(i,j), (resulted by cutting the edge (i,j) from the graph G), 
to the number of paths P in G 

 
 

[ ]




∉=

∈≠
=

)(),(orif0

)(),(andif/'

GEjiji

GEjijiPP ij
ijP                                             (2.34)

  

 
When the subgraph G - (i,j) is disconnected, then the contributions for each 

component are added. This matrix is illustrated in Figure 2.14.  The index calculated on 
this matrix is called the P'/P index. By a similar procedure, Randic et al.45 defined the 
graphical bond order related to a certain graph invariant (see Chap. Topological Indices). 
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P(G2.14) 

 1 2 3 4 5 6 7 8 
1 0 55/95 0 0 0 55/95 0 0 
2 55/95 0 50/95 0 0 0 0 53/95 
3 0 50/95 0 52/95 0 0 0 0 
4 0 0 52/95 0 52/95 0 0 0 
5 0 0 0 52/95 0 50/95 0 0 
6 55/95 0 0 0 50/95 0 53/95 0 
7 0 0 0 0 0 53/95 0 54/95 
8 0 53/95 0 0 0 0 54/95 0 

 

Figure 2.14. Path matrix for the graph G2.14 

 

 
 

2.10.  HOSOYA  MATRIX 
 
 
 

Randic 46 introduced the Hosoya matrix  by an analogue cutting procedure. He 
calculated the Hosoya number,47 Z, on the spanning subgraph G - (i,j) of a tree 

 





=
≠∈−

=
ji

jiGPjijiGZ
ij if0

if)(),(;)),((
][Z         (2.35) 

 
The Z number counts the modes of selecting k  edges in a graph such that they are 

non-adjacent to each other (i.e., the number of k-matching of G - see Chap. Topological 
Indices). The matrix is illustrated in Figure 2.5 for the graph G2.15.  

 
 

G2.14 
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       Z (G2.15) 
        

 

 
 

 
 
 
 

(i,j) G-(i,j) Non-adjacent two edge selections (k = 2) Z(G-(i,j)) 

  

  

(2,3) 

1
2

6 7

5
4

3
 

  

1(0)+5(1)+6(2)=12 

  

(2,4) 

1
2

6

3
4

5

7

 

  

1(0)+4(1)+4(2)=9 

(2,5) 

1
2

6

3
4

7

5
 

  

1(0)+3(1)+2(2)=6 

 

Figure 2.15. Construction of Hosoya matrix, Z, for the graph G2.15 

 

The Z matrix and the path numbers, calculated on it, were further generalized for 

cycle-containing graphs as well as for edge-weighted molecular graphs.48,49 

G2.15 

 1 2 3 4 5 6 7 
1 0    11 8 6 4 7 4 
2 11 0 12 9 6 11 6 
3 8 12 0 12 8 8 8 
4 6 9 12 0 11 6 11 
5 4 6 8 11 0 4 7 
6 7 11 8 6 4 0 4 
7 4 6 8 11 7 4 0 
 

2

6

1
4

7

53
 



M. V. Diudea, I. Gutman and L. Jantschi 28 

2.11. CLUJ  MATRICES 
 
 

2.11.1. CJ Matrices  
 

            The unsymmetric Cluj matrix , UCJ , has been recently proposed by Diudea.39-

41,43,50  It is defined by  using either the distance or the detour concept: The non-diagonal 

entries,  [UM]ij  , M = CJD (Cluj-Distance) or CJ∆ (Cluj-Detour), are defined as:  

 

 kpji
kij Vmax ,,

,...2,1
][

=
=UM                                 (2.36) 

{
} ,...2,1,;)(or)(

};{),(;);(

=∆∈

=<∈=

khGGDp

ipviddGVvv

k

khjvivkpj,i,V I
                    (2.37) 

 

 

where    kpjiV ,,  is the cardina lity of the set 
kpj,i,V , which is taken as the maximum over 

all paths pk = (i,j)k . )(GD  and )(G∆  are the sets of distances (i.e., geodesics) and 
detours (i.e., elongations), respectively . 
 The set  kpj,i,V  consists of  vertices v lying closer to the vertex i (condition div < 

djv). This variant of Cluj matrices is called51 at least one path external to the path (i,j), 
since at least one of the paths (v,i)h must be external with respect to the path  (i,j)k : 

}{),( ipvi kh =I . In cycle-containing structures, more than one path (i,j)k  may exist, thus 

supplying  various sets 
kpj,i,V . By definition, the (i,j)-entry in the Cluj matrices is taken 

as max | kpjiV ,, |. The diagonal entries are zero. For paths  (i,v)h no other restriction is 

imposed.  The above definitions hold for any connected graph. The Cluj matrices are 
square arrays, of dimension NxN, usually unsymmetric (excepting some symmetric 
regular graphs). They can be symmetrized cf. eqs 2.30 and 2.31. Figure 2.16 illustrates 
these matrices for the graphs G2.6 and G2.16. 
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     UCJD(G2.6)                                UCJ∆( G2.16) 

 1 2 3 4 5 6 7 8 RS(We)   1 2 3 4 5 6 7 8 9 10 
1 0 1 1 1 1 1 1 1 7  1 0 1 1 2 2 1 1 2 1 1 
2 7 0 3 3 3 3 7 3 29  2 1 0 1 1 2 2 2 3 3 1 
3 5 5 0 5 5 5 5 7 37  3 1 1 0 1 1 3 3 2 2 2 
4 3 3 3 0 6 6 3 3 27  4 2 1 1 0 1 1 2 1 1 2 
5 2 2 2 2 0 7 2 2 19  5 2 2 1 1 0 1 1 2 2 3 
6 1 1 1 1 1 0 1 1 7  6 1 1 2 1 1 0 1 1 2 2 
7 1 1 1 1 1 1 0 1 7  7 2 2 3 3 1 1 0 1 1 2 
8 1 1 1 1 1 1 1 0 7  8 3 3 2 2 2 1 1 0 1 1 

CS(De) 20 14 12 14 18 24 20 18   9 1 2 1 1 2 2 1 1 0 1 
           10 1 1 2 2 3 2 2 1 1 0 

 

Figure 2.16. Unsymmetric Cluj matrices for the graphs G2.6 and G2.16. 
 

 

It is obvious that, in trees, UCJD is identical to UCJ∆, due to the uniqueness of 
the path joining a pair of vertices (i,j). 

 In trees, UCJD matrix shows an interesting property:  

 
RS(UCJD) = RS(We)          (2.38) 

CS(UCJD) = CS(De)           (2.39) 

 

Thus, UCJD contains some information included in both We and De matrices. The half 
sum of entries in all the three matrices equal the Wiener index (see Chap. Topological 
Indices): 
 

∑ ∑∑ ∑∑ ∑ ==== i j ijei j ijei j ij WUCJDIP ][)2/1(][)2/1(][)2/1()( DWUCJD  

                                                                                                                                       (2.40) 

 

G2.6 G2.16 
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Note that the operator )(MIP , (meaning the half sum of entries in a square 

matrix), as well as )(2 MIE  and )(2 MIP  (see eqs 2.32 and 2.33) may be calculated both 

for symmetric and unsymmetric matrices. When the last two operators are calculated on a 
symmetric matrix, the terms of sum represent squared entries in that matrix. This is the 
reason for the number 2 in the symbol of these operators. Only in trees, and only for Cluj 
distance indices, 

 

 )()(2 UMIPUMIE =            (2.41) 

  

 
2.11.2. CF Matrices 

It happens that 
kpj,i,V be sets of disconnected vertices. This fact is undesirable 

when molecular graphs (which are always connected graphs) are investigated. If 
kpj,i,V  

real (connected) chemical fragments are wanted, the Cluj fragmental matrices52 are 
defined. In this version, the sets 

kpj,i,V  are defined as  

 

{ })(or)(;)()(;;)(,, GGDpGdGdpGGGVvvV kpjvpivkpppji k
∆∈<−=∈=        (2.42) 

where div(Gp) and djv(Gp) are the topological distances between a vertex v and vertices i 
and j, respectively, in the spanning subgraph  Gp resulted by cutting the path pk = (i,j)k 
(except its endpoints) from G.  
 The set  kpj,i,V  consists now of  vertices lying closer to the vertex i in Gp. This 

version is called50  all paths  external to the path   (i,j)k , by reason that all paths (i,v)h , h = 
1,2,... (see eq 2.37) are external with respect to  pk , since the last path was already cut off. 
The diagonal entries are zero.  
 When pk ∈ )(GD , then Cluj Fragmental Distance matrix, CFD, is defined; in 

case pk ∈ )(G∆ , the matrix is Cluj Fragmental Detour, CF∆. The entries [UM]ij  , M = 

CFD ; CF∆  represent connected subgraphs, both in Gp  and G.  
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Theorem 2.1. 
 
 For any i, j ∈ V(G), and for any path joining i and j, pi,j ∈ Pi,j(G), the Cluj 
Fragment, CFi (Gp) ≡ 

kpj,i,V  (cf. eq. 2.42)  , is a fragment (i.e., connected subgraph). 

 
Demonstration: 
  Let v ∈ CFi(Gp), involving div(Gp) < djv(Gp) (Szeged-Cluj criterion). It follows 
that div is finite and a shortest path joining i and v , piv ∈ Piv(Gp) may exist (for simplicity 
Gp is hereafter missing). 

 For any vertex k  lying on that path, k  ∈ piv, we have to prove that dik < djk and 
(cf. criterion) k  ∈ CFi and CFi is connected. 

From k  ∈ piv, it follows that there exists a path joining k  and i, pik ∈ Pik, such that 
pik ⊆ piv and a path joining k  and v, pkv ∈ Pkv with pkv ⊆ piv. It is immediate that piv = pik 
∪ pkv. Since piv is a geodesic it follows that it is a sum of geodesics. Thus, we can write 
div  = dik   + dkv. 

Case 1: djv is finite (Gp is connected). There exists a path pjv, which is the shortest 
path joining v and j such that djv  ≤  djk   + dkv (d is a metric) and, from hypothesis,  

 
 dik    +  dkv  =  div  < djv  ≤  djk   + dkv            (2.43) 

 
following that dik <  djk,  k ∈ CFi and CFi is connected. 

 
Case 2: djv is infinite (Gp is disconnected). There is no path pjv, to join j and v. 

The following relations hold 
 
dik  =  div - dkv < ∞  -  dkv < ∞         (2.44) 

djk  ≥  djv - dkv ≥  ∞  -  dkv = ∞                     (2.45) 
 
It is immediate that dik < djk,  k  ∈ CFi and CFi is connected. 

The Cluj matrices, UCJDp, UCFDp, UCJ∆p and UCF∆ p, for the graph G2.17 are 
illustrated in Figure 2.17 along with the corresponding fragmentation. A disconnected 
subgraph, CJDi is herein encountered. 
 In acyclic structures, CJDe = CFDe = SZDe = We  and CJDp = CFDp = Wp. In 
cyclic graphs, CJDe = CFDe = SZDe while CJDp ≠ CFDp ≠ SZDp , CJ∆p ≠ CF∆p ≠ SZ∆p 
and We/p are not defined. Relationships between the corresponding indices will be 
discussed in the Chap. Cluj Indices. 
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            UCJD (G2.17  ) 
 
 
 
 
 
 
 
 
 
 
 

                     UCFD (G2.17 ) 
    

 
 
 
 

 

 

 
 
            CJDi            CFDi 
( 2, 8), [ 2, 4, 7, 6, 8], 
   { 2, 1, 5}(disconnected) 

( 2, 8), [ 2, 1, 3, 6, 8], 
   { 2, 4, 5} 

( 8, 2), [ 8, 6, 3, 1, 2], { 8} 

( 8, 2), [ 8, 6, 7, 4, 2], { 8} 
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( 2, 8), [ 2, 4, 7, 6, 8], 
     { 2,1, 3, 5} 

( 2, 8,) [ 2, 1, 3, 6, 8], 
     { 2, 4, 5, 7} 

( 8, 2), [ 8, 6, 3, 1, 2], 
     { 8} 

( 8, 2), [ 8, 6, 7, 4, 2], 
     { 8} 
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Figure 2.17.Unsymmetric Cluj matrices and fragmentation for the graph G2.17. 
 
 
 
 An interesting property is shown by the detour-based matrices: CJ∆p and CF∆p. 
Let consider the vertices 8 (of degree 1) and 5 (of degree 2) in G2.17, Figure 2.17. The 
vertex 8 is an external vertex (with a terminal path ending in it) while the vertex 5 is an 
internal one (usually a terminal path not ending in it). An external vertex, like 8, shows all 
its entries in the Cluj matrices equal to 1 (see Figure 2.17). The same entries are shown by 
the internal vertex 5.  

G2.17 

 1 2 3 4 5 6 7 8 
1 0 4 2 2 2 2 3 5 
2 3 0 2 2 2 3 2 4 
3 5 4 0 4 4 4 3 6 
4 3 5 3 0 3 3 4 5 
5 5 5 2 2 0 4 4 5 
6 3 4 3 3 3 0 4 7 
7 3 3 2 3 3 3 0 6 
8 1 1 1 1 1 1 1 0 

 

 1 2 3 4 5 6 7 8 
1 0 4 2 2 2 2 2 4 
2 3 0 2 2 2 2 2 3 
3 5 4 0 4 4 4 3 5 
4 3 5 3 0 3 3 4 4 
5 3 4 2 2 0 3 3 4 
6 3 3 3 3 3 0 4 7 
7 3 3 2 3 3 3 0 4 
8 1 1 1 1 1 1 1 0 
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UCJ∆ (G2.17) 

 
 
 
 
 
 
 
 
 
 
 
 

                     UCF∆(G2.17) 
    

 
 
 
 

 

  
 

 CJ∆ i  CF∆ i 

(3, 5),  [3,1,2,4,5], 
   {3,6,8} 

(3, 5),  [3,6,7,4,5], 
   {3,1} 

(5, 3),  [5,4,2,1,3], 
   {5} 

(5, 3),  [5,4,7,6,3], 
   {5} 
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(3, 5),  [3,1,2,4,5], 
   {3,6,7,8} 

(3, 5),  [3,6,7,4,5], 
   {3,1,2} 

(5, 3),  [5,4,2,1,3], 
   {5} 

(5, 3),  [5,4,7,6,3], 
   {5} 
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Figure 2.17. (continued). 
 
 
 
 
This unusual property is called the internal ending of all detours joining a vertex i and the 
remaining vertices in G. Such a vertex is called an internal endpoint.50 There exist graphs 
with all the vertices internal endpoints and their detours are Hamiltonian paths now. This 
kind of graph we call the full Hamiltonian detour graph, FH∆ (see Chap. 8). 
 
 
 
 
 
 
 

 1 2 3 4 5 6 7 8 
1 0 1 1 1 1 2 1 2 
2 1 0 1 1 1 1 2 1 
3 2 2 0 3 4 2 2 2 
4 2 2 2 0 4 2 2 3 
5 1 1 1 1 0 1 1 1 
6 3 2 2 2 2 0 2 7 
7 1 3 1 1 1 1 0 1 
8 1 1 1 1 1 1 1 0 

 

 1 2 3 4 5 6 7 8 
1 0 1 1 1 1 2 1 2 
2 1 0 1 1 1 1 2 1 
3 2 2 0 3 3 2 2 2 
4 2 2 2 0 2 2 2 3 
5 1 1 1 1 0 1 1 1 
6 3 2 2 2 2 0 2 7 
7 1 3 1 1 1 1 0 1 
8 1 1 1 1 1 1 1 0 
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2.12.  DISTANCE  EXTENDED  MATRICES 
 

 Tratch et al.53 have proposed an extended distance matrix , E, whose entries are 
the product of the entries in the De matrix and a multiplier, mij , which is the number of 
paths in the  graph of which path (i,j) is a subgraph. In acyclic structures, it equals the 
entries in the Wiener matrix Wp, so that E is further referred to as D_Wp matrix 
 
 [D_Wp]ij = [De]ij mij = [De]ij [Wp]ij = dij Ni Nj       (2.46) 
 
where dij  is the topological distance between i and j and  Ni , Nj  have the same meaning 
as in case of the Wiener matrix (see above). The D_Wp matrix is just the Hadamard 
product42  of the De and Wp  matrices. The half sum  of its entries gives an expanded 
Wiener number.28,53 Figure 2.18 illustrates this matrix for the graph G2.6.  
 

1
2

3
4

5
6

7

8
 

 

  D_Wp(G2.6)                                                D_UCJD( G2.6) 

 1 2 3 4 5 6 7 8 RSi   1 2 3 4 5 6 7 8 RSi(Wp) 
1 0 7 10 9 8 5 2 3 44  1 0 1 2 3 4 5 2 3 20 
2 7 0 15 18 18 12 7 6 83  2 7 0 3 6 9 12 7 6 50 
3 10 15 0 15 20 15 10 7 92  3 10 5 0 5 10 15 10 7 62 
4 9 18 15 0 12 12 9 6 81  4 9 6 3 0 6 12 9 6 51 
5 8 18 20 12 0 7 8 6 79  5 8 6 4 2 0 7 8 6 41 
6 5 12 15 12 7 0 5 4 60  6 5 4 3 2 1 0 5 4 24 
7 2 7 10 9 8 5 0 3 44  7 2 1 2 3 4 5 0 3 20 
8 3 6 7 6 6 4 3 0 35  8 3 2 1 2 3 4 3 0 18 
CSi 44 83 92 81 79 60 44 35  CSi(Dp) 44 25 18 23 37 60 44 35  

   

Figure 2.18. Distance-extended matrices, for the graph G2.6. 
 
 
 Similarly, Diudea39 has performed the Hadamard product De • UCJD 
 
 [D_UCJD]ij  = [De]ij [UCJD]ij  = dij Ni,(ij)        (2.47) 
 
This matrix (illustrated in Figure 2.18 for the graph G2.6) shows, in trees, the equalities 

 CS(D_UCJD) = CS(Dp)          (2.48) 

 RS(D_UCJD)  = RS(Wp)          (2.49) 

G2.6 
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Thus, IP(D_UCJD) calculates the hyper-Wiener index (as the half sum of its 
entries). The D_UCJD matrix is a direct proof of the finding27 that the sum of all internal 
paths (given by Dp) equals the sum of all external paths (given by Wp) with respect to all 
pairs (i,j) in a graph.  The  matrix D_UCJD  offers a new definition of the hyper-
Wiener number (see Chap. Topological Indices and eq 2.47). Various other combinations: 
D_M or ∆_M, M being a symmetric or unsymmetric square matrix, were performed in 
trees or in cycle-containing graphs, by  means of the CLUJ software program. 

Similarly, a 3D-extension39
 (e.g., by using the geometric matrix, G) allows the 

construction of various 3D-distance extended matrices, such as G_UCJD (see Figure 
2.19). They can offer 3D- sensitive indices. 

 

1
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3
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    UCJD(G2.18)      G(G2.18)    

 1 2 3 4 5 6 7   1 2 3 4 5 6 7 
1 0 1 1 1 1 1 1  1 0.0000 1.5414 2.5709 3.9411 4.5163 2.5178 3.0305 
2 6 0 3 3 3 6 3  2 1.5414 0.0000 1.5543 2.5634 3.0891 1.5388 2.5821 
3 4 4 0 5 5 4 6  3 2.5709 1.5543 0.0000 1.5468 2.5852 2.5930 1.5395 
4 2 2 2 0 6 2 2  4 3.9411 2.5634 1.5468 0.0000 1.5364 3.0398 2.5461 
5 1 1 1 1 0 1 1  5 4.5163 3.0891 2.5852 1.5364 0.0000 3.6199 3.9326 
6 1 1 1 1 1 0 1  6 2.5178 1.5388 2.5930 3.0398 3.6199 0.0000 3.2366 
7 1 1 1 1 1 1 0  7 3.0305 2.5821 1.5395 2.5461 3.9326 3.2366 0.0000 

  
 
 

 
   G_UCJD(G2.18) 

   
 
 
 
 
 
 
 
 
 
 

Figure 2.19. 3D-Distance-extended Cluj matrix for the graph G2.18. 

 1 2 3 4 5 6 7 
1 0.0000 1.5414 2.5709 3.9411 4.5163 2.5178 3.0305 
2 9.2484 0.0000 4.6629 7.6902 9.2673 9.2328 7.7463 
3 10.2836 6.2172 0.0000 7.7340 12.9260 10.3720 9.2370 
4 7.8822 5.1268 3.0936 0.0000 9.2184 6.0796 5.0922 
5 
 

4.5163 3.0891 2.5852 1.5364 0.0000 3.6199 3.9326 
6 2.5178 1.5388 2.5930 3.0398 3.6199 0.0000 3.2366 
7 3.0305 2.5821 1.5395 2.5461 3.9326 3.2366 0.0000 

 

G2.18 
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2.13.  RECIPROCAL  MATRICES 
 
 

 In chemical graph theory, the distance matrix accounts for the through bond 
interactions of atoms in molecules. However, these interactions decrease as the distance 
between atoms increases. This reason lead to the introduction, in 1993, by the group of 
Balaban54 and Trinajstic,55  respectively, of the reciprocal distance matrix, RDe. The 
entries in this matrix are defined by 
 
 [RDe]ij  = 1 / [De]ij           (2.50)  
 
 RDe matrix allows the calculation of a Wiener number analogue, called the 
Harary index55  (see Chap. Topological Indices), in the honor of Frank Harary.  
 Since topological matrices are considered natural sources in deriving graph 
descriptors,2,28,29 some other matrices having entries as reciprocal (topological) property : 
[RM]ij = 1/[M]ij; M = We/p , Dp, USZD   and UCJD have been recently proposed by 
Diudea,56  as a ground for new Harary-type indices (see Chap. Topological Indices). 
Figure 2.20. illustrates some reciprocal property matrices, for the graph G2.8. 
 

2

3 4

1

5
6

 
 
   
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.20. Reciprocal matrices for the graph G2.8. 

G2.8 

    RDe (G 2.8) 

 1 2 3 4 5 6 
1 0 1 1/2 1/2 1/3 1/4 
2 1 0 1 1 1/2 1/3 
3 1/2 1 0 1 1/2 1/3 
4 1/2 1 1 0 1 1/2 
5 1/3 1/2 1/2 1 0 1 
6 1/4 1/3 1/3 1/2 1 0 

 

    RDp (G 2.8) 

 1 2 3 4 5 6 
1 0 1 1/3 1/3 1/6 1/10 
2 1 0 1 1 1/3 1/6 
3 1/3 1 0 1 1/3 1/6 
4 1/3 1 1 0 1 1/3 
5 1/6 1/3 1/3 1 0 1 
6 1/10 1/6 1/6 1/3 1 0 

       RUSZD (G 2.8) 

 1 2 3 4 5 6 
1 0 1 1 1 1/2 1/3 
2 1/5 0 1/2 1/2 1/3 1/4 
3 1/4 1 0 1 1/3 1/4 
4 1/4 1/3 1/3 0 1/4 1/4 
5 1/3 1/2 1/2 1/2 0 1/5 
6 1/2 1/2 1/2 1 1 0 

 

 
          RUCJD (G 2.8) 

 1 2 3 4 5 6 
1 0 1 1 1 1 1 
2 1/5 0 1/2 1/2 1/3 1/3 
3 1/4 1 0 1 1/3 1/3 
4 1/4 1/3 1/3 0 1/4 1/4 
5 1/2 1/2 1/2 1/2 0 1/5 
6 1 1 1 1 1 0 
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2.14.  WALK  MATRICES 
 
 
 Diudea [96Diu1] has recently proposed the walk matrix ,18,57 W(M1,M2,M3), 
constructed by the principle of the single endpoint characterization of a path,18,58 

  

 iji
ij

ijiij RSWij ][)])(([][][ 3
]2[

13,1
]2[

)3,2,1( MMMW
M

M
M

MMM ==         (2.51) 

 
where  WM1,i  is the walk degree, of elongation [M2]ij , of the vertex i, weighted by the 
property collected in matrix M1 (i.e., the ith row sum of the matrix M1, raised  to power 
[M2]ij). The diagonal entries are zero. It is a square, (in general) non-symmetric matrix. 
This matrix, that mixes three square matrices, is a  true matrix operator (see below). 

Let, first, (M1, M2, M3) be (M1 , 1, 1), where 1 is the matrix with  the off-diagonal 
elements  equal  to  1.  In this case, the (i,j)-elements of matrix W(M1,1,1,) will be 

 

iiij WRS ,1),,( 11 )]([][ M11M MW ==          (2.52) 

 
 Next, consider the combination (M1, 1, M3); the corresponding walk matrix can 
be expressed as the Hadamard product 
 
 3)( 131 MWW ,1,1)(MM,1,M •=                       (2.53) 

 
Examples are given in Figure 2.21 for the Graph G2.18, in case: M1 = A and M3 = De. 
 
 

The sum of all entries in )( 31 M,1,MW  can be obtained by 

T
M1M

T
M1M )uMu(MWuuW 31),,(),,( )]([

3131
== ∑i iRS           (2.54) 

where u and uT are the unit vector  (of order N) and its transpose, respectively. The row 
sum vector in W(M1,1,M3)  can be achieved by the pairwise product of the row sums in M1 
and M3, respectively: 
 

iii RSRSRS )]([)]([)]([ 31),,( 31 MMW M1M =         (2.55) 

This vector represents a collection of pairwise products of local (topological) 
properties (encoded as corresponding row sums in M1 and M3 - see above). Eq 2.54 is a 
joint of the Cramer and Hadamard matrix algebra, by  means of W(M1,1,M3). 
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    A (G2.18)                   De (G2.18) 

 1 2 3 4 5 6 7 RSi   1 2 3 4 5 6 7 RSi 
1 0 1 0 0 0 0 0 1  1 0 1 2 3 4 2 3 15 
2 1 0 1 0 0 1 0 3  2 1 0 1 2 3 1 2 10 
3 0 1 0 1 0 0 1 3  3 2 1 0 1 2 2 1 9 
4 0 0 1 0 1 0 0 2  4 3 2 1 0 1 3 2 12 
5 0 0 0 1 0 0 0 1  5 4 3 2 1 0 4 3 17 
6 0 1 0 0 0 0 0 1  6 2 1 2 3 4 0 3 15 
7 0 0 1 0 0 0 0 1  7 3 2 1 2 3 3 0 14 

 
 

              W(A,1,1) (G2.18)         W(De,1,1) (G2.18) 

 1 2 3 4 5 6 7 RSi   1 2 3 4 5 6 7 RSi 

1 0 1 1 1 1 1 1 6  1 0 15 15 15 15 15 15 90 
2 3 0 3 3 3 3 3 18  2 10 0 10 10 10 10 10 60 
3 3 3 0 3 3 3 3 18  3 9 9 0 9 9 9 9 54 
4 2 2 2 0 2 2 2 12  4 12 12 12 0 12 12 12 72 
5 1 1 1 1 0 1 1 6  5 17 17 17 17 0 17 17 102 
6 1 1 1 1 1 0 1 6  6 15 15 15 15 15 0 15 90 
7 1 1 1 1 1 1 0 6  7 14 14 14 14 14 14 0 84 

  

          W(A,1,De) = W(A,1,1) • De       W(De,1,A) = W(De,1,1)  • A 
 1 2 3 4 5 6 7 k iRS(De)i   1 2 3 4 5 6 7 RS(De)ik i 

1 0 1 2 3 4 2 3 15  1 0 15 0 0 0 0 0 15 
2 3 0 3 6 9 3 6 30  2 10 0 10 0 0 10 0 30 
3 6 3 0 3 6 6 3 27  3 0 9 0 9 0 0 9 27 
4 6 4 2 0 2 6 4 24  4 0 0 12 0 12 0 0 24 
5 4 3 2 1 0 4 3 17  5 0 0 0 17 0 0 0 17 
6 2 1 2 3 4 0 3 15  6 0 15 0 0 0 0 0 15 
7 3 2 1 2 3 3 0 14  7 0 0 14 0 0 0 0 14 

CS(ADe)i 24 14 12 18 28 24 22 142 RS(ADe)i 10 39 36 26 12 10 9 142 

 

Figure 2.21.  W(M1,M2,M3) algebra for the graph G2.18 ( ki = deg i ). 
 

G2.18 G2.18{RS(De)i} 
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As walk numbers, eq 2.55 can be written 

iii WWW ,,, 31)3,,1( MMW M1M =        (2.56) 

        
When M1 = M3, then eq 2.56 becomes 

 iiii WWWW ,
2

,,,),,( MMMW M1M
==         (2.57) 

and, by extension 

 i
n

ii
n

i WWWW ,
)1(

,,,),,( MMMMnMW
+==                   (2.58) 

where n is the matrix having entries [n]ij and i
n W ,

)1(
M

+  means a (weighted) walk 

number, of length n+1. As global walk numbers, eq 2.58 can be written  
 

 M
TnT

MnMMnMW M)uu((M)uuW WW n )1(
),,(),,( 22 +===        (2.59) 

 
Eqs 2.54 and 2.59 prove that W(M1,M2,M3) is a true matrix operator. 

Figure 2.21 illustrates that the sum of entries in W(A,1,De) equals that in W(De,1,A). 

However, the two matrices are not identical. Only the vectors of their walk numbers (i.e., 
row sums) are identical. In this particular case, the walk numbers mean the local 
contributions to the degree-distance index of Dobrynin,59 reinvented by Estrada,60 or the 
non-trivial part of the Schultz index.61 In walk number symbols, the local index can be 
written as  

 
iiii eDeeD WWWW ,,,, ),,(),,( A11A WDAW ==        (2.60) 

The twin unsymmetric walk matrices (having reversed sequence M1,1,M3) show, 
thus, common  row sums but different column sums. However, the common point of these 
matrices is the Cramer product ADe (or in general, M1M3): 

 
CS(W(A,1,De) ) = CS(ADe)          (2.61) 

CS(W(De,1,A) ) = RS(ADe)         (2.62) 

 
A particular case of the walk matrix, RW(A,De,1) , (see also Sect. 2.13) is identical to the 
restricted random walk  matrix of Randic.62   
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2.15.  SCHULTZ  MATRICES 
 
 

 
The Schultz matrices, SCH(G) are related to the molecular topological index, 

MTI, or the Schultz index,61  (see Chap. Topological Indices). Diudea and Randic63 have 
extended the Schultz’s definition by using a combination of three square matrices, one of 
them being obligatory the adjacency matrix 

 

31131)3,,1( )( MMAMMAMSCH MAM +=+=        (2.63) 

 

 It is easily seen that SCH(A,A,De) is the matrix on which the Schultz original index 
can be calculated. Analogue Schultz matrices, of sequence: (De,A,De), (RDe,A,RDe) and  
(Wp,A,Wp) have been proposed and the corresponding indices tested for correlating 
ability.64-66   
 A Schultz-extended matrix is related to the walk matrix by57,63 
 

 T
M1M

T
A1M

T
MA1M

T
MAM uuWuuWuuWuuSCH

3 ),,(),,())(,,(),,( 311131
+== +       (2.64) 

 
 When one of the square matrices are unsymmetric, the resulting Schultz matrix 
will also be unsymmetric. Matrices W(M1,M2,M3) involved in the calculation of 

SCH(De,A,UCJD), for the graph G2.18 are illustrated in Figure 2.22. It can be seen that the 
sum of all entries in the walk matrix ))(,,( UCJDA1DW +e

 equals that in SCH(De,A,UCJD), 

calculated by Cramer algebra. 
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   UCJD      A + UCJD 

 1 2 3 4 5 6 7 RSi   1 2 3 4 5 6 7 RSi 
1 0 1 1 1 1 1 1 6  1 0 2 1 1 1 1 1 7 
2 6 0 3 3 3 6 3 24  2 7 0 4 3 3 7 3 27 
3 4 4 0 5 5 4 6 28  3 4 5 0 6 5 4 7 31 
4 2 2 2 0 6 2 2 16  4 2 2 3 0 7 2 2 18 
5 1 1 1 1 0 1 1 6  5 1 1 1 2 0 1 1 7 
6 1 1 1 1 1 0 1 6  6 1 2 1 1 1 0 1 7 
7 1 1 1 1 1 1 0 6  7 1 1 2 1 1 1 0 7 
        92          104 

 

 

              W(De,1,A)                           W(De,1,UCJD) 

 1 2 3 4 5 6 7 RSi   1 2 3 4 5 6 7 RSi 
1 0 15 0 0 0 0 0 15  1 0 15 15 15 15 15 15 90 
2 10 0 10 0 0 10 0 30  2 60 0 30 30 30 60 30 240 
3 0 9 0 9 0 0 9 27  3 36 36 0 45 45 36 54 252 
4 0 0 12 0 12 0 0 24  4 24 24 24 0 72 24 24 192 
5 0 0 0 17 0 0 0 17  5 17 17 17 17 0 17 17 102 
6 0 15 0 0 0 0 0 15  6 15 15 15 15 15 0 15 90 
7 0 0 14 0 0 0 0 14  7 14 14 14 14 14 14 14 0 
        142          1050 

 
 

               W(De,1,(A+UCJD))             SCH(De,A ,UCJD) 

 1 2 3 4 5 6 7 RSi   1 2 3 4 5 6 7 RSi 
1 0 30 15 15 15 15 15 105  1 30 27 25 28 39 28 29 206 
2 70 0 40 30 30 70 30 270  2 14 18 15 16 23 14 16 116 
3 36 45 0 54 45 36 63 279  3 14 13 15 12 15 14 11 94 
4 24 24 36 0 84 24 24 216  4 24 20 19 22 19 24 20 148 
5 17 17 17 34 0 17 17 119  5 38 31 29 32 37 38 33 238 
6 15 30 15 15 15 0 15 105  6 28 27 25 28 39 30 29 206 
7 14 14 28 14 14 14 0 98  7 28 24 23 24 31 28 26 184 
        1192          1192 

 

Figure 2.22. Walk and Schultz matrices for the graph G2.18. 
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2.16.  LAYER  AND  SEQUENCE  MATRICES 
 

 
 Layer matrices have  been proposed in connection to the sequences of walks: DDS 
(Distance Degree Sequence),67-70 PDS (Path Degree Sequence),71-74 and WS (Walk 
Sequence).1 They are built up on the layer partitions in a graph. 
 A layer partition G(i) with respect to the vertex i, in G, is defined as5,70,75 

 
 })(and],0[,)({)( jdvGveccjvGiG ivjij =⇔∈∈=        (2.65) 

 
where ecci is the eccentricity of i. Figure 2.23 illustrates the layer partitions for the graph 
G2.19. 
 

1
2

3 4
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1

5

3 4

3
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2

1

5

4 3 2

1

5

1

2

3

4

5

5

 

                  G2.19                         G2.19 ( 1,5 )          G2.19 ( 2 )       G2.19 ( 3 )         G2.19 ( 4 ) 

 
     G2.19 (1) = {(1), (2), (3,5), (4)} 

  G2.19 (2) = {(2), (1,3,5), (4)} 

  G2.19 (3) = {(3), (2,4), (1,5)} 

     G2.19 (4) = {(4), (3), (2), (1,5)} 

     G2.19 (5) = {(5), (2), (1,3), (4)} 

 

Figure 2.23. Layer partitions G(i) for the graph G2.19.  

 

 Let G(v)j be the j th layer of vertices v located at distance j, in the layer partition 
G(i): 
 

G(v)j = {vdiv = j}           (2.66) 
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1
2

3
4

5

6

7
          

                                

                                           
LC(G2.18)    LDS(G2.18) 

jj  00  11  22  33  44    00  11  22  33  44  
11  11  11  22  22  11    1155  1100  2244  2266  1177  
22  11  33  22  11  00    1100  3399  2266  1177  00  
33  11  33  33  00  00    99  3366  4477  00  00  
44  11  22  22  22  00    1122  2266  2244  3300  00  
55  11  11  11  22  22    1177  1122  99  2244  3300  
66  11  11  22  22  11    1155  1100  2244  2266  1177  
77  11  11  22  33  00    1144  99  2222  4477  00  

CC((G2.18 ))  ==  77  DDSS ((G2.18 ))  ==  9922  
  

1
3

3
2

1

1

1

3
5

6
4

2

3

3

5
12

12
8

4

5

6

12
22

26
16

8

12

12
 

    
       G2.18 {1Wi }          G2.18 {2Wi }                 G2.18 {3Wi}                  G2.18 {4Wi} 
 

 

 
       L1W(G2.18)                    L2W(G2.18)                 L3W(G2.18)                 L4W(G2.18) 

j 0 1 2 3 4  0 1 2 3 4  0 1 2 3 4  0 1 2 3 4 
1 1 3 4 3 1  3 5 9 7 2  5 12 17 14 4  12 22 38 28 8 
2 3 5 3 1 0  5 12 7 2 0  12 22 14 4 0  22 50 28 8 0 
3 3 6 3 0 0  6 12 8 0 0  12 26 14 0 0  26 50 32 0 0 
4 2 4 4 2 0  4 8 8 6 2  8 16 18 10 0  16 34 34 24 0 
5 1 2 3 4 2  2 4 6 8 6  4 8 12 18 10  8 16 26 34 24 
6 1 3 4 3 1  3 5 9 7 2  5 12 17 14 4  12 22 38 28 8 
7 1 3 5 3 0  3 6 9 8 0  6 12 20 14 0  12 26 38 32 0 

1W(G2.18) = 12  2W(G2.18) = 26  3W(G2.18) = 52  4W(G2.18) = 108 

 

Figure 2.24. Layer matrices for the graph G2.18. 
 

G2.18 
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The entries in a layer matrix, LLMM,, collect the property Mv (topological or chemical) for all 
vertices v belonging to the layer G(v)j  
 

 ∑
∈

=
jvGv

ij v
)(

][ MLM                             (2.67) 

 
The matrix LLMM can be written as 
  
  LLMM (G) = {  [[LLMM]ij ;  i ∈  V(G );  j ∈ [0, d(G )] }               (2.68) 
 
 
where d(G) is the diameter of the graph. The dimensions of such a matrix are Nx 
(d(G)+1). Figure 2.24 illustrates some layer matrices: LC (Layer of Cardinalities), LDS 
(Layer of Distance Sums) and LeW (Layer of Walk degrees, of length e), for the graph 
G2.18. 
 Some properties of LM mmaattrriicceess  aarree  ggiivveenn  bbeellooww ::  
  
((11))  TThhee  ssuumm  ooff  eennttrriieess  iinn  aannyy  rrooww  eeqquuaallss  tthhee  ssuumm  oonn  tthhee  ccoolluummnn  jj   ==  00  aanndd  eeqquuaallss  tthhee  
gglloobbaa ll  pprrooppeerrttyy  MM ((GG))..  WWhheenn  tthhiiss  pprrooppeerrttyy  iinnvvoollvveess  eeddggeess  ((ee..gg.. ,,  aa  wwaallkk))  tthhee  qquuaannttiitt yy  MM ((GG))  

mmuusstt  bbee  ddiivviiddeedd  bbyy  22  ffoorr  bbeeiinngg  eeqquuiivvaa lleenntt  ttoo  tthhee  wwaallkk  nnuummbbeerrss,,  eeWWMM  

  

  ∑∑jj  [[LLMM ]]iijj    ==  ∑∑ii  [[LLMM ]]ii00   ==  MM  ((GG  ))                  ((22..6699))  

  
(2) The entries in the column j = 1 of matrix LeW become the entries in the column j = 0 
of the matrix Le+1W 
 
 [[LeW]]ii11     ==  [[Le+1W]]ii00                         ((22..7700)) 

 
 The above relation is valid for any graph, excepting the multigraphs. It represents 
the essence of the eWM algorithm (see Sect. 2.1) and also of the Morgan algorithm.76  
 
(3) The LC matrix (layer matrix of cardinalities) counts vertices lying on concentric 
layers/shells around each vertex i ∈V(G). Thus, the property Mv = 1 (i.e., the cardinality) 
and: 

  ∑∑jj  [[LC]]iijj    ==  ∑∑ii  [[LC]]ii00  ==  VV((GG  ))  ==  NN((GG  ))                ((22..7711))  
  

 ∑∑jj  [[LC]]ii11  ==  22EE((GG  ))==  22  QQ((GG  ))                    ((22..7722))      
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2

3
4

5

6
1

9

8

7

 
 

 

SAP(G2.20)               SCy(G2.20) 

j 1 2 3 4 5 6 7 8  1-3 4 5 6 7 8 9 
1 3 5 7 6 7 5 3 3  0 2 0 1 1 0 1 
2 2 3 6 8 10 8 7 4  0 1 0 1 0 0 1 
3 2 3 6 8 10 8 7 4  0 1 0 1 0 0 1 
4 3 5 7 6 7 5 3 3  0 2 0 1 1 0 1 
5 3 5 7 7 5 4 3 3  0 1 1 1 1 0 1 
6 3 5 7 7 5 4 3 3  0 1 1 1 1 0 1 
7 2 3 5 8 8 9 5 4  0 0 1 0 1 0 1 
8 2 2 4 8 10 10 6 2  0 0 1 0 1 0 1 
9 2 3 5 8 8 9 5 4  0 0 1 0 1 0 1 

                  APS = 11.17.27.33.35.31.21.15         CyS = 0.0.0.2.1.1.1.0.1 
 

SDD (G2.20)          SSP(G2.20) 

j 1 2 3 4 5-8  1 2 3 4 5-8 
1 3 3 2 0 0  3 5 3 0 0 
2 2 2 2 2 0  2 3 4 4 0 
3 2 2 2 2 0  2 3 4 4 0 
4 3 3 2 0 0  3 5 3 0 0 
5 3 4 1 0 0  3 5 3 0 0 
6 3 4 1 0 0  3 5 3 0 0 
7 2 3 2 1 0  2 3 3 3 0 
8 2 2 2 2 0  2 2 2 2 0 
9 2 3 2 1 0  2 3 3 3 0 

      DDS = 11.13.8.4.0.0.0.0   SPS = 11.17.14.8.0.0.0.0 
 

               S∆D (G2.20)         SLP(G2.20) 

j 1-4 5 6 7 8  1-4 5 6 7 8 
1 0 1 1 3 3  0 1 1 3 3 
2 0 0 0 4 4  0 0 0 7 4 
3 0 0 0 4 4  0 0 0 7 4 
4 0 1 1 3 3  0 1 1 3 3 
5 0 2 1 2 3  0 2 1 3 3 
6 0 2 1 2 3  0 2 1 3 3 
7 0 0 1 3 4  0 0 1 5 4 
8 0 0 0 6 2  0 0 0 6 2 
9 0 0 1 3 4  0 0 1 5 4 

   ∆DS =  0.0.0.0.3.3.15.15             LPS  = 0.0.0.0.3.3.21.15 
 

Figure 2.25. Sequence matrices and their spectra for the graph G2.20. 

G2.20 
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In fact this matrix follows just the layer partitions in G. The LC matrix can be viewed as a 
collection of distance degree sequences,67-70 DDSi (i.e., the number of vertices lying at the 
distance j form the vertex i - see below).  
 
 A sequence matrix,70,75 SM, is defined as 

 [SM]ij = no. of  M of length j traversing the vertex i       (2.73) 
 
where M stands for some topological quantities involving edges: (all) paths, shortest paths 
(i.e., distances), longest paths (i.e., detours), cycles, (see also Chap. 8) etc. 
  A global sequence of M, called the M sequence (i.e., spectrum), is derived from 
such matrices 
 

 NjfMS i ijj ,...,2,1;][ == ∑ SM          (2.74) 

where f is 1/2 for path-type sequences and 1/j for the cycle sequence. Eq 2.74 provides the 
global sequence DDS, from the sequence matrix of distance degrees, SDD, which is 
similar to LC, excepting the column j = 0 and the zero-columns j = d(G)+1, 
d(G)+2,...,d(G)+N. Thus, the LC matrix is the joint point of the LM and SM matrices. 
Figure 2.25 illustrates some sequence matrices and their spectra for the graph G2.20. 

The spectra of all paths, APS, of distance degrees, DDS, of shortest paths, SPS, 
of detour degrees, ∆DS, and of longest paths, LPS, are different from each other in cycle -
containing graphs but equal to each other in acyclic graphs, by virtue of the uniqueness of 
the path joining any two vertices. 
 Layer and sequence matrices can be represented in a line form.70 For the graph 
G2.18,  LC can be written as:  
 
  LC (G2.18) = { 1 (1,1,2,2,1) ; 2 (1,3,2,1) ; 3 (1,3,3) ; 4 (1,2,2,2); 5(1,1,1,2,2) 
                                     6(1,1,2,2,1); 7(1,1,2,3) }    

 
 A canonical form can be written: the rows are ordered in decreasing length, (as 
non zero elements) and, at the same length, in lexicographic ordering.70  
 Layer and sequence matrices are useful in studies of basic topological properties 
of the graphs as well as in calculating some topological indices (eg. indices of centrality 
and centrocomplexity - see Chap. Topological Indices).  
 

* * *  
 Other matrices. Any topological index, defined on edge, can be written as 
weighted adjacency matrix.8, 28, 31, 77-79  A resistance distance matrix was proposed by 
Klein et al.  80, 81 in connection with the electrical network theory. A topological state 
matrix, taking into account the paths and chemical identity of vertices was proposed by 
Hall and Kier.82 A series of matrices, considering the heteroatoms and stereochemistry 
was proposed by  Schultz et al.83-91 as extensions of the molecular topological index. 
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Chapter 3 

 
 
 

 POLYNOMIALS  IN  CHEMICAL  GRAPH  THEORY 
 

 

3.1.  INTRODUCTION 

 

Why Polynomials? 

            There are two main routes by which polynomials enter into chemical graph heory.   
First, in quantum chemistry, the (approximate) solution of the Schrödinger equation: 

 

jjj ?E?H ⋅=ˆ ,   j = 1, 2, 3, …,   (3.1) 

is usually reduced to the finding of eigenvalues and eigenvectors of the so-called 

Hamiltonian matrix (which, in turn, is the Hamiltonian operator Ĥ  represented within 
some finite vector basis). Now, if H is such a Hamiltonian matrix, then its eigenvalues are 
approximately equal to the energies E1, E2, E3,..., occurring in eq 3.1. These eigenvalues 
are the solutions of the so-called secular equation  
 

[ ] 0det =− HIe  (3.2) 

 

where I stands for the unit matrix of a pertinent order.  The left hand side of (3.2), namely 

[ ]HI −edet   (3.3) 

 
is just a polynomial in the indeterminate e. The degree of this polynomial (N) is equal to 

the dimension of the vector space in which the Hamiltonian operator Ĥ  is represented, 
and is also equal to the order of the Hamiltonian matrix H. 
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 In quite a few approximations encountered in quantum chemistry, the 
Hamiltonian matrix is somehow related to a molecular graph. The best known, and 
simplest, example is found in the Hückel molecular orbital theory: 
 

H = αH MO⋅I + βH MO⋅A(G) 
 

where A(G) is the adjacency matrix of a pertinently constructed skeleton graph (often 
called “Hückel graph”, representing the π-electron network of a conjugated hydrocarbon, 
1-3 whereas aH MO and ßH MO are parameters of the Hückel theory (not to be confused with 
the polynomials α and β considered in the later parts of this chapter). In this case the 
polynomial (3.3) is equal to 
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the non-trivial part of which is 

[ ])(det),( G?G AI −=λϕ  (3.4) 

 
with the indeterminate λ standing instead of (ε-αH MO)/βH MO. The polynomial (3.4) is 
called the characteristic polynomial of the graph G. It is certainly the most popular and 
most extensively studied graph polynomial in chemical graph theory. 
 Consider, as an example, the graph G3.1 depicted in Figure 3.1. It has eight 
vertices (N = 8, labeled by 1, 2, …, 8) and seven edges (m = 7, labeled by a, b, …, g). 
Then 
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Either by direct expansion of this determinant or (better) by some of the 

numerous known techniques for the calculation of the characteristic polynomial (see 
below) it is not too difficult to obtain: 

 
=),( λϕ 3.1G λ8 - 7λ6 + 13λ4 - 4λ2 (3.5) 
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It is then an easy exercise in calculus to find the zeros of this polynomial, namely 
the roots of the equation =),( λϕ 3.1G 0. These eight zeros read: 

 

λ1 = 2; λ2 = 
2

53 + ; λ3 = 
2

53 − ; λ4 = 0; 

λ5 = -2; λ6 = -
2

53 + ; λ7 = -
2

53 − ; λ8 = 0; 

 

 

(3.6) 
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Figure 3.1. Examples illustrating the unusual connections between molecular graph,  

revealed by means of graph polynomials; for details see text 
 

Various modifications of ϕ have been put forward in the chemical literature, for 
instance the matching polynomial, 4-9 the µ-polynomial 10-12 and the β-polynomial, 13-15 
defined and discussed at a later point. These could be understood as the constituents of 
the secular equations, eq 3.3, of some, appropriately modified, Hamiltonian operators. 
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Instead of the determinant in eq. 3.4, some authors considered the analogous expression 
with the permanent 16, 17 - the permanental polynomial. Recently a more the general class 
of so-called immanantal polynomials attracted the attention of researchers, 18-20 of which 
the characteristic and the permanental polynomials are special cases. 

Second, in numerous, both chemical and non-chemical, applications of graph 
theory one often encounters finite sequences of certain graph invariants, all associated to 
the same graph. Suppose C = (C0, C1, C2, …, Cp) is such a sequence. Then instead of p+1 
distinct quantities Ck, k  = 0, 1, 2, …p, one could introduce a single quantity - a 
polynomial - defined as 

 

Cpλp + … + C2λ2 + C1λ +C0  ≡ ∑
=

p

k

k
kC

0
λ  

 
(3.7) 

 
Needless to say that (3.7) is not the only possible form which a polynomial 

associated with the sequences C may be given.  
   The polynomial (3.7) contains precisely the same information as the sequence C. 
In some cases, however, it is easier to work with a polynomial than with a sequence. In 
some other cases, certain collective properties of the invariants considered, namely 
properties which can be deduced only by simultaneously taking into account the values of 
all Ck, k = 0, 1, 2, …, p, are in a natural way deduced from the polynomial. To say the 
same in a more direct way: there are collective properties of sequences of graph 
invariants which hardly ever would be discovered without analyzing graph polynomials 
of the form (3.7). 
 To illustrate the above, consider so-called independent edge sets of the graph G3.1 
(see Figure 3.1). A collection of edges of a graph is said to be independent if no two 
edges have a vertex in common. It is reasonable to classify the independent edge sets 
according to the number of edges they contain. In the case of G3.1 no four edges are 
independent (and therefore there are no independent edge sets with more than three 
edges). There are four distinct independent edge sets containing 3 edges: 

                {a, d, f} {a, d, g} {b, d, f} {b, d, g} 
and thirteen such sets containing 2 edges: 

    {a, d} {a, e} {a, f} {a, g}  
    {b, d} {b, e} {b, f} {b, g}  
    {c, e}  {c, f} {c, g} {d, f} 
    {d, g} 

Formally speaking, each set containing a single edge is also an independent edge 
set. Clearly, G3.1 has seven such sets. The empty set may be viewed as a independent edge 
set (of any graph) with zero edges; this set is unique. 

Denote by m(G, k) the number of k-element independent edge sets of the graph 
G. Then m(G3.1, 0) = 1, m(G3.1, 1) = 7, m(G3.1, 2) = 13, m(G3.1, 3) = 4, m(G3.1, 5) = 0, 
m(G3.1, 6) = 0, m(G3.1, 7) = 0, etc. The sequence thus obtained is infinite, but it is 
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reasonable to end it at the value of k  for which m(G, k ) ≠ 0, m(G, k +1) = 0. We thus arrive 
at a finite sequence (1, 7, 13, 4) which by (3.7) is transformed into the cubic polynomial 

 
Q(G3.1, λ) = 1 + 7λ + 13λ2 + 4λ3 (3.8) 

 
When a graphic polynomial is defined as in the above example, then it is fully 

obscure whether its zeros have any distinguished property. Yet, all the (three) zeros of the 
above polynomial are negative, real-valued numbers (which the readers could check 
relatively easily). The same collective property of the sequence (m(G,k), k  = 0, 1, 2, …) 
holds in the case of all graphs G: the zeros of all polynomials of the form 

 
Q(G) = Q(G,λ) = ∑

≥0

),(
k

kkGm λ  (3.9) 

are negative, real-valued numbers.  
At a later point we shall see that the zeros of this graph polynomials are quite 

important in theoretical chemistry. 
 Q(G,λ), (3.9), has been introduced by Hosoya 21 and called Z-counting 
polynomial. 
 

More Motivations for Graph Polynomials  

 Some properties of the graph polynomials are trivial and obvious. For instance, 
such is the fact that the value of the Z-counting polynomial, eq 3.9, at λ =1 is equal to the 
Hosoya topological index Z. Recall that this topological index is just defined as: 
 

∑
≥

=
0

),()(
k

kGmGZ  

The fact that the zeros of ϕ(G3.1,λ), eq 3.6, occur in pairs (x, -x) is a manifestation 
of one of the first general results of chemical graph theory ever obtained - the famous 
Coulson-Rushbrooke pairing theorem. 22, 23 Although far from being a trivial feature, the 
pairing of the numbers  (3.6) should be no surprise to a reader of this book. 
 In many instances, however, by means of graph polynomials  some quite unusual 
connections between (molecular) graphs can be envisaged. We illustrate this by a few 
examples. 

The polynomial (3.5) can be factorized as: 

ϕ(G3.1,λ) = (λ4 - 4λ2)(λ4 - 3λ2 + 1) 

Each of these factors is a characteristic polynomial itself: (λ4 - 4λ2) is the 
characteristic polynomial of the 4-membered cycle, C4, see Figure 3.1, whereas λ4 - 3λ2  + 
1 is the characteristic polynomial of the path graph with 4 vertices, P4, see Figure 3.1. As 
a consequence, the set of eigenvalues of G3.1, eq 3.6, is just the union of the set of 
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eigenvalues of C4 and P4. The eigenvalues of C4 are +2, -2, 0 & 0. The eigenvalues of P4 

are 23±± . 
           This observations is, in fact, a special case (for N = 4) of a more general result: 24-26 

 
ϕ(XN, λ) = ϕ(C4,λ)ϕ(PN,λ) (3.10) 

  
From eq 3.10, we see that the two-component graph consisting of a copy of C4 

and a copy of PN has the same characteristic polynomial as the graph XN. Thus we 
encountered an infinite family of pairs of non-isomorphic graphs with coinciding 
characteristic polynomials. (With regard to this so-called isospectrality  property of 
graphs, which is not duly discussed in this chapter, see Refs. 27-30). 
 It is somewhat less obvious that the polynomials (3.5) and (3.8) are closely 

related. Indeed, for i = 1− , we have that 
 









λ

ϕλ
i

G,4  

is equal to the Z-counting polynomial, eq 3.8. An analogous result holds for all n-vertex 
acyclic graphs: 31 

 

( ) ),(, λ
λ
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−                      (3.11) 

 
 A still less obvious result is that Q(G3.1,1) = 1+7+13+4 = 25 is equal to the 
number of Kekulé structures of the benzenoid hydrocarbon G3.2, shown in Figure 3.1. 
This, again, is a special case of a more general finding:32 The sextet polynomial of every 
unbranched catacondensed benzenoid molecule coincides with the Z-counting polynomial 
of a certain graph (called Gutman tree).33, 34 Because the sum of the coefficients of the 
sextet polynomial is equal to the Kekulé structure count, 35-38 it follows that the Hosoya 
index of the Gutman tree is equal to the number of Kekulé structures of the corresponding 
benzenoid system; in our example, G3.1 is the Gutman tree of the benzenoid hydrocarbon 
G3.2. More details can be found elsewhere. 39, 40 
 If we combine all the above examples, then we arrive at the fully unexpected 
conclusion that the number of Kekulé structures of the benzenoid hydrocarbon G3.2 can be 
computed from the characteristic polynomials of the cycle C4 and the path graph P4, both 
of which are determinants of order four. 

Chemical graph theory is full of such unusual connections, which are not only 
useful and stimulating for the underlying chemical theories, but also represent a great 
satisfaction to those who work on them. Since relations of this kind are continuously 
being discovered until the most recent times, there is no danger that this field of research 
has been exhausted.  
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Concerning Bibliography  
 
 Before starting with the discussion on some particular polynomials of interest in 
chemical graph theory, a few words should be said about the published scientific works in 
this field. They are legion! 
 Producing a complete or, at least, nearly complete bibliography of papers dealing 
with graph polynomials would hardly be a feasible task. Such a bibliography would have 
to include many thousands of articles, published in journals devoted to chemistry, 
mathematics, physics, computer sciences, engineering, medicine, pharmacology, 
environmental sciences, … . The references given at the end of this chapter, although 
quite numerous, are intended only to mention a few (perhaps most significant) articles, 
reviews and books, and to direct the interested reader towards a more  
extensive literature search. 
 Many books are either fully or to a great extent concerned with graph 
polynomials, primarily with the characteristic polynomial (both ordinary and Laplacian). 
1-3, 39, 41-55 Of the reviews dealing with graph polynomials we mention a few. 20, 33, 34, 40, 56-77 
Many of these books and reviews contain tables of graph polynomials and/or their zeros; 
additional tables are found Refs. 78-83. An almost complete list of mathematical papers 
concerned with the characteristic polynomial of graphs has been collected in the book 42 
and was eventually updated. 46 
 
Details Omitted 
  

The amount of material presented in this section had to be drastically limited 
(otherwise the text on graph polynomials would embrace several thick volumes). 
Therefore some topics, intimately related to graph polynomials are here abandoned. 
These are the following: 
• Chemical theories in which graph polynomials find applications are not outlined. 
• Applications of graph polynomials in various fields of chemistry, physical chemistry 

and physics are either not discussed at all, or are mentioned briefly, without going 
into any detail. 

• The extensively developed theory of graph eigenvalues (both regular and Laplacian) 
is almost completely omitted. The same applies to graph eigenvectors 

• Not all chemically interesting graph polynomials, but only a selection thereof, is 
considered. Only the most important properties of these polynomials are stated and, 
sometimes, illustrated by examples. In not a single case a mathematical proof of these 
properties is given. 

• Only a limited number of algorithms for the calculation of the graph polynomials is 
presented. 

• The theory of cospectral, comatching, etc. graph (namely families of graphs having 
equal characteristic, matching, etc. polynomials) is not elaborated, in spite of the 
enormous work done on this problem; some characteristic results in this field are 
communicated in Refs. 27-30, 84, 85. 
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• Also not mentioned is the work on spectral moments. The k th spectral moment of a 
graph is the sum of the k th powers of the zeros of the characteristic polynomial. By 
means of the classic Newton identities, from the spectral moments one can compute 
the coefficients of the characteristic polynomial, and vice versa; for details see, for 
instance, Appendix 4 in the book. 44 

 The authors believe that all these shortcomings are compensated by quoting 
literature sources from which the interested reader can get information on the details 
omitted. 
 

3.2. THE  CHARACTERISTIC  POLYNOMIAL.  PART 1. 

 The characteristic polynomial, denoted by ϕ(G, λ) or ϕ(G), is defined via eq 3.4. 
It is certainly the most extensively studied graph polynomial, both in mathematics and in 
chemical graph theory. Its theory has been reviewed on countless places (e. g. see Refs. 1, 

3, 42, 43, 44, 48, 49, 51, 56, 57, 60, 68, 73, 75, 86, 87). Its popularity among mathematical chemists comes 
from the fact (first observed by Günthard and Primas 88 in 1956) that the Hamiltonian 
matrix of the Hückel molecular orbital (HMO) theory is a simple linear function of the 
adjacency matrix of the corresponding molecular graph G.1, 3, 43, 48, 56, 75, 86, 87 Consequently, 
each HMO π-electron energy level is a linear function of the corresponding zero of the 
characteristic polynomial of G. 
 It is less well known that Heilbronner at al. have developed a theory 89, 90 in which 
the zeros of the characteristic polynomial of the line graph of the hydrogen-filled 
molecular graph are in a linear manner related to the σ-electron energy levels of the 
corresponding saturated hydrocarbon. (Recall that in hydrogen-filled molecular graphs 
vertices represent both carbon and hydrogen atoms). 
 
The Harary Theorem 
 
 Let G be a graph on N vertices. Then its characteristic polynomial ϕ(G) is of 
degree N and can be written as: 

 ∑
=

−=
N

k

kN
k GaG

0
)(),( λλϕ          (3.12) 

Hence a0(G), a1(G), a2(G), …, aN (G) are the coefficients of the characteristic 
polynomial of the graph G. For all graphs, a0(G) = 1. 

The central result in the theory of the characteristic polynomial is the Harary 
theorem. It determines how ak(G), k = 1, 2, …, N, depend on the structure of the graph G. 
 First a few histor ical remarks. 
 Many authors have tried to express the dependence of the coefficients ak on the 
structure of the underlying graph. The best known among these (unsuccessful) attempts 
are that of Samuel 91 in 1949 and Coulson 92 in 1950. The structure-dependency of the 
determinant of the adjacency matrix of a graph was discovered by Frank Harary 93, 94 in 



Polynomials in  Chemical  Graph  Theory 

 

61 

1962. From this result the coefficient-theorem follows straightforwardly; recall that det 
A(G) = (-1)N aN (G). 
 The explicit statement of the actual theorem was discovered in 1964 practically 
independently by Horst Sachs 95 (a mathematician), Mirko Milic 96 (an electrical 
engineer) and Leonard Spialter 97 (a computer chemist active in chemical documentation). 
Eventually several other scholars arrived at the same result (details in p. 36 of Ref. 42). 
 Until 1972 the theorem was not known to theoretical chemists. Then it was 
discovered (in the library) and formulated in a manner understandable to chemists. 86 The 
authors of the paper 86 were not careful enough and attributed the result solely to Sachs, 
naming it the Sachs theorem. Because of this mistake, in the subsequently published 
chemical literature the result was almost exclusively referred to as the Sachs theorem. 
Attempts to rectify the mistake came much later. 98 

 Anyway, in what follows we speak of the Harary theorem. 
 The cycle CN on N vertices, N ≥ 3, is a connected graph whose all vertices are of 
degree two (i.e., each vertex has exactly two first neighbors). Denote by K2 the connected 
graph on two vertices; this graph may be viewed as the two-vertex complete graph or the 
two-vertex path graph. A graph whose all components are cycles and/or K2-graphs is 
called a Sachs graph. (We keep here the nowadays commonly accepted name Sachs 
graph, although Harary graph would, probably, be more justified.) 
 Consider a graph G on n vertices and let its characteristic polynomial be of the 
form (3.12). 
 
Theorem 3.1 (Harary, Sachs, Milic, Spialter). Let S be a Sachs graph with N(S) 
vertices, possessing a total of p(S) components, of which c(S) are cycles and p(S) - c(S) 
are K2-graphs. Then for k = 1, 2, …, N, 
 

 ∑ −=
S

ScSp
k Ga )()( 2)1()(          (3.13) 

where the summation goes over all Sachs graphs S for which N(S) = k and which are 
contained (as subgraphs) in the graph G. If there are no such Sachs graphs, then ak=0. 
Example 3.1. We illustrate the Harary theorem on the example of the molecular graph G3 
depicted in Figure 3.2. This graph contains (as subgraphs) two cycles, C3 and C5; 
fortunately for us, these cycles have no vertex in common which significantly simplifies 
the application of formula (3.13). The nine edges of G3.3 are labeled by a, b, c, …, h, i. 
Each edge (together with its two end-vertices) corresponds to a K2-graph. 
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 Figure 3.2. A molecular graph on which the application of the Harary theorem, eq 
3.13, is illustrated; contrary to claims by many authors, already in this case it is not easy 
to perform the actual computation (see text); for molecular graphs with more vertices and 
cycles the computation of the coefficients of the characteristic polynomial by means of eq 
3.13 becomes a hopelessly difficult task 
 
Case k = 1. There are no Sachs graphs with one vertex. Therefore, a1(G3.3) = 0; 
Case k  = 2. The Sachs graphs with two vertices necessarily have one component which is 
a K2-graph. In the case of G3.3 there are nine such Sachs graphs, corresponding to the nine 
edges. Therefore, a2(G3.3) = 9× [(-1)120] = -9. 
Case k  = 3. The Sachs graphs with three vertices necessarily have one component which 
is a triangle (C3). The graph G3.3 contains one such Sachs graph, and therefore a3(G3.3) = 
[(-1)121] = -2 
Case k  = 4. The Sachs graphs with four vertices are either composed of a four-membered 
cycle or of two K2-graphs. Because G3.3 possesses no four-membered cycle, its four-
vertex Sachs graphs are those corresponding to pairs of independent edges.  
There are 24 such pairs: 
   a,d   a,e   a,f   a,g   a,h   a,i  
   b,e   b,f   b,g   b,h   b,i    c,e 
   c,f   c,g   c,h    c,i   d ,g   d,h  
   d,i   e,g   e,h    f,h    f,i    g,i 
 
Therefore, a4(G3.3) = 24 × [(-1)220] = 24 
Case k  = 5. The Sachs graphs with five vertices are either composed of a five-membered 
cycle or of a two-component system consisting of a triangle and a K2-graph. G3.3 
possesses both types of Sachs graph: one C5 and five C3 + K2 : 
 

C3 ,e  C3,, f  C3 ,g  C3 ,h  C3,,i 

Consequently, a5(G3.3) = 1 × [(-1)121] + 5× [(-1)2 21] = 8 
Case k  = 6. Here the real complications begin. The Sachs graphs with six vertices may be 
composed of: 

a) a six-membered cycle, or 
b) a four-membered cycle and a K2-graph, or  
c) two (disjoint) three-membered cycles, or  
d) three K2-graphs.  

G3.3 

a

b c
d

e f

g
h

i
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 In G3.3 only the latter types of 6-vertex Sachs graphs are contained, pertaining to 
the following selections of three independent edges: 
 

   a,d,g   a,d,h   a,d,i   a,e,g   a,e,h 
   a,f,h    a,f,i    a,g,i   b,e,g   b,e,h 
   b,f,h    b,f,i    b,g,i   c,e,g   c,e,h 
   c,f,h    c,f,i    c,g,i   d,g,i  
 
 Therefore, a6(G3.3) = 19×[(-1)3 20] = -19. 
Case k = 7. The seven-vertex Sachs graphs may be composed of 

a) a seven-membered cycle, or  
b) a five-membered cycle and a K2-graph, or  
c) a three-membered cycle and two K2-graphs.  

 The latter two types are contained in G3.3, namely:  
 

   C5,a C5,b C5,c   
   C3,e,g C3,e,h C3,f,h  C3,f,i  C3,g,i 
 

               resulting in a7(G3.3) = 3 × [(-1)221] + 5 × [(-1)321] = - 4. 
Case k = 8. The eight-vertex Sachs graphs may be composed of  

a) an eight-membered cycle, or  
b) a six-membered cycle and a K2-graph, or  
c) a four-membered cycle and two K2-graphs, or  
d) two four-membered cycles, or  
e) a five-membered cycle and a three-membered cycle, or  
f) two three-membered cycles and a K2-graph, or  
g) four K2-graphs. 

 In our example we encounter only with the Sachs graphs of type e) and g), one of 
each type: C5 + C3 and a, d, i, g. This implies a8(G3.3) = [(-1)2 22] + [(-1)420] = 5. Thus all 
coefficients of ϕ(G3.3) have been calculated and we finally obtain: 
 

ϕ(G3.3, λ) = λ8 - 9λ6 -2λ5 + 24λ4 + 8λ3 - 19λ2 - 4λ + 5 
 

Another way to express the Harary theorem is the following 
 
Theorem 3.1a. Let S be a Sachs graph with N(S) vertices, possessing a total of p(S) 
components, of which c(S) are cycles and p(S)-c(S) are K2-graphs. Then 
 

ϕ(G,λ) =∑ −−
S

SNNScSp )()()( 2)1( λ    (3.14) 

where the summation goes over all Sachs graphs S contained (as subgraphs) in the graph 
G. In formula (3.14) the summation includes also the empty Sachs graph (a fictitious 
graph with N(S) = p(S) = c(S) = 0) which is assumed to be the subgraph of any graph. 
 The above example is intended not only to make the reader familiar with the 
usage of the formula (3.13), but also to illustrate how difficult is the calculation of ϕ by 
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means of the Harary theorem. It should be said clearly and plainly: Except for a few very 
small molecular graphs, the Harary theorem is not suitable for the calculation of the 
coefficients of the characteristic polynomial. 
 On the other hand, the Harary theorem represents a powerful tool for deducing 
general properties of the characteristic polynomial, in particular on its dependence on 
graph (molecular) structure. Here are a few simple results of this kind. 
 By careful reading the above example we immediately see that not only for G3, 
but for all graphs G,  

a1(G) = 0; 
a2(G) = - number of triangles of G;  
a3(G) = - 2 × the number of triangles of G;  
a3(G) = a5(G) = a7(G) = … = 0 if and only if the graph G possesses no odd 

membered cycles; recall that such are the molecular graphs of the so-called alternant 
hydrocarbons. 
 If all odd coefficients of ϕ(G) are zero (which happens in the case of molecular 
graphs of alternant hydrocarbons) then ϕ(G,?) = 0 implies ϕ(G,-?) = 0 and therefore the 
zeros of such characteristic polynomials occur in pairs (? , -?).22 
 Denote, as before, the number of k-element independent edge sets of a graph G 
by m(G,k). As before, m(G,0) = 1 for all graphs. A far-reaching consequence of the 
Harary theorem is the following: 
 
Theorem 3. 2. If the graph G is acyclic then all the odd coefficients of π(G) are equal to 
zero, a0(G) = 1, whereas for k  = 1, 2, …, [N/2], a2k(G) = (-1)k m(G,k ). In other words: 
 

ϕ(G,λ) = ∑
=

−−
]2/[

0

2),()1(
n

k

knk kGm λ  
 

(3.15) 

 

 Formula (3.15) was known already to Sachs. 95 Hosoya 31 was the first who 
extensively used it. Formula (3.15) is the motivation for the introduction of another 
important graph polynomial - the matching polynomial. 
 

3.3. THE  MATCHING  POLYNOMIAL 

 The right-hand side of eq  3.15 is equal to the characteristic polynomial if and 
only if the graph G is acyclic. On the other hand, the right-hand side of eq 3.15 is a well 
defined polynomial for any graph. Thus we define a new graph polynomia l as: 
 

α(G) = ϕ(G,λ) = ∑
=

−−
]2/[

0

2),()1(
N

k

knk kGm λ  
(3.16) 

 
and call it the matching polynomial of the graph G. 
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 Immediately from this definition follows: 
 
Theorem 3. 3. The matching polynomial of a graph G coincides with the characteristic 
polynomial of G if and only if G is acyclic. 
 In view of eq 3.4, ϕ is the characteristic polynomial of a symmetric matrix whose 
entries are real-valued numbers. As well known in linear algebra, all zeros of such a 
polynomial are necessarily real-valued numbers. From Theorem 3.3 we then see that all 
zeros of the matching polynomial of an acyclic graph are real-valued numbers.  
 However, this latter property is not restricted to acyclic graphs. We namely have: 
 
Theorem 3. 4. All the zeros of the matching polynomials of all graphs are real-valued 
numbers.  

The history of the polynomial α. is quite perplexed. It has been independently 
conceived by quite a few authors, mathematicians, physicists and chemists, in many cases 
in connection with Theorem 3.4. Already this detail indicates that this polynomial found 
numerous applications (which, however, will not be outlined in this chapter). Around 
1970 a theoretical model has been developed in statistical physics, 99-102 in which the 
partition function was represented by a polynomial which was equivalent to what above 
was defined as α. (Of course, the terminology used by physicists was quite different than 
ours). In order to be able to describe phase transitions within this model, it was necessary 
that α has at least one complex-valued zero. The authors of Refs. 99-102 proved that this 
never is the case (i.e., that Theorem 3.4 holds), which for their theoretical model was a 
disappointing result. Heilmann and Lieb 100 offer not less than three different proofs of 
Theorem 3.4. Anyway, after proving Theorem 3.4 the model was abandoned. 
Nevertheless, the research the physicists made on α, especially the results by Heilmann 
and Lieb100 were later recognized as very important for the theory of the matching 
polynomial.  
 Around the same time Hosoya21 introduced his topological index and the Z-
counting polynomial, eq 3.9. This polynomial is essentially the same as α, eq 3.16. A 
formal transformation of Q(G) into  α(G) and vice versa is straightforward (cf. eq 3.11): 
 

( ) 





−=

λ
αλλ i

GiGQ
n

,),(  

α(G,λ) = 







−

2
1

,
λ

λ GQn  

 Few years later Nijenhuis103 demonstrated that the combinatorial object called 
rook polynomial has the distinguished property of having real-valued zeros. Only much 
later this result was incorporated into the theory of matching polynomials9, 104-106 when it 
was realized that every rook polynomial is the matching polynomial of some graph.  

Independently of all these developments, Edward Farrell 7 (a mathematician) 
defined a graph polynomial essentially identical107 to α, and established its basic 
properties (but not the reality of its zeros); he was first to use the name matching 
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polynomial. Farrell's paper 7 appeared in 1979, but was written much earlier, certainly 
before 1977.  

In 1977 two independent but equivalent approaches were put forward, by means 
of which the resonance energy of conjugated molecules could be calculated in a new and 
very convenient manner.4, 5 

For this one has to find the zeros of ϕ(G) and α(G), with G being the pertinent 
molecular graph. For the success of the method it is essential that all zeros of both ϕ(G) 
and α(G) be real-valued. (Hence, curiously: what was bad for the theory of phase 
transitions, is good for the theory of aromaticity.) Both Aihara4 and Gutman et al.5 were 
influenced by earlier work by Hosoya.21, 31 Aihara4 named α the reference polynomial 
whereas Gutman et al.5, 6, 108 called it the acyclic polynomial. Eventually, a general 
agreement was reached to call α, eq 3.16, the matching polynomial of the graph G. 
 Without knowing the earlier results of Heilmann and Lieb,99, 100 Kunz101, 102 and 
Nijenhuis, 103 Chris Godsil (a mathematician) and one of the present authors proved 
Theorem 4 anew.9, 104, 109 The same authors demonstrated110 that Theorem 3.4 holds also if 
G is the (weighted) graph representing heteroconjugated π-electron systems. In 1981 
Godsil111 arrived at the following powerful result, from which Theorem 3.4 follows as an 
easy consequence. 
 
Theorem 3.5. For any graph G there exists an acyclic graph G*, such that α(G,λ) is a 
divisor of ϕ(G*,λ).  
             If the graph G in Theorem 3.5 is connected, then G* is called the Godsil tree of 
G. The matching polynomial obeys a simple recurrence relation which makes its 
calculation relatively easy: 
 
Theorem 3.6. Let G be a graph and e its edge connecting the vertices x and y. 
Then, 

α(G, λ) = α(G-e, λ) - α(G-x-y, λ) (3.17) 

If x is a pendent vertex (i.e., y is its only neighbor), then 

α(G, λ) = λα(G-x, λ) - α(G-x-y, λ) (3.18) 

 For calculations based on Theorem 3.6, eq 3.19 is also frequently needed. If G 
consists of (disconnected) components G' and G", then 

α(G, λ) = α(G', λ) α(G", λ) (3.19) 

Example 3.2. We illustrate the application of the recurrence relations (3.17)-(3.19) on the 
example of G3.3, Figure 3.2. First, however, we need some preparation. 
 We compute the matching polynomials of the path graphs PN, see Figure 3.1. 
Choosing x to be a terminal vertex of the path PN we get from (3.18): 

α(PN , λ) = λα(PN-1 , λ) - α(PN-2 , λ) 
 Because (P0 , λ) ≡ 1 and (P1 , λ) ≡ λ we obtain for N = 2: 

α(P2 , λ) = λ[λ] – [1] = λ2 - 1 
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then for N = 3: 
α(P3 , λ) = λ[λ2 - 1] – [λ] = λ3 - 2λ 
then for N = 4: 
α(P4 , λ) = λ[λ3-2λ] – [λ2-1] = λ4 -3λ2 + 1 
then for N = 5: 
α(P5 , λ) = λ[λ4 - 3λ2+1] – [λ3- 2λ] = λ5 - 4λ2 + 3λ 
etc. 

Choosing any edge of a cycle CN and applying (3.17) we get: 

α(CN, λ) = α(PN , λ) - α(PN -2, λ) 

which for the three- and five-membered cycles gives: 

α(C3, λ) = α(P3, λ) - α(P1, λ) = (λ3-2λ) – (λ) = λ3 - 3λ 
α(C5, λ) = α(P5, λ) - α(P3, λ) = (λ5 - 4λ2 + 3λ) - (λ3 -2λ) = λ5 - 5λ3 + 5λ 

 We are now ready to compute α(G3.3). For this choose the edge d (whose end 
vertices are x and y) and apply (3.17): 
 

α(G3.3, λ) = α(G3.3-d, λ) - α(G3.3-x-y, λ) (3.20) 

Now, G3 - d is a disconnected graph composed of C3 and C5. Therefore by eq 3.19: 

α(G3.3-d, λ) = α(C3, λ) ⋅α(C5, λ) = (λ3 - 3λ)(λ5 - 5λ3 + 5λ) = λ8 - 8λ6 + 20λ4 - 15λ2 

Similarly, G3.3  - x -y is disconnected, composed of P2 and P4. Therefore, by (3.19): 

α(G3.3 -x-y, λ) = α(P2, λ)⋅α(P4, λ) = (λ2 - λ)(λ4 - 3λ1 + 1) = λ6 - 4λ4 + 4λ2 - 1 

Substituting these expressions back into (3.20) we readily obtain: 
α(G3.3, λ) = (λ8 - 8λ6 + 20λ4 - 15λ2) – (λ6 - 4λ4 + 4λ2 - 1) = λ8 - 9λ6 + 19λ2 + 1 

 The recurrence relations (3.17) - (3.19) can be expressed in terms of the Z-
counting polynomials: 
 
Theorem 3. 6a. Using the same notation as in eqs 3.17 - 3.19, the Z-counting polynomial, 
defined via eq  3.9, satisfies: 
 

Q(G, λ) = Q(G-e, λ) + λQ(G - x - y, λ) (3.21) 

Q(G, λ) = Q(G-x, λ) - λQ(G - x - y, λ) (3.22) 

Q(G, λ) = Q(G', λ) ⋅ Q(G", λ) (3.23) 
  

The matching polynomials, the ir coefficients and (in some cases) their zeros were 
determined for numerous classes of graphs.6, 84, 108, 112 -143 Several computer-aided 
computation algorithms for the calculation of α were put forward.144-152  
 The fact that the matching polynomial has real zeros and is closely related to the 
characteristic polynomial of the underlying graph G (see below), motivated many authors 
to seek for a graph-like object, denote it by Ghyp, which would have the property ϕ(Ghyp, 
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λ) ≡ α (G, λ)153-162 This search was successful in many cases - for instance, for unicyclic 
and bicyclic graphs. Ghyp is usually constructed from G so that some edges of G are 
weighted by complex-valued (or even quaternion valued!)159 numbers. 
 The matching polynomial is intimately connected to the characteristic polynomial 
and has many properties analogous to the latter. Some of these relations are outlined in 
the subsequent section. More properties of the matching polynomials can be found in 
Chapter 4 of the book46 and elsewhere.163-169 As a curiosity we mention that several 
important orthogonal polynomials are matching polynomials of some pertinently chosen 
graphs.170-172 For instance, the matching polynomial of the n-vertex complete graph is 
equal to the Hermite polynomial. 
 

3.4. THE  CHARACTERISTIC  POLYNOMIAL.  PART 2. 

 In the case of acyclic graphs the relation between the characteristic and the 
matching polynomials is straightforward (see Theorem 3.3). If a graph G contains cycles, 
then the relation between  ϕ(G) and α(G) is somewhat more complicated.  
 Let G be a graph and C 1, C 2, …, C r be the cycles contained (as subgraphs) in it, 
see Figure 3.3. The subgraph G - C i is obtained by deleting from G all vertices belonging 
to C i (and, of course, all edges incident to these vertices). If the cycles C i and C j are 
disjoint (i.e., have no vertices in common), then the subgraph G - C i - C  j is defined as (G 
- C i ) - C j or, what is the same, as (G - C j ) - C i. If C i and C j have joint vertices, then 
without defining G - C i - C j, in the below formulas we set α(G - C i- C j, λ) ≡ 0 and ϕ(G 
- C i - C j, λ) ≡ 0. The case of the subgraphs G - C i - C j - C k, G - C i - C j - C k - C h, etc. is  
treated analogously. Some of the subgraphs G - C i, G - C i - C j, etc. may be empty, i.e., 
all vertices of G need to be deleted. If H is the empty graph then it is both convenient and 
consistent to set  α(H, λ) ≡ 1  and ϕ(H, λ) ≡ 1. 
 

 
 

Figure 3.3. Some cycles of the molecular graph of benzo[a]pyrene, having a total of 21 
cycles; the main practical difficulty in the calculation of the characteristic polynomials of 
polycyclic graphs lies in the enormous number of cycles that need to be taken into 
account 
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Theorem 3.7. With the above specified notation and conventions, 

ϕ(G, λ) = α(G, λ) - 2∑
i

α (G – C i, λ) + 4∑
< ji

α (G – Ci – Cj, λ) – 

                  8 ∑
<< kji

α (G– C i – C j – C k, λ) + … 

 

 
       (3.24) 

α(G, λ) = ϕ(G, λ) + 2∑
i

ϕ (G – C i, λ) + 4∑
< ji

ϕ (G – C i – C j, λ) + 

                 8 ∑
<< kji

ϕ (G– C i – C j – C k, λ) + … 

 
 

(3.25) 

where the summations go over all cycles, pairs of cycles, triplets of cycles, etc., contained 
in G. 

Note that on the right-hand sides of (3.24) and (3.25) there are 2r summands, 
some of which may be equal to zero. Indeed, the actual application of formulas (3.24) and 
(3.25) is much simplified by the fact that in the second, third, etc. summations only pairs, 
triplets, etc. of mutually disjoint cycles need to be considered.  

Formula (3.24) seems to be discovered by Hosoya;31 it was later extensively 
applied within the theory of cyclic conjugation,11 where also formula (3.25) was reported 
for the first time. A more compact way of writing (3.24) and (3.25) is: 

ϕ(G, λ) =∑ −−
R

Rp RG ),()2( )( λα ;    α(G, λ) = ∑ −+
R

Rp RG ),()2( )( λϕ  

where the summations go over all regular graphs R of degree two, contained as subgraphs 
in G (including the empty graph): p(R) is the number of component of R. Recall that in a 
regular graph of degree δ all vertices have exactly δ first neighbors. Two special cases of 
Theorem 3.7 deserve to be mentioned: 
Corollary 3.7.1. If G is a unicyclic graph (r = 1) and C is its unique cycle, then 

 ),(2),(),();,(2),(),( λϕλϕλαλαλαλϕ CGGGCGGG −+=−−=  
Corollary 3.7.2. If CN is the N-vertex cycle, then 

 2),(),( −= λαλϕ NN CC  
Example 3.3. Calculate (again) the characteristic polynomial of the graph G3.3 from 
Figure 3.2, this time employing eq 3.24. The graph G3.3 possesses two cycles, C3 and C5, 
which are disjoint. Hence,  

)],([4)],(),([2),(),( 533.353.333.33.33.3 λαλαλαλαλϕ CCGCGCGGG −−+−+−−=   

The polynomial α(G3.3) has been calculated in Example 3.2. 
 The subgraph G3.3  - C3 is just the cycle C5. Similarly, G3.3 - C5 = C3. The 
matching polynomials of C3 and C5 have also been computed in Example 3.2. Then, in 
view of Corollary 3.7.2, 

ϕ(C3, λ) = α(C3, λ) – 2 = λ3 - 3λ - 2 
ϕ(C5, λ) = α(C5, λ) – 2 = λ5 - 5λ3 + 5λ - 2 



M. V. Diudea, I. Gutman and L. Jantschi 

 

70 

 The subgraph G3.3  - C3 - C5 has no vertices, and therefore α(G3.3 - C3 - C5, λ) ≡ 1. 
Bearing the above in mind we have 
 

       ϕ(C3, λ) = [λ8 - 9λ6 +24λ4 - 19λ2 + 1] – [(λ5 - λ3 + 5λ - 2)+(λ3 -3λ -2)] + 4[1] = 
                          = λ8 - 9λ6 - 2λ5 + 24λ4 + 8λ3 - 19λ2 - 4λ +5 
which, of course, is same as what we obtained in Example 3.1. 
 By means of Theorem 3.7 the characteristic polynomial is expressed in terms of 
matching polynomials, and vice versa. It is sometimes advantageous to express the 
characteristic polynomial of a graph in terms of characteristic polynomials of subgraphs. 
(The analogous result for the matching polynomial is Theorem 3.6). Of the several 
recurrence relations of this kind173-191 we mention here a simple and, probably, most 
handy one. 
 
Theorem 3.8. Let G be a graph and e its edge connecting the vertices x and y. Then, 

ϕ(G, λ) = ϕ(G - e, λ) - ϕ(G - x - y, λ) - 2∑
c

ϕ (G-C, λ) (3.26) 

with the summation going over all cycles C containing the edge e. 
 Formula (3.26) is often attributed to Schwenk175 although it can be found already 
in a paper by Heilbronner.173 Anyway, the following corollary of Theorem 3.8 is known 
as the Heilbronner formula. 
Corollary 3.8.1. If the edge e does not belong to any cycle (in which case it is called 
bridge), then 

ϕ(G, λ) = ϕ(G - e, λ) - ϕ(G - x - y, λ)  (3.27) 

In particular, formula (3.27) holds for any edge of any acyclic graph. If x is a pendent 
vertex (i.e., y is its only neighbor), then 
 

ϕ(G, λ) = λϕ(G - x, λ) - ϕ(G - x - y, λ)  (3.28) 

Eqs 3.26 - 3.28 should be compared with (3.17) and (3.18). When applying these 
recurrence relations also the identity 

ϕ(G, λ)  = ϕ(G', λ)ϕ(G", λ) 

may be of great use, where the notation is the same as in eq 3.19. 
 Among the plethora of other known results for the characteristic polynomial we 
state here only two, which reveal further deep lying analogies between the characteristic 
and the matching polynomials. 
 Let G be a graph and v1 , v2 , …, vN  its vertices. Then 

λ
λϕ

∂
∂ ),(G

 = ∑
=

N

i 1

ϕ (G - vi, λ);    
λ

λα
∂

∂ ),(G
 = ∑

=

N

i 1

α (G - vi, λ); 
(3.29) 

 
The ϕ-part of this identity is due to Clarke, 192 the α-part was first reported by Gutman 
and Hosoya.108 For applications see Refs. 193-195. 
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 The left hand sides of the following peculiar identities are called graph 
propagators.196 Let x and y be two (not necessarily adjacent) vertices of the graph G. Let 
P be a path connecting x and y. Then, 
 

ϕ(G - x, λ)ϕ(G - y, λ) - ϕ(G, λ)ϕ(G - x - y, λ) = [∑
P

ϕ (G - P, λ)]2  (3.30) 

α(G - x, λ)α(G - y, λ) - α(G, λ)α(G - x - y, λ) = ∑
P

α[ (G - P, λ)]2  (3.31) 

 
with the summations going over all paths of G, whose end vertices are x and y. Evidently, 
for all real values of the indeterminate λ, both propagators (3.30) and (3.31) are positive. 
Formulas (3.30) and (3.31) were reported in Refs.197 and 100, respectively. Formula (3.30) 
is just a graph-theoretical version of an old result in linear algebra.  

The characteristic polynomial can be computed also in several other ways. Many 
(perhaps too many) algorithms for its calculation have been put forward.198-227 When the 
graph possesses some symmetry, then special calculation techniques could be 
developed.228-245 (Recall that here we do not quote papers devoted to the finding of graph 
eigenvalues using symmetry arguments). Discussing the calculation of the characteristic 
polynomials of graphs with weighted edges and vertices246-250 goes beyond the ambit of 
this book. Needless to say that characteristic polynomials of a great variety of particular 
graphs and particular classes of graphs have been determined. Such details are, first of all, 
to be found in the seminal book42 and elsewhere.251-276 

 
Immanantal Polynomials. 

 Let M = ||Mij|| be a square matrix of order N. Let χ be one of the irreducible 
characters of the symmetric permutation group SN. The immanent of the matrix M, 
corresponding to the character χ of SN, is defined as 
 

dχ(M ) = ∑
∈ NSg

χ (g)M1,g(1)M2,g(2) ... MN,g(N) 

where g stands for an element of SN which transforms the permutation (1, 2, …, N) into 
(g(1), g(2), …, g(N)). 
 Note that if χ is the alternating character, then dχ is the familiar determinant; if 
χ(g) = 1 for all g, then dχ is the permanent.  
 The immanantal polynomial of the matrix M is dχ(λI - M). If M is the adjacency 
matrix of a graph, then one speaks of the immanantal polynomial of a graph. The 
characteristic  and the permanental polynomials are special cases of immanantal 
polynomials. For more details see elsewhere.18-20  
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3.5.  A  UNIFYING  APPROACH:  THE  µ-POLYNOMIAL 

 The fundamental difference between the characteristic and the matching 
polynomials is in the effect of cycles. One may view α(G) and the characteristic 
polynomial of G in which all cyclic contributions (originating from the cyclic Sachs 
graphs, c(S)>0, cf. Theorem 3.1) have been completely neglected. One may wonder what 
would happen by neglecting the contributions of only some cycles of G, or by only 
partially neglecting these contributions. Such deliberations resulted in the concept of the 
µ-polynomial. 

Let, as before, the graph G contain (as subgraphs) the cycles C1, C2, …, Cr, see 
Figure 3.3. For i = 1, 2, …, r, associate a variable t(Ci) to the cycle Ci. This variable is 
viewed as the weight of the cycle Ci: if t(Ci) = 1 then the effect of this cycle is fully taken 
into account, if t(Ci) = 0 then the effect of this cycle is fully neglected. Denote, for 
brevity, the r-tuple [t(C1), t(C2), …, t(Cr)] by t

r
 , which may be viewed as an r-

dimensional vector. Then the µ-polynomial of the graph G is defined as follows.11  
 If the graph G is acyclic, then 
 

µ(G, t
r

) = µ(G, t
r

, λ) ≡ α(G, λ) ≡ ϕ(G, λ) (3.32) 

If the graph G possesses cycles, then 

µ(G, t
r

) = µ(G,t
r

, λ) = α(G, λ) - 2∑
i

t (C i)α(G - C i, λ) + 4∑
< ji

t (C i) 

t(Cj)α(G - Ci - Cj, λ) - 8 ∑
<< kji

t (C i)t(C j) t(C k)α(G - C i - C j - C k, λ) + 

... 

 

(3.33) 

            The symbol t
r

in eq 3.32 is fictitious; the purpose of eq 3.32 is to define the µ-
polynomial-concept for all graphs. 
 Formula (3.33) should be compared with (3.24). The idea behind it is that by 
continuously changing the parameters t (usually between 1 and 0) we can continuously 
change the effect of the respective cycles on the polynomial itself (which we will discuss 
below) and on various π-electron characteristics of conjugated molecules (which are 
calculated from the polynomials, but which we are not discussing in this book; for details 
see Ref.11. 
 This graph polynomial was conceived while the authors of Ref.11 worked together 
in Mülheim, Germany. The suggestion to name it Mülheim polynomial was not accepted 
by the mathematico-chemical community; what only reminds this attempt is the symbol 
of the polynomial. The following property of the µ-polynomial follows directly from its 
definition and/or from the analogous properties of both the characteristic and the 
matching polynomial. 

 Denote by 1
r

 and 0
r

 the vectors (1, 1, …, 1) and (0, 0, …, 0), respectively. 
 
Theorem 3. 9. Let G be a graph possessing at least one cycle. Then, using the same 
notation as in eqs 3.29 and 3.26, 
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µ(G, 1
r

, λ) = ϕ (G, λ) ; µ(G, 0
r

, λ) = α(G, λ) 

λ
λµ

∂
∂ ),,( tG

r
 = ∑

=

n

i 1

µ (G - vi, t
r

,λ) 

µ(G, t
r

,λ) = µ(G - e,t
r

,λ) - µ(G-x-y,t
r

,λ) - 2∑
C

t (C)µ(G - C,t
r

,λ) 

 Further recurrence relations are found elsewhere.277-280 The dependence of the µ-
polynomial on a particular cycle C (or more precisely, on its weight t(C)) is given by 
 

)(
),,(

Ct
tG

∂
∂ λµ

r
 = µ(G - C, t

r
,λ) 

which is a relation of crucial importance in the theory of cyclic conjugation.11 
The µ-polynomial not only includes as special cases the characteristic and the 

matching polynomials, but also many other graph polynomials. In particular, if the cycle -
weights are chosen so that all cycles of the same size have equal weights, then we arrive 
at the circuit polynomials, invented and extensively studied by Farrell.10, 12, 61, 85, 281-290  

Some other cycle -related graph polynomials have sporadically occurred in the 
chemical literature.291-294 
 Another important special case is the β-polynomial (sometimes called “circuit 
characteristic polynomial”).13-15, 161.295-299 Let G be a graph and C one of its cycles. Choose 
the vector t

r
so that t(C) = 1 and t(C' ) = 0 for all other cycles C ' (if any). Then 

β(G, C ) = β(G, C, λ) = µ(G, t
r

, λ) 

or, what is the same, 

β(G, C, λ) = α(G, λ) – 2α(G - C, λ) (3.34) 

formula (3.34) should be compared with Corollary 3.7.1. Indeed, if G is unicyclic, then its 
β-polynomial is the same as the characteristic polynomial. 
 

The β-Polynomial Hypothesis  

 The β-polynomial has been defined so that it contains the effect of just one 
individual cycle of a polycyclic (molecular) graph, namely the effect of the cycle C. This 
feature is the basis of the application of the β-polynomials in the theory of cyclic 
conjugation, for the calculation of the effect of an individual cycle on various π-electron 
properties of a polycyclic conjugated molecule, especially on its total π-electron energy.13 
 With regard to this application, it is necessary that all the zeros of β(G, C) be 
real-valued numbers, preferably for all graphs G and all cycles C contained in them. 
Numerical calculations (e. g. in Ref.13) showed that this is the case in many chemically 
relevant examples. Further studies revealed that the zeros of β(G, C) are real for many 
types of graphs,14, 15, 161, 295-299 among which are all unicyclic graphs (which is trivial), all 
bicyclic graphs, all graphs with eight and fewer vertices, the complete graphs, etc. In spite 
of all these efforts, and in spite of a reward offered,297 the following hypothesis remains 
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unsolved; it could be considered as one of the most challenging problems in the theory of 
graph polynomials (of interest in chemistry). 
 
Conjecture . If G is any cycle -containing graph and C is any of its cycles, then all the 
zeros of β(G, C, λ) = α(G) - 2α(G - C) are real-valued numbers. 
 This conjecture may be false. If so, then finding a single counterexample (a 
particular graph G and a particular cycle C in it), for which at least one zero of β(G, C, λ) 
is complex-valued, would suffice. 

* * * 
 We see that the characteristic and the matching polynomials can be viewed as 
two limit cases of the µ-polynomial. Because they both have real zeros, the natural 
question is what can be said about the reality of the zeros of µ(G). In the general case, 
some zeros of some µ-polynomials may be complex-valued numbers.11, 300 There, 
however, exists an interesting result:11 

 

Theorem 3.10. Let G be a graph and C1, C2, …, Cr be its cycles, r ≥ 2. If any two cycles 
of G are disjoint (i. e., have no vertex in common), then all the zeros of µ(G, t

r
, λ) are 

real-valued numbers, provided  -1 ≤ t(Ci) ≤ +1 holds for all i = 1, 2, …, r. 
 If the conditions -1 ≤ t(Ci) ≤ +1 are not obeyed for all cycles Ci, then complex-
valued zeros may occur. If r = 1 then all zeros of µ(G, t

r
, λ) are real-valued, irrespective 

of the value of t(C1).301 

 An intriguing unsolved problem in the theory of the µ-polynomial is the µ-analog 
of eqs 3.30 and 3.31. In other words: what can be said about the propagator  
 

µ(G-x,t
r

, λ)µ(G - y,t
r

, λ) - µ(G,t
r

, λ)µ(G - x - y,t
r

, λ) (3.35) 

and can it be expressed in terms of paths connecting the vertices x and y? Under which 

conditions is this propagator positive-valued? Notice that for t
r

 = 1
r

 and t
r

 = 0
r

 the µ-
propagator (3.35) reduces to the ϕ - and α-propagators, (3.30) and (3.31), respectively. 
 

 
3. 6. THE  LAPLACIAN  POLYNOMIAL 

 
 The Laplacian matrix is a very important object in the analysis of electrical 
networks (and is, among other things connected with the classical Kirchhoff laws). Its 
role in chemical graph theory is much more modest.76, 302 Therefore, the fundamentals of 
the theory of the Laplacian polynomial, outlined in this section, should be understood 
primarily as a possibility (and an invitation) for future chemical applications. Some 
chemical connections of the Laplacian matrix, especially those related to the Wiener 
index and other distance-related structure-descriptors, are mentioned elsewhere in this 
book.  

Let, as before, G be a (molecular) graph, v1, v2, …, vN its vertices and A = A(G) 
its adjacency matrix. The degree di of the vertex vi is the number of the first neighbors of 
this vertex (see Chap. 1). 
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Let DEG = DEG(G) be the square matrix of order N whose i-th diagonal element 
is di and whose all off-diagonal elements are zero. Then the Laplacian matrix of the graph 
G is defined as 

La = La(G) = DEG(G) - A(G) 

The Laplacian characteristic polynomial of the graph G is just the characteristic 
polynomial of the Laplacian matrix: 
 

Ψ(G) = Ψ(G, λ) = det[λI - La(G)] (3.36) 

and we write it in the form: 

Ψ(G, λ) = ∑
=

−
N

k

kN
k Gc

0

)( λ  
(3.37) 

which should be compared with eq 3.12. The mathematical theory of Laplacian 
polynomials and of their zeros - the so-called Laplacian graph spectra - is nowadays well 
elaborated; for details see the reviews.20, 69, 72, 76  

 
The Kel'mans Theorem 

  The fundamental result, relating the coefficients of Ψ(G) with the structure of the 
graph G, is the Kel'mans theorem.42, 303 (This theorem was first communicated by 
Kel'mans in 1967 in a booklet entitled Cybernetics in the Service of Communism 
published in Moscow and Leningrad, in Russian language.) To formulate it we need a 
few definitions. 
 Consider a graph G on N vertices. Any N-vertex subgraph H of G is a said to be a 
spanning subgraph; hence H is obtained from G by deleting some of its edges, but none 
of its vertices. If H is acyclic, we say that H is a spanning forest of G; if H is acyclic and 
connected, then H is a spanning tree of G.  
 Let F be a spanning forest of a graph G. Let T1 , T2 , …, Tp be the components of 
F, with N(T1), N(T2), …, N(Tp) vertices, respectively,  

N(T1) + N(T2) + … + N(Tp) = N(F) = N 
Then the product N(T1) N(T2)  … N(Tp) will be denoted by γ(F). 
 For an example see Figure 3.4. 
 

 
          
         G3.3        F1                  F2     F3   F4           F5 

         Figure 3.4. The molecular graph G3.3 and some of its spanning forests;  
           ?(F1) = 8, ?(F2) = 5·3 = 15, ?(F3) = 1·1·1·5= 5, ?(F4) = 2·2·2·2 = 16,  

?(F5) =1·1·1·1·1·1·1·1= 1; of these spanning forests only F1 is a spanning tree 
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Theorem 3.11. Let G be a graph on N vertices and Laplacian characteristic polynomial 
Ψ(G, λ), given by eq 3.37. Then 
 

ck(G) = (-1)k∑
F

γ (F ) 

with summation going over all spanning forests of G which have N -  k  components (p = 
N - k). 
 The practical application of the Kel'mans theorem is rather tedious. This is seen 
from the below example, where we compute Ψ(G) of a very small graph. 

 

 
 
 

Figure 3.5. A small graph G3.4 and all its spanning forests; with the increasing 
number of vertices and edges, the number of spanning forests becomes enormously large, 
thus making the calculation of the coefficients of the Laplacian polynomial by means of 
the Kel'mans theorem unfeasible  
 
Example 3.4. The spanning forests of the 4-vertex graph G3.4 are depicted in Figure 3.5, 
together with the respective gamma-values. Then by direct application of the Kel'mans 
theorem we have: 
  c0(G3.4) = (-1)0[1] = 1 
  c1(G3.4) = (-1)1[2+2+2+2] = -8 
  c2(G3.4) = (-1)2[3+3+3+3+3+4] = 19 
  c3(G3.4) = (-1)3[4+4+4] = -12 

G3.4 

γ = 4         γ = 4           γ = 4 

    γ = 3        γ = 3            γ = 3           γ = 3              γ = 3               γ = 3 

 γ = 2        γ = 2           γ = 2           γ = 2 

γ = 1 
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Because there cannot be spanning forests with 4 - 4 = 0 components, it follows that 
c4(G3.4) = 0. We thus have: 

Ψ(G3.4 , λ) = λ4 - 8λ3 + 19λ2 - 12λ 
 After carefully working out the above example we easily envisage a few general 
results, holding for any graph G with N vertices and m edges: 

c0(G) = 1;  c1(G) = - 2m;  cN (G) = 0;  cN - 1(G) = (-1)N-1 N × number of spanning trees. 
Because only connected graphs have spanning trees, we see that cN -1(G) ≠ 0 if 

and only if the graph G is connected. Further, cN -1(G) = ± N if and only if the graph G is 
connected and acyclic, i. e. a tree. A less elementary result of the same kind is: 
Corollary 3.11.1. If G is a tree, then 

)(
)(
)(

1

2 GW
Gc
Gc

N
N

N =−
−

−  

where W(G) is the Wiener number of G, a distance-related topological index, discussed 
elsewhere in this book. 

* * * 
A graph is said to be regula r of degree di if all its vertex degrees are equal to deg i, 

that is d1 = d2 = … = dN  = di. For such graphs, La = diI - A and from eqs 3.4 and 3.36 we 
straightforwardly obtain 

Ψ(G, λ) = (-1)N ϕ (G, d i - λ) 
a relation which holds for N-vertex regular graphs of degree di . For instance, the cycle CN 
is a regular graph of degree 2 and therefore 

Ψ(CN, λ) = (-1)Nϕ (CN, 2-λ) 
 For non-regular graphs the relation between the regular and the Laplacian 
characteristic polynomials is somewhat less simple:304 
Theorem 3.12. Let G be a graph on N vertices, v1, v2, …, vN  and let di  be the degree of 
the vertex vi, i = 1, 2, …, N. Then 
 

Ψ(G, λ) = (-1)N [ϕ (G, -λ) +∑
i

id ϕ (G - vi, -λ) +∑
< ji

jidd ϕ (G - vi - vj, -λ) +  

                       ∑
<< kji

kji ddd ϕ (G - vi - vj - vk, -λ) + ...] 

with the summations going over all vertices, pairs of vertices, triplets of vertices, etc. of 
G. As before, ϕ (G - v1 - v2 - … - vN) ≡ 1. 
 For bipartite graphs (that are graphs without odd-membered cycles) the following 
relation was recently reported.305 
 
Theorem 3.13. Let G be a connected bipartite graph with N vertices and m edges. Let 
L(G) be the line graph of G. Then,  
 

λmΨ(G, λ) = λNϕ (L(G), λ -2) 
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3.7.  MOVING  IN  ANOTHER  DIRECTION :  THE  INDEPENDENCE 
POLYNOMIAL 

 
 The above outlined (mutually closely related) Z-counting and matching 
polynomials are defined via the quantities m(G, k ), cf. eqs 3.9 and 3.16. To repeat: m(G,  
k) is the number of k-element independent edge sets of the graph G. In other words: m(G, 
k) is the number of ways in which k  mutually independent edges are selected in G.  
One may ask if instead of selecting independent  edges we could design graph 
polynomials by selecting some other structural features of the graph. The natural choice 
would be the vertices of the graph.  
 In close analogy to the numbers m(G,k ) and the polynomial Q(G) we now 
introduce the numbers N(G,k) and the polynomial ? (G), named the  independence 
polynomial. Two vertices of a graph G are said to be independent if they are not adjacent. 
A set of vertices of G is said to be independent if all of its elements are mutually 
independent. The number of distinct k-element independent vertex sets of G is denoted by 
N(G,k). In addition, N(G,0) = 1 and N(G, 1) = number of vertices of G. The independence 
polynomial is then defined in full analogy with eq 3.9: 
 

? (G) = ? (G, ?) = ∑
≥0k

N (G, k )?k (3.38) 

Example 3.5. By direct application of (3.38) we compute the independence polynomial 
of the graph G3.5, depicted in Figure 3.6.  
 

     

a

e
d

c
bh

g

f

a

e
d

c
bh

g

f

a

e
d

c
bh

g

f
          

                             G3.5              G3.5 – a                           G3.5 - Na 
 

Figure 3.6. A molecular graph and its two subgraphs, used to illustrate 
the calculation of the independence polynomial 

 
Case k = 1. G3.5 has eight vertices and therefore N(G3.5, 1) = 8.  
Case k = 2. The following pairs of vertices of G5 are not adjacent: 

   a, c   a, d   a, f   a, g   b, d 
   b, e   b, f   b, g   b, h   c, e 
   c, f   c, g   c, h   d, f   d, g 
   d, h   e, g   e, h   f, h    
Hence, N(G3.5, 2) = 19.  
Case k = 3. The following triplets of vertices of G3.5 are not mutually adjacent: 

   a, c, f   a, c, g      a, d, f     a, d, g     b, d, f  
   b, d, g   b, d, h      b, e, g    b, e, h     b, f, h 
   c, e, g   c, e, h      c, f, h     d, f, h 
Hence, N(G3.5, 3) = 14.  



Polynomials in  Chemical  Graph  Theory 

 

79 

Case k = 4. There is a unique set of four independent vertices, namely: {b, d, f, h}. 
Therefore N(G3.5, 4) = 1 and, in addition, N(G3.5, k) = 0 for k > 4. Bearing in mind that by 
definition N(G3.5, 0) = 1, we arrive at 

? (G5, ?) = 1 + 8 ? + 19 ?2 + 14 ?3 + ?4 

*  *  *  
The fundamental recursion relations for ? (G) are given by the following: 

Theorem 3.14 Let x be a vertex of the graph G. The set consisting of x and its first 
neighbors is denoted by Nx. Then the independence polynomial, defined via eq 3.38, 
satisfies: 

? (G, ?) = ? (G - x, ?) + ?? (G - Nx, ?) (3.39) 

If x is a pendent vertex, its only first neighbor being y, then Nx = {x, y} and, as a special 
case of (3.39),  

? (G, ?) = ? (G - x, ?) + ?? (G - x - y, ?) (3.40) 

Further, if G is disconnected and G' and G” are its components, then 

? (G, ?) = ? (G', ?) · ? (G”, ?) (3.41) 

Relations (3.39) - (3.41) should be compared with (3.21) - (3.23). 
Example 3.6. We calculate once again ? (G5), this time by using Theorem 3.14. For this 
we need some preparation. We first calculate the independence polynomials of the first 
few path graphs. For P1 and P2 by direct calculation we readily get: ? (P1) = 1 + ? ,  ? (P2) 
= 1 + 2?. Now, applying (3.40) to a pendent vertex x of PN and bearing in mind that PN - x 
= PN -1 and PN - x - y = PN -2 we get 

? (PN , ?) = ? (PN –1 , ?) + ?? (PN –2 , ?) 

which successively yields: 

? (P3, ?) = [1 + 2?] + ? [1 + ?] = 1 + 3? + ?2  
 ? (P4, ?)  =  [1 + 3? + ?2] + ?[1 + 2?] = 1 + 4? + 3?2 
 ? (P5, ?)  =  [1 + 4? + 3?2] + ?[1 + 3? + ?2] = 1 + 5? + 6?2 + ?3  
 etc 

 ? (P8, ?) = 1 + 7? + 15?2 + 10?3 + ?  
 etc 

The above polynomials should be compared with α(PN), obtained in Example 3.2. Choose 
vertex a in G3.5, see Figure 3.6. This vertex has three first neighbors: b, e, h  and therefore 
Na = {a, b, e , h}. The subgraphs G3.5 - a and G3.5 - Na, also shown in Figure 3.6, are in fact 
P8 and P2 + P2, respectively. Therefore,  
 ? (G3.5)   =  ? (G3.5 - a, ?) + ?? (G3.5 - Na , ?)  =  ? (P8, ?) + ?? (P2+P2, ?) 
   = ? (P8 , ?) + ?? (P2, ?)2  =  [1 + 7? + 15?2 + 10?3 + ?] + ?[1 + 2?]2  
   = 1 + 8? + 19?2 + 14?3 + ?4 

same as before, but slightly easier to calculate.  
 

*  *  *  
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 For further details on the theory of independence polynomials see Refs. 134, 168, 169, 

307-309; many properties of ? - and Q-polynomials are fully analogous, which is frequently 
used in their research. Other related graph polynomials are the king, color and star 
polynomials. 310-317 
 If instead of sets of independent vertices one considers sets of mutually adjacent 
vertices, then one arrives at the so-called clique polynomial. 318-320 

With regard to the chemical applications of the independence numbers N(G, k) 
and the associated graph polynomial ? (G) one should, first of all, mention the topological 
theory of Merrifield and Simmons; its details (which go far beyond the ambit of this 
chapter, can be found in the book.321 The sum of the numbers m(G, k), i. e. , the value of 
the independence polynomial for ? = 1, is known under the name Merrifield-Simmons 
index. However, as explained below, the independence polynomials have much wider 
chemical (and other) applications.   
 
Beyond the Independence Polynomial? 

 Once we learned how to construct the independence polynomial as an analogy of 
the matching polynomial, we may be inclined to introduce further such counting 
polynomials. We would simply have to decide which structural features in a (molecular) 
graph to count - and we are done. This, indeed, has happened: the mathematical and 
chemical literature is quite reach in such attempts, 310-320 of which we point out the 
chemically significant sextet polynomial in the theory of benzenoid hydrocarbons 32-36, 40, 

79, 322-333 and its generalizations. 37, 38, 334 
 However, there is a reason to stop at the independence polynomial. The following 
theorem by Gutman and Harary 306 shows that ? may be viewed as the ultimate counting 
polynomial of its kind. Let G be a (labeled) graph and S = {S1, S2, ..., SN} a set of some of 
its (labeled) subgraphs (or structural features). Suppose that for any two of these 
subgraphs, say Si and Sj, we can decide whether they obey a condition Si, i, S j (which one 
may interpret as Si and Sj being mutually independent). For k  = 2, 3, ..., let o(G, k) be the 
number of k-element subsets of S, in which all elements pairwise obey the relation i (i. e. 
all elements are mutually independent). It is consistent (yet not necessary) to set o(G, 0) = 
1 and o(G, 1) = N. Note that the numbers o(G, k) have been chosen in a fairly arbitrary 
manner. 

Theorem 3.15. The polynomial  

∑
≥0k

o (G, k)?k 

is the independence polynomial of some graph.  

 Corollary 3.15. 1. The Z-counting polynomial is an independence polynomial. 
Let L(G) denote the line graph of the graph G. Then, for any graph G, the Z-counting 
polynomial of G coincides with ? (L(G)). 
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 Corollary 3.15. 2. The clique polynomial is an independence polynomial. Let 

G denote the complement of the graph G. Then, for any graph G, the clique polynomial 

of G coincides with ? ( G ). 
At this point we are not going to define the  sextet polynomial, 35 and  Clar graph, 323 
playing an important role in the Clar aromatic sextet theory of a benzenoid hydrocarbon; 
the interested readers should consult the book 39 the original paper by Hosoya and 
Yamaguchi, 35 the review 40 or some of the numerous papers on this topic. 32-34, 36, 79, 322-333 
Anyway, we have: 
 Corollary 15. 3. The sextet polynomial is an independence polynomial. Let C(B) 
denote the Clar graph of the benzenoid hydrocarbon B. Then, for any benzenoid system 
B, the sextet polynomial of B coincides with ? (C(B)). 
 

 

 3.8.  MORE  

 
 Before ending this chapter we wish to mention a few more graph polynomials 
that are encountered in chemical graph theory. Among them is the Wheland polynomial, 
the coefficients of which count resonance structures of various degrees of excitation. 335-

337 A related polynomial was considered by John. 338 
 The  Hosoya polynomial is defined as 67 

 

H(G, ?) = ∑
≥0k

d (G, k)?k 

where d(G, k) is the number of vertex pairs of the graph G, the distance of which is k . 
Then d(G, 1) is equal to the number of edges of G, whereas it is consistent to choose d(G, 
0) =  number of vertices of G.  
 The Hosoya polynomial is defined only for connected graphs. 
 Hosoya, who invented H(G, ?) named it the Wiener polynomial because of its 
remarkable property: 67 

 

λ
λ

d
GdH ),(

1=λ  = W(G) 

where W(G) is the Wiener topological index (see Chap. 4, this book). Eventually, the 
more appropriate name Hosoya polynomial has been accepted. Further results of the 
theory of this distance-based graph polynomial are found elsewhere. 339-344 

 *  *  *  
 Is this the end? 
No. But we must stop somewhere. 
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Chapter 4 

 
 
 
 

 TOPOLOGICAL  INDICES 
 
 
 A single number, representing a chemical structure, in graph-theoretical terms, is 
called a topological descriptor. Being a structural invariant it does not depend on the 
labeling or the pictorial representation of a graph. Despite the considerable loss of 
information by the projection in a single number of a structure, such descriptors found 
broad applications in the correlation and prediction of several molecular properties1,2 and 
also in tests of similarity and isomorphism.3,4  
 When a topological descriptor correlates with a molecular property, it can be 
denominated as molecular index or topological index (TI). 
 Randic5 has outlined some desirable attributes for the topological indices in the 
view of preventing their hazardous proliferation. 
 
 List of desirable attributes for a topological index 
 
1. Direct structural interpretation 
2. Good correlation with at least one property 
3. Good discrimination of isomers 
4. Locally defined 
5. Generalizable to higher analogues 
6. Linearly independent 
7. Simplicity 
8. Not based on physico-chemical properties 
9. Not trivially related to other indices 
10. Efficiency of construction 
11. Based on familiar structural concepts 
12. Show a correct size-dependence 
13. Gradual change with gradual change in structures 
 

Only an index having a direct and clear structural interpretation can help to the 
interpretation of a complex molecular property. If the index correlates with a single 
molecular  property  it  could indicate the  structural composition of that property.5  If it is  
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  If it is sensible to gradual structural changes (e.g., within a set of isomers) 
then the index could give information about the molecular shape. If it is locally 
defined, the index could describe local contributions to a given property. If the 
index can be generalized to higher analogues or it can be built up on various bases 
(e.g., on various matrices4,6) it could offer a larger pool of descriptors for the 
regression analysis. 
 Among the molecular properties, good correlation with the structure was 
found for: thermodynamic properties (e.g., boiling points, heat of combustion, 
enthalpy of formation, etc.), chromatographic retention indices, octane number and 
various biological properties. 
 Thus, a topological index converts a chemical structure into a single number, 
useful in QSPR/QSAR studies. More than a hundred of topological descriptors were 
proposed so far and tested for correlation with physico-chemical (QSPR) or biological 
activity (QSAR) of the molecules.  
 In the construction of a TI, two stages can be distinguished:7 (a) the assignment 
stage and  (b) the operational stage. 
 (a) In the assignment stage, the topological information is encoded as local 
invariants (LOIs - LOcal Invariants). The LOIs can be pure topological or weighted by 
chemical properties (e.g., atomic properties, when the chemical nature of vertices is 
needed). 
 (b) In the operational stage, the LOIs are mathematically operated for producing 
global (molecular) invariants as single number descriptors of a structure. They are 
referred to as topological indices. The operational stage may (or may not) encompass 
topological information.  Often the operation is the simple addition. It is a natural 
operation, since many molecular properties are considered to be additive. There exist 
more sophisticated global invariants (e.g., the eigenvalues), as a result of complex matrix 
operations. In such cases, the two stages are indistinguishable.  
 When a TI shows one and the same value for two or more structures, it is said 
that TI is degenerated. The degeneracy may appear both in the assignment and the 
operational stages.7 The assignment degeneracy appears when non-equivalent subgraphs 
(i.e., vertices) receive identical LOIs or when non-isomorphic graphs show the same 
ordered LOIs (e.g., the same distance degree sequence, DDSi). The operational 
degeneracy is seldom encountered (e.g., when simple operations act on weakly 
differentiated LOIs) and leads to the same value of TI for non-isomorphic graphs which 
do not show assignment degeneracy.  

The discriminating sensitivity of a TI is a measure of its ability to distinguish 
among nonisomorphic graphs by distinct numerical values. An evaluation of this 
sensitivity, s , on a fixed set, M , of nonisomorphic graphs can be achieved by formula 

mmms i /)( −= ,   where  Mm =  and im   is the number  of graphs undistinguished 

by TI  within the set M .  
A criterion used in the classification of topological indices is that of the matrix 

which  supplies  the  topological  information1  (the info matrix),  in the assignment stage.  
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When the LOIs are assigned on combined matrices (see the Schultz index) or the two 
stages are indistinguishable, such a classification becomes difficult. Other criterion would 
take into account the mathematical operations involved in achieving a certain index. In 
the following, these two criteria will be used in an attempt of classifying the main 
topological indices. 
 
 

4.1.  INDICES  BASED  ON  ADJACENCY  MATRIX 
 

4.1.1. The Index of Total Adjacency  
 
 The simplest TI is the half sum of entries in the adjacency matrix A: 
 
   ∑∑=

i j
ijA ][)2/1( A                  (4.1) 

 
 It was called the total adjacency index8 and is equal to the number of edges, Q, in 
graph. Figure 4.1 shows the matrix A and the corresponding index for 2-Methylbutane, 
G4.1. 
 
 

             
1

2
3 4

5

      
 
 

Figure 4.1. Adjacency matrix and A index for the graph G4.1. 

 
4.1.2. The Indices of Platt, F, Gordon-Scantlebury, N2, and Bertz, B1 
 
 
 Platt9,10 has introduced the total adjacency of edges in a graph, as the F index 
 

 12 BNF
i j i

i
ij 22

2
2][ ==








== ∑∑ ∑

δ
EA           (4.2) 

 
where EA is the Edge Adjacency matrix. This index is twice the Gordon - Scantlebury11 
index, N2 , defined as the number of modes in which the acyclic fragment C-C-C may be 
superposed on a molecular graph 
  

i
i

PN )(∑= 22                                      (4.3) 

G4.1  

A(G4.1) = 4 

 1 2 3 4 5 
1 0 1 0 0 0 
2 1 0 1 0 1 
3 0 1 0 1 0 
4 0 0 1 0 0 
5 0 1 0 0 0 
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 This index equals the number of all paths of length 2, P2 , in graph. The F index 
is also twice the Bertz index,12 B1 , defined as the number of edges in the line graph 
L1(G). The last one can be calculated combinatorially from the vertex degree, δi . For the 
graph G4.2, the calculus is given in Figure 4.2. 
 

                             

1
2

3 4
5

6

7
 

 

 Figure 4.2. Bertz index B1, for the graph G4.2. 

 

4.1.3. The Indices of ZAGREB Group 

 
 First TIs based on adjacency matrix (i.e., based on connectivity) were introduced 
by the Group from Zagreb13,14  
 
              ∑=

i
iM 2δ1                                                 (4.4) 

 ∑
∈

=
)(),( GEji

jiM δδ2                                       (4.5) 

 
where δi, δj - are the vertex degrees for any two adjacent vertices. For the graph G4.2  one 
calculates: 

M1  = 4 x 12  + 2 x 32  + 22 = 26; M2  = 3(1 x 3) + (3 x 3) + (2 x 3) + (1 x 2) = 26 
 

4.1.4. The Randic Index, χ  
 
 The χ index was introduced by Randic 15 for characterizing the branching in 
graphs:  
 

 ∑
∈

−=
)(),(

2/1)(
GEji

jiδδχ             (4.6) 

 
χ  - called the connectivity index, is calculated on edge, by using the vertex 

degrees of its endpoints (see Figure 4.3 (a)).  The relatedness of χ  with  M2 is immediate.   
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                                           G4.3 
              

                     G4.3 {χ i} 
 

(a)   χ = 5(1 x 3) -1/2  + 2(3 x 3) -1/2  = 3.5535 (b) χ = (1/2) [5 x 0.5774 + 2 x 1.4880 +  
               1.2440]  = 3.5535 
 

  Figure 4.3. Randic Index χ for the graph G4.3 :  calculated on edge (a) and on vertex (b).  
  
 
Diudea et al.16 have defined χ on vertex 
 

 ∑
∈

−=
)(),(:

2/1)(
GEjij

jii δδχ             (4.7) 

 

 ∑=
i iχχ

2
1              (4.8) 

 
Such a definition was used in connection with some fragmental descriptors (see 

Sect. 4.7). For G4.3    the calculus is given in Figure 4.3 (b). 
 The χ  values decrease as the branching increases within a set of alkane isomers. 
They increase by the number of atoms in the molecular graph. 
 This index was shown to correlate with various physico-chemical (e.g., enthalpy 
of formation, molar refraction, van der Waals areas and volumes, chromatographic 
retention index etc.) and biological properties.17  
 

4.1.5. Extensions of χ  Index 
 

4.1.5.1. Kier and Hall Extensions 
 

Kier and Hall17 have generalized the χ index , considering the edge as the 
simplest path (i.e., the path of length 1) and extending the summation over all paths of 
length e: 
 

 2/1
1 )...( −

+∑
ep

eji δδδχ =e            (4.9) 
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where 1eji +δδδ ...  are the vertex degrees along the path pe. Indices eχ are used as a family 

of structurally related topological indices5,18 Other subgraph based connectivities have 
been developed.17  
 The authors have also extended the validity of χ to heteroatom-containing 

molecules. They introduced the  v
iδ  valencies (see Sect. 8.3.2.1) in the construction of 

the analogous index χv: 
 

∑
∈

−=
)(),(

2/1)(
GEji

v
j

v
i

v δδχ          (4.10) 

 
 The v

iδ values and other electronic and topological considerations are assembled 
in the electrotopological state index.19,20 

 

4.1.5.2. Estrada Extensions 
 
 Estrada21 changed the vertex degree iδ with the edge degree, )( ieδ , eq  4.6 

becoming 

 ∑
−

=
r

rji ee
2/1

)]()([ δδe          (4.11) 

where the summation runs over all r-pairs of adjacent edges. It is obvious that the e 
index of a graph equals the connectivity index of the corresponding line graph: e(G) = χ 
(L1(G)). 

The e index was extended to heteroatom-containing molecules22 (with the 

Pauling23 kC-X  parameter for calculating the weighted edge degrees )( i
W eδ ) and to a 3D-

descriptor24 counting an electron charge density connectivity. These indices showed good 
correlating ability with the molar volume21,22  (of  alkanes and a mixed set of ethers and 
halogeno-derivatives) and with the boiling points of alkenes.24 
 
 
4.1.5.3. Razinger Extension 
 
 Razinger25 introduced the vertex degrees of higher rank eWi, in construction of 
χeW  index6 

 

 ∑
∈

−=
)(),(
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wwW j
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i
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Diudea16 has defined this index on vertex (see also eqs 4.7 and 4.8): 
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Values χ eWi  and χ eW  for G4.3  are shown in Figure 4.4. Indices χ eW are also used as a 
family of topological indices.  
 
Graphs G4.3  {eWi }: 
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 Graphs G4.3 {χ eWi }: 
 

1,2440 1,4880

0,5775

0,5775

0,5775 0,2182

0,2582

0,5563
0,6854

0,2582

0,1048

0,1240

0,2587
0,3250

0,1240

 
 

          χ 1W = 3.5534                    χ 2W = 1.5890              χ 3W = 0.7548 
 

Figure 4.4. Indices χ eWi and χ eW (e = 1-3) for the graph G4.3. 
 
 
 Indices χ eW  can be weighted cf. the algorithms eWM (eqs 2.5 - 2.8) or eEM (eqs 
8.39 - 8.41) thus accounting for the chemical nature of atoms and edges. 
 

4.1.5.4. Diudea Ex tensions 
 

 Diudea  and  Silaghi26 used the group electronegativity valencies, denoted  EVG  
(see Sect 8.3.2.1 - eqs 8.30 - 8.32) in constructing a χ analogue index, DS (defined on 
vertex): 
 

∑
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M. V. Diudea, I. Gutman and L. Jantschi 108 

 ∑=
i

DSDS i              (4.16) 

 
The DS index shows excellent correlating ability.26 It is exemplified in Figure 4.5 for the 
graph G4.3.  
 

    (a) 
     
 
 
 
 
    (b)             
    
     
 
 
   
 
 

Figure 4.5. (a) DS and (b) EC indices  for the graph G4.3. 

 

 A similar index, ECP/N , was built up by using the EC electronegativities27 (see 
Sect 8.3.2.1 and Table 8.2) 
 

 ∑
∈

±=
)(),(:

2/1)(
GEjij

jiECECEC iP/N,                        (4.17) 

 ∑=
i

ECEC iP/N,P/N           (4.18) 

 
 The subscript symbol is P for +1/2 and N for -1/2. Values of these indices are 
given in Figure 4.5 (b) for the graph G4.3. 

Excellent correlations of  the EC indices with some physico-chemical and 
biological properties of aliphatic alcohols, amines and halogeno-derivatives were 
obtained.27  
 

 
 

1,622

1,278

 

ECN = 5 x 1.0368 + 2 x 3.1028 + 3.0952 = 14.4848 

ECP = 5 x 0.9645 + 2 x 2.9006 + 2.9077 = 13.5314 

 

G4.3 {EVGi} 

0,9575

0,9716

 

DS = 5 x 0.6945 + 2 x 2.1714 + 2.2593 = 10.0745 

G4.3 {ECi} 
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4.2.  INDICES  BASED  ON  WIENER,  DISTANCE  AND  DETOUR 

MATRICES 
 
 

4.2.1. Wiener-Type Indices 
 
 Wiener proposed in 1947 the first structural index in connection to some studies 
on the thermodynamic properties of hydrocarbons (i.e., acyclic structures).28-31  W index, 
(called by its author the path number and eventually referred to as the Wiener 
index/number), has later become one of the central subjects which focused the attention 
of theoretical chemists. Extensive studies have been performed for finding correlations 
with various physico-chemical and biological properties. In this respect, the reader can 
consult three recent reviews.32-34  
 

4.2.1.1. Main Definitions  
 
 In acyclic structures, the Wiener index, W,28 and its extension, the hyper-Wiener 
index, WW,35 can be defined as  
 

W = W(G) = ∑e Ni , e  Nj, e         (4.19) 

 WW = WW(G) = ∑p Ni, p  Nj, p          (4.20) 

 
where Ni  and Nj denote the number of vertices lying on the two sides of the edge e or 
path p, respectively, having the endpoints i and j. Eq 4.19 follows the method of 
calculation given by Wiener himself:28  "Multiply the number of carbon atoms on one 
side of any bond by those on the other side; W is the sum of these values for all bonds". 
  The edge contributions, Ni,e Nj,e    and the path contributions, Ni,p Nj,p, to the global 
index are just the entries in the Wiener matrices,36,37 We and Wp , from which W   and WW  
can be calculated by 
 

 W = (1/2) ∑ i ∑ j [We]i j         (4.21) 

     WW = (1/2) ∑ i ∑ j [Wp]i j         (4.22)  
 

 The indices W  and WW  (calculated according to eqs 4.19-4.22) count all 
external paths passing through the two endpoints, i and j, of all edges and paths,  
respectively, in an acyclic graph.   

Other main definitions38,39 of the Wiener-type indices are based on the distance 
matrices, De and Dp  
 

 



M. V. Diudea, I. Gutman and L. Jantschi 110 

 W = (1/2) ∑ i ∑ j [De]i j         (4.23) 

     WW = (1/2) ∑ i ∑ j [Dp]i j         (4.24)  
 

Recall that Wiener28 has calculated the path number W  "as the sum of the 
distance between any two carbon atoms in the molecule, in terms of carbon-carbon 
bonds." In other words, W is given as the sum of elements above the main diagonal of the 
distance matrix, as shown by Hosoya.38  In opposition to the edge/path contribution 
definitions, (see eqs 4.19-4.22), relations (4.23) and (4.24) are valid both for acyclic and 
cycle-containing structures.  

It is useful to indicate in the symbols of the Wiener-type indices the matrix on 
which they are calculated, by a subscript letter (see below).  

The hyper Wiener index WWDp (calculated according to eq 4.24) counts all 
internal paths existing between the two endpoints, i and j, of all paths of a graph.39 In 
acyclic graphs, the WWWp values (cf. eq 4.22) are identical to WWDp values (cf. eq 4.24),  
by virtue of the equality of the sum of all internal and external paths, with respect to all 
pairs of vertices, i and j. 40  

 
 

4.2.1.2. Other Definitions 

 Attempts have been made to express W in terms of edge contributions and 
to extend such definitions (4.19) to cycle-containing structures41 - 44  
  

∑ ∑= e g g GW )(/#1          (4.25) 

 
where #g(G) is the number of different geodesics between the endpoints of g and sum is 
over all geodesics containing e and next over all e in G. 
 Klein, Lukovits and Gutman40 have decomposed the hyper-Wiener number of 

trees by a relation that can be written as: 

 2/)2(( /)2 WDTrWW e +=          (4.26) 
 
where  )2( eDTr  is the trace of the squared distance matrix. Relation (4.26) is used as a 
definition for the hyper-Wiener index of cycle -containing graphs. 
 Expansion of the right-hand side of eq 4.24, by taking into account the definition 
of Dp matrix,39, 40 results in a new decomposition (i.e., a new definition) of the hyper-
Wiener index WW  
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The first term is just the Wiener index, W . The second term is the non-
Wiener part of the hyper-Wiener index, or the contributions of Dp  when  | p | > 1. 
It is denoted by W∆  
 

 ∑
<
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          (4.28) 

 
Thus, the hyper-Wiener index can be written as 
 
 WW  =  W + W∆          (4.29) 
 

 W∆  is related to )2( eDTr  by6 
 

 W∆ = ( )2( eDTr ) - 2We) / 4         (4.30) 
 

W∆ is correlated 0.99975 with WW  in the set of octanes. Wiener indices express 
the expansiveness of a molecular graph.28, 32 Values of W and WW indices for a set of 
acyclic and cyclic octanes are presented in Table 4.1 (see also Table 4.5). These  values 
decrease as the branching increases within a set of isomers (see entries 1-18). 

 
Table 4.1 Wiener-Type Indices of a Set of Acyclic and Cyclic Octanes. 

 
No. Graph W WW w ww No. Graph W WW w ww 

1 P8 84 210 84 210 17 233MP5 62 111 62 111 
2 2MP7 79 185 79 185 18 2233MP4 58 97 58 97 
3 3MP7 76 170 76 170 19 112MC5 56 92 106 278 
4 4MP7 75 165 75 165 20 113MC5 58 100 104 266 
5 3EP6 72 150 72 150 21 IPC5 62 114 106 286 
6 25MP6 74 161 74 161 22 PC5 67 135 111 315 
7 24MP6 71 147 71 147 23 11MC6 59 103 119 337 
8 23MP6 70 143 70 143 24 12MC6 60 106 124 362 
9 34MP6 68 134 68 134 25 13MC6 61 110 123 355 
10 3E2MP5 67 129 67 129 26 14MC6 62 115 122 349 
11 22M2P6 71 149 71 149 27 EC6 64 122 124 368 
12 33M2P6 67 131 67 131 28 C8 64 120 160 552 
13 234M3P5 65 122 65 122 29 123MC5 58 99 109 290 
14 3E3MP5 64 118 64 118 30 1M2EC5 61 110 111 307 
15 224MP5 66 127 66 127 31 1M3EC5 63 119 109 294 
16 223MP5 63 115 63 115 32 MC7 61 109 142 451 

 
M = Methyl;  E = Ethyl;  P = Propyl;  IP = Isopropyl; 

PN = path of length N;  CN =  N-membered cycle. 
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4.2.1.3. Wiener and Hyper-Wiener Indices of Some Particular Graphs 

 
Path and Tree Graphs  

In path graphs, PN , the combinatoria l analysis lead to the following relation for 
the Wiener index45-47  
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In trees, TN, the branching introduced by the vertices r, of degree δ r > 2, will lower the 
value of W, as given by the Doyle-Graver formula 45, 48 
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where n1, n2,..., nδ r are  the number  of vertices in branches attached to the vertex r;  n1 + 
n2 +...+ nδ r + 1 = N, and summation runs as follows: first summation over all branching 

points in graph and the second one over all 







3
rδ  triplet products around a branching 

point. In eqs 4.31 and 4.32, the first term appears to be the size term while the second 
(and the third) one (ones) gives (give) account for the shape of  a  structure.47  
 A relation similar to (4.31) can be written for the hyper-Wiener index of the path 
graph47 
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In such graphs, WW can be written (cf eq 4.29) as6  
 
 WW (PN )  = W(PN ) + W∆ (P N ) = W∆(P N +1)       (4.34) 
 
which, iteratively, becomes 
 
 W∆(PN +1) = W(P1)+ W (P2) + ...+ W (PN-1) + W (PN ) + W∆(P1 )     (4.35) 
 
and, keeping in mind that W∆(P1) = 0,  one obtains39 

 

 W∆(PN )  =  W (P1)+ W (P2) + ...+ W(PN-1)       4.36) 
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This relation expresses the fact that, in n-alkanes, W∆  can be calculated from the 
Wiener index of the preceding homologues. By substituting W∆(PN) (eq 4.36) in eq 4.34, 
one obtains the expression for the hyper-Wiener number, WW  
 
 WW (PN )  = W (P1)+ W (P2) + ...+ W (PN-1) + W(PN )      (4.37) 
 
This relation was also reported by Lukovits.49  
 
 The relations (4.31) and (4.33) lead to the simpler relations49-52  
 
 W(P N )  =  N(N2 -1)/6          (4.38) 

 WW(P N )  = N(N-1)(N+1)(N+2)/24        (4.39) 
 

Cycle Graphs  

 In cycle graphs, CN, the following combinatorial rela tions were found39,52  
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where z = N mod 2. 

 Expansion of the above relations lead to34,52,53 
 

 8/)2()( zNNNCW −=          (4.43) 

 48/)2232)(2( zNNzNW? −+−−=)(CN        (4.44) 

 48/)3)(2)(1)((( zNzNzNzN)NCWW ++−+−−=       (4.45) 

 

From these relations, the following recurrences are straightforward39 
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W∆(CN+1)  = W∆ (CN)  + 
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from which it is easily seen that 
 
 WW (e+1) = W(e+1)   + W∆ (e+1)        (4.49) 
 
 Quantities WW(e+1), W(e+1)  and W∆(e+1) represent the bond contribution of the 
newly introduced edge (i.e., the (e+1)th   edge, where  e =N  ). 
  From the above relations one obtains39 

 

WW(CN+1) = WW(CN) + WW (e+1) = W(CN+1) + W∆(CN+1)  

    = W(CN) + W∆(CN) + W(e+ 1) + W∆(e+1)      (4.50) 
 
 
Spiro-Graphs  
 
 
 A spiro-graph is obtained from simple rings by fusing a single vertex of one ring 
with a single vertex of another ring, for giving a single vertex ( of degree four ) in the 
resulted coalesced graph.54 The process can be repeated, thus resulting in spiro-chains.55  
 For rings larger than three vertices, the construction of spiro-graphs have to take 
into account all the possibilities of connection. Thus, for four- and five-membered ring 
1,2- and 1,3- structures are considered whereas for six-membered rings, a third 1,4- 
structure is taken into account (see Figure 4.6). 

The formulas (Table 4.2) for evaluating the Wiener, W, and the hyper-Wiener, 
WW, indices were derived on the ground of LC  matrices,4,55 by the aid of the MAPLE V  
Computer Algebra System ( release 2 ). For other graph - theoretical aspects in spiro-
graphs see.54,56  
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C3

C4(1,3)

C5(1,3)

C6(1,3) C6(1,4)

C6(1,2)

C5(1,2)

C4(1,2)

 
 

Figure 4.6 Spiro-chains with three- (C3) to six- (C6) membered cycles. 
 

 
Table 4.2. Formulas for W and WW Indices of Spiro-Chains 

Spiro-Chain W Index WW Index 

Three-memberedcycles   n(2 n 2 + 6 n + 1)/3  n 2(n 2 + 6 n + 11)/6 
Four-membered cycles 

1,3- Spiro-chains 
 
  n (3 n 2 + 3 n + 2) 

 
 n (3 n 3 + 7 n 2 + 4 n + 6)/2 

1,2- Spiro-chains   n (3 n 2 + 15 n - 2)/2  n (3 n 3 + 26 n 2 + 85 n - 34)/8 
Five-membered cycles 

1,3-spiro-chains 
 
  n (4 n + 1)(4 n + 5)/3 

 
 2 n (n + 1)(2 n + 1)(2 n + 3)/3 

1,2-spiro-chains   n (8 n 2 + 48 n - 11)/3  2 n (n 3 + 10 n 2 + 38 n - 19)/3 
Six-membered cycles 

1,4-spiro-chains 
 
  n (25 n 2 + 15 n + 14)/2 

 
 n (75 n 3 +110 n 2 + 29 n +122)/8 

1,3-spiro-chains   n (25 n 2 + 60 n - 4)/3  n (25 n 3 +105 n 2 +173 n -51)/6 
1,2-spiro-chains   n (25 n 2 + 195 n - 58)/6 n (25 n 3+310 n 2+1547 n -847)/24 

  n = number of cycles in chain 
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Table 4.3 lists values of W  and WW in spiro-chains. 

 
Table 4.3.  Wiener, W, and Hyper-Wiener, WW, Indices  

of Spiro-Chains with Three- (C3) to Six- (C6) Membered Cycles. 
 

n C3 C 4 

(1,2) 
C 4 

(1,3) 
C 5 

(1,2) 
C 5 

(1,3) 
C 6 

(1,2) 
C 6 

(1,3) 
C 6 

(1,4) 
W index 

2 14 40 40 78 78 144 144 144 
3 37 105 114 205 221 376 401 426 
4 76 212 248 412 476 748 848 948 
5 135 370 460 715 875 1285 1535 1785 
6 218 588 768 1130 1450 2012 2512 3012 
7 329 875 1190 1673 2233 2954 3829 4704 
8 472 1240 1744 2360 3256 4136 5536 6936 

WW index 
2 18 66 66 140 140 305 305 305 
3 57 201 243 424 504 904 1044 1209 
4 136 457 652 952 1320 1979 2614 3399 
5 275 885 1440 1820 2860 3695 5470 7745 
6 498 1545 2790 3140 5460 6242 10167 15342 
7 833 2506 4921 5040 9520 9835 17360 27510 
8 1312 3846 8088 7664 15504 14714 27804 45794 

  
  
 From  Table 4.3 one can see that the values of W and WW increase as the type of 
connection between the cycles of a spiro-chain change from 1,2 to 1,3 and 1,4. This fact 
is in agreement with the idea that the Wiener-type indices express the expansiveness28 of  
structures:  a  spiro-chain  is as more expanded as the connectivity of its cycles involves 
more bonds. Conversely, a spiro-chain is as more branched as the number of separating 
bonds is lower.55 

 

 
4.2.1.4. Detour Extensions of the Wiener and Hyper-Wiener Indices 
 
 Extension of the distance based definitions of W and WW by changing the notion 
distance by that of detours, lead to the detour-analogues, w , 57-60 and ww.59 Thus, these 
indices are calculated as the half sum of entries in the corresponding detour matrices 
 
 

iji j ew ∑ ∑= ][)2/1( ?          (4.51) 

 
iji j pww ∑ ∑= ][)2/1( ?          (4.52) 

Values of  these indices for a set of acyclic and cyclic octanes are included in Table 4.1. 
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Formulas for calculating the detour indices in simple cycles have been derived by 

Lukovits59 

 
  w      =  N (3N 2  - 4N + z) / 8         (4.53) 

 ww   =  N (7N 3 - 3N 2 - 10N + 3z(N + 1)) / 48                   (4.54)  
              z = N mod 2 
  

The detour and hyper-detour indices have promoted  very interesting correlating 
searches.59,60  
  
 
4.2.1.5. Walk Numbers, eWM : Wiener Indices of Higher Rank     

 
 The eWM algorithm16,39 (see Sect. 2.1 - eqs. 2.5-2.8) supplies global walk 
numbers, eWM  , as the half-sum  of the local numbers eWM,i 
  

iji j
e

i iM
e

M
e WW ∑ ∑∑ == ][)2/1()2/1( , M       (4.55)  

 

  The subscript M denotes the matrix on which the algorithm runs, thus giving 
walk degrees weighted by the property collected by that matrix. The algorithm eludes the 
raising at power e of the matrix M (see the last member of eq 4.55). When M is the 
distance matrix (or other matrix involving distances or paths), the walk number eWM  is 
just a Wiener-type index of rank e :39 eWDe  denotes a Wiener (Hosoya) number;  eWWe   
represents a Wiener (Wiener) number; eWWp  denotes a hyper-Wiener (Randic) number  
and so on. Walk numbers of rank 2 are listed in Table 4.4 for the octane isomers.39 The 
degenerate values are shaded. 
 

Table 4.4.  Walk Numbers, eWM  : e = 2,  of  Octanes. 
 

Graph 2WDe 2WWe
 2WDp 2WWp Graph 2WDe 2WWe

 2WDp 2WWp 

P8 1848 2100 12726 12054 3E2MP5 1172 1640 4646 4992 
2MP7 1628 2000 9711 9829 22M2P6 1316 1808 6277 6779 
3MP7 1512 1892 8256 8338 33M2P6 1176 1664 4878 5221 
4MP7 1476 1848 7830 7815 234M3P5 1096 1648 4076 4700 
3EP6 1360 1740 6412 6460 3E3MP5 1072 1564 3916 4222 

25M2P6 1420 1900 7171 7825 224M3P5 1128 1708 4406 5165 
24M2P6 1312 1792 6023 6536 223M3P5 1032 1600 3653 4220 
23M2P6 1280 1748 5772 6163 233M3P5 1000 1564 3402 3917 
34M2P6 1208 1684 5050 5426 2233M4P4 868 1516 2521 3169 

 
M = Methyl;  E = Ethyl; PN = path of length N 
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eWM   numbers can be calculated by the aid of the walk matrix, W(M1,M2,M3) (see 
sect. 2.14).  
 Walk numbers, eWM , are useful in discriminating nonisomorphic isomers. 
Usually a rank of two suffices in discriminating  i.e., the octane isomers.39 Special graphs, 
need however a rank higher than two (see Chap. 8). 
 Walk numbers, as the classical W index, showed good correlation with octane 
numbers, ON.39 

 

 

4.2.1.6. Tratch Extension of the Wiener Index 
 
 Tratch et al.61 proposed an extended distance matrix, E, which in the case of 

trees, we considered it as a distance-extended Wiener matrix and denoted by D_Wp (See 

Sect. 2.12). The half sum of its entries supplies a distance-extended Wiener index, 

denoted here D_WW  

 

 D_WW = (1/2)∑ i ∑ j [D_Wp]ij  = (1/2)∑ i ∑ j dij Ni Nj                              (4.56) 

 
where dij is the distance between the vertices i and j whereas Ni , Nj have the same 
meaning as in eq 4.19. The extension by the distance of indices other than the Wiener 
index was used by Diudea62 as a basis in the construction of 2D- and 3D- distance-
extended Cluj indices (See Chap. 6 and Chap. 7). 
 

 

4.2.1.7. Other Extensions of the Wiener Index 
 

When De in eq 4.23 is changed by the 3D-Distance matrix (actually the G matrix 
- see Sect. 2.5) a 3D- Wiener index, 3W, is obtained.63,64  

Marjanovic and Gutman65 derived an index counting all shortest paths in a graph. 
The index is identical to W in trees but is different in cycle -containing graphs. 

Lukovits66 proposed the all path index, P, with the hope of an unitary description 
for both acyclic and cycle -containing molecular graphs.  

Gupta et al.67 defined a superpendentic index, based on the pendent matrix , which 
is a submatrix of De obtained by retaining only the columns corresponding to pendent 
vertices (i.e., vertices of degree 1). 

Szeged and Cluj indices are the most important extensions of the Wiener index. 
They will be detailed in Chap. 5 and 6, respectively. 
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4.2.2. Balaban Index, J 
 

 Balaban68 applied a  Randic formula on the distance sum DSi (i.e., row sum in the 
distance matrix) for defining the J index 
 
 

 ∑
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        (4.57) 

                                   
where Q is the number of edges, DSi and DSj denote the distance sum of vertices i and j, 
respectively and µ is the cyclomatic number (i.e., the number of rings in graph). The 
factor before sum takes into account the variation of edge number with the cyclicity, thus 
being a normalizing factor. This index shows an extremely low degeneracy (in alkanes, 
the first degenerated pair appears in dodecanes),69  a good variation with the molecular 
branching and a satisfactory correlational ability. Figure 4.7 illustrates the calculus of j 
for the graph G4.3 . 
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19

17
                      

 
               
 

Figure 4.7. Balaban index J for the graph G4.3 
 
 

Various extensions of J index, taking into account the chemical nature of vertices 
and edges6 were proposed and tested for correlating ability. 
 

 
 

 
 
 
 
 
 

 J = 7 [ 4(19x13)-1/2 + 2(11x13) -1/2  + (11x17) -1/2 ] = 3.4642 
 

G4.3{DSi} 
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 4.3.  INDICES  BASED  ON  RECIPROCAL  MATRICES 
 
  

 The reciprocal matrix RM of a square matrix M was defined in Sect. 2.13. The 
half sum of entries in such a matrix is an index, referred to as a Harary-type index (name 
given in honor of Frank Harary)52, 70,7 1  
 
 ∑ ∑==

i ijj
GHH MM ][)2/1()( RM         (4.58) 

 
the subscript M being the identifier for the matrix M.  
 The original Harary index, HDe , is constructed on the reciprocal distance matrix, 
RDe. 70,71 The entries in this matrix suggest the interactions between the atoms of a 
molecule, which decrease as their mutual distances increase. Table 4.5 lists values HDe 
for octanes. One can see that they increase with the branching (in the opposite to the 
values of Wiener index) within the set of isomers and no degeneracy is encountered. This 
index was tested6 for correlations with boiling points and van der Waals areas of octanes. 
 By analogy to HDe, Diudea52 proposed the HWe and HWp indices, on the reciprocal 
Wiener matrices. These indices correlate excellent with the octane number, ON (r = 
0.992; s = 3.313; F = 409.967 for HWp)52 HWe shows the same degenerate pairs (marked 
by italics) as the Wiener index, within this set of octane isomers (see Table 4.5).  

 
Table 4.5. Wiener-Type and Harary-Type Indices of Octanes. 

 
Graph W WW   WW(A,De,1) HDe HWe HDp HWp  HW(A,De,1) 

P8 84 210 256 13.7429 0.6482 10.56429 5.8593 7.4281 
2MP7 79 185 253 14.1000 0.7077 10.86191 7.8938 7.4450 
3MP7 76 170 209 14.2667 0.7244 10.98095 8.5244 7.6542 
4MP7 75 165 208 14.3167 0.7286 11.01429 8.6897 7.6562 
3EP6 72 150 172 14.4833 0.7452 11.13333 9.2952 7.8529 

25M2P6 74 161 207 14.4667 0.7673 11.16667 10.1784 7.5312 
24M2P6 71 147 194 14.6500 0.7839 11.30000 10.8923 7.6650 
23M2P6 70 143 181 14.7333 0.7881 11.36667 11.0992 7.8140 
34M2P6 68 134 167 14.8667 0.8006 11.46667 11.6339 7.9382 
3E2MP5 67 129 161 14.9167 0.8048 11.50001 11.7881 7.9500 
22M2P6 71 149 208 14.7667 0.7839 11.43333 10.9589 7.5250 
33M2P6 67 131 179 15.0333 0.8048 11.63333 11.8548 7.7762 

234M3P5 65 122 167 15.1667 0.8476 11.73333 13.7587 7.8996 
3E3MP5 64 118 145 15.2500 0.8214 11.79999 12.5714 8.0202 
224M3P5 66 127 209 15.1667 0.8435 11.76667 13.5768 7.4805 
223M3P5 63 115 164 15.4167 0.8601 11.96667 14.4018 7.8850 
233M3P5 62 111 147 15.5000 0.8643 12.03334 14.5976 7.9971 
2233M4P4 58 97 139 16.0000 0.9196 12.50000 17.4196 7.9643 
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In path graphs, a composition relation of the form: HWp(PN ) = HWe(P1)+ HWe(P2) 
+ ...+  HWe(PN-1)  +  HWe(PN ) holds. It is analogous to that found by Lukovits49 for the 
hyper Wiener index WW (see eq. 4.37). Despite the equality WWDp = WWWp, a similar 
composition relation for HDp(PN ) was not found. 

Another Harary-type index is HW(A,De,1). It is calculated on the restricted random 
walk  matrix of Randic,72 which is identical to the RW(A,De,1)  matrix52 (see Sect. 2.14). 
Values of  this index, for octanes, are listed in Table 4.5, along with the corresponding 
W(A ,De,1)   values . Other Harary indices are exemplified in Table 4.5. As a general feature, 
the Harary-type indices possess more powerful discriminating ability than the 
corresponding Wiener-type indices (see Table 4.5). 
 Formulas52 for calculating the Harary-type indices given in Table 4.5 and the 
corresponding Wiener-type indices, for path, cycles and stars, are listed in Table 4.6.  
Formulas for Harary-detour indices73 are also included. Some interrelating formulas are 
given in Table 4.7. The Harary-type indices found  interesting applications in correlating 
studies and particularly in discriminating sets of isomers.74  
 

Table 4.6. Formulas for Wiener- and Harary-Type Indices  
of Paths, Cycles and Stars 

 
Index Sum Final Relation Examples 

    Paths 
1      WDe                                          ∑

−

=
−

1

1
)(

N

i
iiN  )1)(1(

6
1

+− NNN  N = 11 
220 
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1

1)(
N

i
iiN  

-N + NΨ(N) + 1+ Nγ N = 11 
22.219 
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1
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i
iiN  )1)(1(

6
1 +− NNN  N = 11 

220 
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11)(
N
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0.533 
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−
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715 
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Table 4.6 (continued) 

   Cycles 
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Table 4.6 (continued) 
   Stars 
19    WDe          ∑
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1
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iN            2)1( −N  
N = 11; 100 

20    HDe          ∑
−

=

−+−
2

1

12x1
N

i

iN  )1)(2(
4
1

−+ NN  
N = 11; 32.5 

21    WWe          ))1(x1)(1( −− NN             2)1( −N  N = 11; 100 

22    HWe           ))1(x1)(1( 1−−− NN              1 N = 11; 1 

23    WWDp          ∑
−

=

+−
2

1

3x1
N

i

iN   )43)(1(
2
1 −− NN  

N = 11; 145 

24    HDp          ∑
−

=

−+−
2

1

13x1
N

i

iN  )1)(4(
6
1 −+ NN  N = 11; 25 

25    HWp  ∑
−

=

− +−−
2

1

1 1x1x))1(x1)(1(
N

i
iNN  )43(

2
1 2 +− NN  N = 11; 46 

26   W(A,De,1) 
∑

−

=
−+−+−

2

1
)1())1(1)(1(

2
1 N

i
NiNN      )22)(1(

2
1 2 +−− NNN            

N = 11; 505 

27  HW(A,De,1) ∑
−

=

− −+−+−
2

1

1 )1())1(1)(1(
2
1 N

i
NiNN

-1            1−N  N = 11; 10 

 
     y = N mod 4;  z = N mod 2;   γ(x) = int(exp(-t)*t^(x-1), t = 0,..infinity;   
    ψ (x) =  diff(ln(γ(x),x);   ψ (n,x) = diff(ψ (x), x$n); ψ (0,x) = ψ (x);    
 
 

 
Table 4.7. Interrelating Formulas 
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4.4.  INDICES  BASED  ON  COMBINATION  OF  MATRICES 
 
 
4.4.1. Schultz-Type Indices 
 
 Among the modifications of the Wiener index, the molecular topological index,75 
MTI, (or the Schultz number) was extensively studied76-88 by virtue of its relatedness with 
the Wiener index. It is defined as 
 
 MTI = MTI(G) = ∑i [deg(A + De)]i            (4.59) 

where A and De are the adjacency and the distance matrices, respectively and deg = (deg1, 
deg2,..., degN) is the vector of vertex degrees of the graph. 
In matrix form (see also Sect. 2.15), this index can be written as 
 

ee DAAee IIMTI ,),( 2 +=+=+== TT2TT
DAA, uuADuuA)uDuA(AuuSCH  

                         (4.60) 

where 2AI is the sum of squared degrees (it is exactly M1, the Zagreb Group first index) 

and IADe  is the true Schultz index (i.e., the non-trivial part87 of MTI ). In trees, MTI and 
IA,De are related to the classical Wiener index by85-87  
  
 MTI = 4W + 2P2 - (N-1)(N-2)         (4.61) 

 IA,De =  4W - N(N-1)          (4.62) 

where  P2   the number of paths of length 2 (or  Platt,9  or Gordon-Scantlebury,11  or also 
Bertz12 number) 
 

 ∑
=









=

N

i

iv
P

1 22            (4.63) 

 
Schultz and co-workers proposed some weighting schemes in accounting for the 

chemical nature and stereochemistry of molecular graphs.76-83 Estrada89 calculated an 
index based on distances of edges in a graph. It is the MTI index of the corresponding line 
graph (see also the ε index, Sect. 4.1). 

In the extended Schultz matrices,90  (see Sect. 2.15) a decomposition similar to eq 
4.60 leads to  
 

          
)64.4(

311

31

,,

31131),,(

MMAM

)MA,,(M

II

)I(SCH
31

+=

+=+== TTTT
MAM uMuMAuuM)uM(AuMuuSCH
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where none of the indices AMI ,1
and 

31,MMI  are trivial. Values of AMI ,1
 and the global 

indices )( ),,( 31 MAMSCHI , calculated as the sum of all entries in the Schultz matrix of 

sequence (De, A, De), and  (Wp, A, Wp)  are listed, for octanes, in Table 4.8. They were 
tested for correlating ability.88,91,92  
 

Table 4.8. AMI ,1
  and )( ),,( 31 MAMSCHI  Indices of Octane Isomers. 

 
 

Graph ADeI ,  AWe
I ,  )( ),,( ee DADSCHI  )SCH( ),,( ee WAWI  

P8 280 322 3976 4522 
2MP7 260 324 3516 4324 
3MP7 248 318 3272 4102 
4MP7 244 316 3196 4012 
3EP6 232 306 2952 3786 

25M2P6 240 326 3080 4126 
24M2P6 228 320 2852 3904 
23M2P6 224 318 2784 3814 
34M2P6 216 314 2632 3682 
3E2MP5 212 308 2556 3588 
22M2P6 228 330 2860 3946 
33M2P6 212 322 2564 3650 
234M3P5 204 320 2396 3616 
3E3MP5 200 314 2344 3442 
224M3P5 208 332 2464 3748 
223M3P5 196 326 2260 3526 
233M3P5 192 324 2192 3452 

2233M4P4 176 338 1912 3370 
 
 
 An extended Schultz index is walk matrix calculabe by39,90 

 

)65.4(),1,(),1,(

)),(1,(),,(),,(

311

3131
)(

T
MM

T
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T
MAM

T
MAM

uuWuuW

uuWuuSCH
31

+=

== +MAMSCHI
 

 

In the Schultz matrix, one of the square matrices, say M3, may be a non-
symmetric one. In such a case, )MA,,(M 31SCH  is no more a symmetric matrix. Two 

composite indices can be now calculated: one is )( ),,( 31 MAMSCHI , and the second is 

calculated similar to the hyper-Cluj indices (see Chap. 6) 
 

∑= p jiij)MA,,(M 31
SCHI ])([])([)(2 )A,M,(M)A,M,(M 3131

SCHSCH     (4.66) 
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The summation goes over all paths p(ij). As symmetric matrices: A, D, ∆ and as 
unsymmetric matrices, Cluj and Szeged matrices can be used. Such composite indices are 
very discriminating among non-isomorphic isomers. (see Chap. 8). 

 
 

4.4.2. QXR, Local Vertex Invariants  
 
 Filip, Balaban and Ivanciuc7 have combined matrices and vectors to produce 
novel vectors. The model provides sets of LOVIs (local vertex invariants) by solving the 
following system: 
 Q x X = R           (4.67) 

where Q is a topological matrix derived from the adjacency matrix and R is a column 
vector which encodes either a topological property (vertex degree, distance sum etc.) or 
chemical property (atomic number, Z). X is the column vector of LOVIs (i.e., solutions of 
eq 4.67).  

The numerical solutions will depend on the specification of Q and R. In case: Q 
= A + P x I (P = Z; I is the unity matrix) and R = V  (vertex valency vector), eq 4.67 
becomes: 
 (A + Z x I) x X = V          (4.68) 
 
  AZV-LOVIs are thus obtained (see  examples in Figure 4.8).7,93  AZVs allow the 
construction of the so called triplet TIs, showing very low degeneracy. 
 

                   Graph                       A + Z x I     (A + Z x I) x X = V                LOVI 
 

_ 

          

4

13 2

5
       6 1 1 1 0    6x1  + x2 + x3 + x4           = 3    x1  = 0.4281 

                         1 6 0 0 1    x1 + 6x2                + x5   = 2    x2 = 0.2409 
                    1 0 6 0 0     x1         + 6x3                 = 1    x3 = 0.0953 
                    1 0 0 6 0     x1                 + 6x4          = 1    x4 = 0.0953 
                    0  1 0 0 6            x2                + 6x5  = 1    x5 = 0.1265 
 
                   6 1 1 0 0     6x1  + x2 + x3                 = 2    x1 = 0.2424 
                                 1 6 0 1 0      x1  + 6x2     + x4             = 2    x2 = 0.2727 
                                  1 0 6 0 1      x1         + 6x3     + x5    = 2    x3 = 0.2727 
                             0 1 0 6 0           x2         + 6x4           = 1    x4 = 0.1212 
                                  0 0 1 0 6                   x3        + 6x5      = 1   x5 = 0.1212 

 

Figure 4.8. Calculation of AZV-LOVIs . 

1

23
5

4

 

1

23

5 4 

6 1 1 1 1    6x1 + x2 + x3 + x4  + x5      = 4   x1 = 0.6250 
1 6 0 0 0      x1+ 6x2                           = 1    x2 = 0.0625 
1 0 6 0 0      x1        + 6x3                  = 1    x3 = 0.0625 
1 0 0 6 0      x1                 + 6x4         = 1    x4 = 0.0625 
1 0 0 0 6      x1                        + 6x5   = 1    x5 = 0.0625 
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 4.5.   INDICES  BASED  ON  POLYNOMIAL  COEFFICIENTS  
 

4.5.1. Hosoya Index, Z 
 
 Hosoya38 first introduced the notion of topological index, and proposed the Z 
index, as : 

 ∑
=

==
]2/[

0
),()(

N

k
kGaGZZ         (4.69 ) 

 
where a(G,k) is the number of k-matchings of G, N is the number of vertices of G and 
[N/2] is the integer part of the real N/2 value. By definition a(G,0) = 1 and a(G,1) is equal 
to  the number of edges of G. The calculation of the Z index for the graph G4.3 is 
illustrated in Figure 4.9. 
 
 

 
 

 
 
         
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Z(G4.3) = 1 + 7 + 12 + 4 + 0 = 24 
 

Figure 4.9 Calculation of the Hosoya index, Z, for the graph G4.3. 
 
 
 
The a(G,k)'s are the coefficients of the Z-counting polynomial, Q(G;x), of G (see also 
Chap. 3)  

 ∑
=

==
]2/[

0
),();(

N

k

kxkGaxGQQ(G)     (4.70) 

a(G4.3,2) = 12 

a(G4.3,3) = 4 

a(G4.3,4) = 0 
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The Z index is equal to the sum of the coefficients of the Q(G;x) polynomial 

 Z = Q(G;1)                       (4.71) 

In larger graphs,  the polynomial can be computed by a recursive relation94  

 )];[();();( xeGxQxeGQxGQ −+−=        (4.72) 

where G-e and G-[e] are the spanning subgraphs of G resulted by removing an edge and 
the edge together with its incident edges, from G, respectively. 
 From an edge-weighted graph, Plavšic et al.95 derived a weighted Z* index, thus 
making possible the consideration of the chemical nature of molecular bonds.  
 Randic proposed the Hosoya matrix (see Sect. 2.10) as a basis for calculating two  
indices, called path numbers 1Z and 2Z . Plavšic et al.96 demonstrated analytical 
relationships between these path numbers and the classical index Z.  

Plavšic et al.95 also extended the definition of the Z matrix to cycle-containing 
graphs 

)(/)(][
)(

GDpGZZ ij
GDp

ij
k

ij
ijij

k 












−= ∑

∈

        (4.73) 

where the non-diagonal entries are taken as the arithmetic mean among all )( ij
k pGZ −  

numbers resulting by removing each time a geodesic (i,j) of G and Dij(G) is the 
cardinality of the set of these geodesics. Of course, the edge-weighted scheme was also 
extended. The invariants of the generalized Z matrix95,97  
 
 ∑= ij

kk ZZ ][            (4.74) 

may offer a family of descriptors favoring a simpler interpretation of the regression 
equations than a set of ad-doc descriptors. Correlating studies were performed both on Z 
and kZ  indices.95  
 Invariants calculated as sum of polynomial coefficients (cf. eqs 4.70 and 4.71), for 
the characteristic polynomial of various topological matrices were reported by Ivanciuc et 
al.98  Some of them showed good selectivity among isomeric structures. 
 
 

4.6.  INDICES  BASED  ON  EIGENVALUES  AND  EIGENVECTORS 
 
 Eingenvalues and eigenvectors, resulting by complex manipulations on square 
matrices, often enable a structural interpretation. 
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4.6.1. Eigenvalues 
 
 The first eigenvalue of the adjacency matrix, λ1(A), (see Chap. 3) has been 
proposed by Lovasz and Pelikan99 as a measure of molecular branching. In the case of 
distance-distance matrix ,100 the leading eigenvalue λ1(DD) indicates the molecular 
folding. The corresponding eigenvalue of the Wiener matrix, λ1(Wp), can be accepted as 
an alternative to λ1(A) in evaluating the branching of alkanes.37 Eigenvalues (minimum or 
maximum values) of various topological matrices are often used in correlating studies.98 
 The eigenvalues of the Laplacian matrix, λi(La), are used in calculating the 
number of spanning trees, t(G), in graph101 (see Sect. 2.2). 
 Mohar102 defined two topological indices, TI1 and TI2 on the ground of Laplacian 
spectrum 

 ∑
=

=
N

i
iNQNTI

2
1 )/1()/log(2)( λ      (4.75) 

 (TI)2  = 4/(Nλ2)        (4.76) 
 
In trees, TI1 is related to the Wiener index  
 
 (TI)1   =  2 log (Q/N)W       (4.77) 
 
 Table 4.9. shows eigenvalues of matrices A, De, Wp and La, Mohar indices and 
their correlation   with λ1(A) within the set of octanes.  
 
           Table 4.9. Eigenvalues of A, De, Wp and La and Mohar Indices of Octanes. 

Graph λ1(A) λ1(De) λ1(Wp) λ2(La) (TI )1 (TI )2 
P8 1.879 21.836 57.170 0.1522 -9.7826 3.2843 

2MP7 1.950 20.479 52.612 0.1667 -9.1627 2.9991 
3MP7 1.989 19.763 48.406 0.1864 -8.8148 2.6825 
4MP7 2.000 19.542 46.661 0.1981 -8.6988 2.5245 
3EP6 2.029 18.779 42.204 0.2434 -8.3508 2.0542 

25M2P6 2.000 19.111 47.724 0.1864 -8.5828 2.6825 
24M2P6 2.042 18.396 43.419 0.2137 -8.2349 2.3399 
23M2P6 2.074 18.181 42.059 0.2243 -8.1189 2.2293 
34M2P6 2.095 17.676 39.290 0.2509 -7.8869 1.9930 
3E2MP5 2.101 17.419 37.428 0.3065 -7.7709 1.6315 
22M2P6 2.112 18.413 44.471 0.2023 -8.2349 2.4721 
33M2P6 2.157 18.308 38.533 0.2538 -7.7709 1.9702 

234M3P5 2.136 16.808 37.025 0.2679 -7.5390 1.8660 
3E3MP5 2.189 16.670 34.142 0.3820 -7.4230 1.3090 
224M3P5 2.149 17.034 39.141 0.2384 -7.6549 2.0969 
223M3P5 2.206 16.315 34.994 0.2888 -7.3070 1.7313 
233M3P5 2.222 16.068 33.468 0.3187 -7.1910 1.5690 
2233M4P4 2.303 14.937 30.331 0.3542 -6.7271 1.4114 
r vs λ1(A) 1.000 0.964 0.958 0.867 0.979 0.903 
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The next step on this way was the Quasi-Wiener index,101,103,104 W*, defined as 
 

  ∑
=

=
N

i i
N

2

1
*

λ
W           (4.78) 

where λi, i = 2, 3, ..., N denote the positive eigenvalues of the Laplacian matrix. In acyclic 
structures, W* = W,  but in cycle -containing graphs the two quantities are different. In 
benzenoid molecules, a linear (but not particularly good) correlation between these 
indices was found.105 
 Klein and Randic106 have considered the so-called resistance distances between 
the vertices of a graph, by analogy to the resistance between the vertices of an electrical 
network (superposable on the considered graph and having unit resistance of each edge). 
The sum of resistance distances is a topological index which was named the Kirchhoff 
index.106,107 It satisfies the relation106,108  
 
 Kf  =  N Tr(La♣)          (4.79) 

where Tr(La♣) is the trace of the Moore-Penrose generalized inverse109,110 of the 
Laplacian matrix.  Further, Gutman and Mohar have demonstrated  the identity of the 
quasi-Wiener and the Kirchhoff numbers for any graph.108 
  

4.6.2. Eigenvectors  
 
 Huckel, in his theory, has equated the eigenvectors of the adjacency matrix for 
weighting of atomic orbitals in the construction of molecular orbitals. Balaban et al.111 
and Diudea et al.112 have used the eigenvectors for defining several topological indices 
which showed good correlation with some physico-chemical properties and interesting 
intra- and inter-molecular ordering. 
 
 

4.7.  INDICES  BASED  ON  GRAPHICAL  BOND  ORDER 
 
4.7.1. X’/X Indices  
 

The molecular descriptors X’/X are defined, according to the concept of graphical 
bond orders,5,113 by the scenario 
 

 Xe = X(G - e)           (4.80) 

 X’ = ∑e Xe             (4.81) 
 X = X(G)           (4.82) 

 X’/X = (∑e  Xe )/X                         (4.83) 
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where: - G-e denotes the spanning subgraph (connected or not) resulted by cutting the 
                          edge e; 
           - X(G-e)  is a given topological index calculated on that subgraph (if disconnected, 
                           the index is calculated by summing the values on fragments, viewed as 
                           individual graphs); 
          - Xe is the edge contribution to the global index X’, which is normalized by dividing 
                           it by X(G) 
The overall index X’/X is a bond-additive molecular characteristic. The quotient Xe/X 
(referred to as graphical bond order) can be used for weighting the adjacency matrix. 
 The algorithm is quite general and allows one to include molecular properties as 
source data in the construction of X’/X descriptors. 
 Figure 4.10 illustrates the construction of some indices X’/X for the graph G4.3 
(234M3P5). 
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P'/P    = [ 4 x 21 + 21 + 2x(3 + 10) ]/28                                        =  4.6786  
χ‘/χ    = [ 4 x 3.1807 + 3.1259 + 2x(1.4142 + 2.2700) ]/3.5534   =  6.5338 

  J’/J    = [ 4 x 3.1440 + 2.9532 + 2x(1.6330 + 2.5396) ]/3.4643   =  6.8916 
 W’/W  = [ 4 x 46 + 48 + 2x(4 + 18) ]/ 65                                       =  4.2462 

 
 

Figure 4.10. Construction of some X’/X indices for the graph G4.3  (234M3P5). 
 
 
The most important invariant of this type is P'/P which, in trees, is related to the Wiener 
index by114  
 
 P'/P = (N-1) - [2/(N 2 -N)]W         (4.84)  
 
 
 

G4.3 (234M3P5) 

23M2P5 

24M2P5 
P3 2MP4 

G P χ J W 

P3 3 1.4142 1.6330 4 
2MP4 10 2.2700 2.5396 18 

23M2P5 21 3.1807 3.1440 46 

24M2P5 21 3.1259 2.9532 48 

234M3P5 28 3.5534 3.4643 65 
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4.7.2. SP Indices 
 
 SP (Subgraph Property) indices115,116 represent an alternative to the X’/X 
descriptors and are basically graphical bond orders.113 

 They are constructed by the following algorithm: 
 (i) For each edge e∈E(G), one defines, two subgraphs, SL,e and SR,e, which collect 
the vertices lying to the left and to the right of edge  e; 
 (ii) Subgraph properties, P(SL,e) and P(SR,e), are calculated by summing the 

vertex contributions, Pi (taken as LOVIs from the global property P(G) = Σ iPi) of all 
vertices i belonging to the given subgraph: 
 

 ∑
∈

=
eLSi

ieL PSP
,

)( ,           (4.85) 

 ∑
∈

=
eRSi

ieR PSP
,

)( ,           (4.86) 

 

By dividing by P(G), normalized values P'(Se ), in the range 0 to 1, are obtained. 
 (iii) The edge contributions SPe are evaluated as products to the left and to the 
right of edge e of the normalized values P'(Se). Since P'(Se) is taken as a part of the graph 
property, it is obvious that only one normalized value is needed: 
 
 SPe = P'(SL,e) P'(SR,e) = P'(SL,e)( 1 - P'(SL,e))       (4.87) 
 
 (iv) The global SP index is calculated by summing the edge contributions for all 
edges in graph: 
 

 ∑==
e

eSPSP(G)SP           (4.88) 

  
The SP descriptors represent an extension of the procedure for calculating the 

Wiener index W. It is easily seen that, if P =V= N, then SN = W/N2. Since this 
algorithm works with LOVIs, it becomes obvious the necessity of topological indices 
defined on vertex as a source for novel SP indices. Table 4.10 illustrates the construction 
of SP indices for some properties (Pi = Ni ; 1Wi

  ; χi  ). 
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Table 4.10. Construction of SP Indices for the Graph G4.3 

(see Figure 4.10; Pi = Ni ; 1Wi ; χ i ; and  P(G) = Σi Pi ) 
 
              vertex    Ni       1Wi            χ i         
           
           1         1         1        0.57735            
             2         1         3        1.48803            
             3         1         3        1.24402            
            4         1         3        1.48803            
             5         1         1        0.57735            
          6         1         1        0.57735            
           7         1         1        0.57735            
           8         1         1        0.57735            
      

                         P(G)       8        14       7.10684          
 
      S Ne :           4[ 1/8 x 7/8 ] = 4[ 0.125 x 0.875 ] = 4 x 0.10938 
                          1[ 1/8 x 7/8 ] =   [ 0.125 x 0.875 ] =       0.10938 
                          2[ 3/8 x 5/8 ] = 2[ 0.375 x 0.625 ] = 2 x 0.23438 
            

S N = ∑e S Ne  = W/N 2 = 65/(8x8) = 1.01563  

     
     S 1We :         4[ 1/14 x 13/14 ]= 4[ 0.07143 x 0.92857 ]  = 4 x 0.06633 
                           [ 1/14 x 13/14 ] =  [ 0.07143 x 0.92857 ]  =       0.06633 
                         2[ 5/14 x   9/14 ] = 2[ 0.35714 x 0.64286 ] = 2 x 0.22959 
         

S 1W = ∑e S 1We  = 0.79082 

 
     Sχe :           4[ 0.57735 x 6.529486 ]/( 7.10684 )2 = 4 x 0.07464 
                         [ 0.57735 x 6.529486 ]/( 7.10684 )2 =       0.07464 
                       2[ 2.64273 x 4.464106 ]/( 7.10684 )2 = 2 x 0.23358 
 
             Sχ   = ∑e Sχ e = 0.84035 
 
 
 The SP indices show a higher discriminating power in comparison to the original 
indices. The Sχ  eW indices offer a family of indices, suitable in correlating studies (e.g., 
they supplied the best two variable model for the boiling point of octanes.115,116   
 
 



M. V. Diudea, I. Gutman and L. Jantschi 134 

4.8.  INDICES  BASED  ON  LAYER  MATRICES 

 
 Layer matrices LM have been used to derive two types of indices: (i) indices of 
centrality C(LM) and (ii) indices of centrocomplexity X(LM).4,16 The X-type indices 
originated the famous super-index EAID.117  
 

4.8.1. Indices of centrality 
 
 Indices of centrality4,16 C(LM) look for the center of the graph and are defined as 
 

 ∑
=

−=
iecc

j

dj
ijLMC

1

1/ ])]([[)( LMi                                        (4.89) 

 ∑=
i

iLMCLMC )()(           (4.90) 

where d is a specified topological distance (eg. d = 10). 
 

4.8.2. Indices of centrocomplexity 
 
 These indices express the location vs. a vertex of high complexity (eg. a vertex of 
high degree or a heteroatom).4  They are defined as 
 

          ∑
=

±−=
iecc

j
i

zj
ij tLMX

0

1]10][[)( LMi                      (4.91) 

          ∑=
i

iLMXLMX )()(          (4.92) 

where z denotes the number of bits (of the integer part) of max([LM]ij) in G and ti  is a 
weighting factor for heteroatom specification. For the graph G4.3, matrices L1W and LDS 
and the corresponding indices are shown in Table 4.11. 
 
 

Table 4.11. Layer Matrices L1W and LDS and the C and X  Indices  
(with d = 10 and t = 1, Respectively) for the Graph G4.3. 

 
 

   1   1 3 4 4 2     0.1897        1.3442      19 13 30 30 38     0.0968     19.13303038  
   2   3 5 4 2 0     0.2684        3.5420      13 49 30 38 00     0.1555     13.49303800 
   3   3 7 4 0 0     0.3945        3.7400      11 43 76 00 00     0.2608     11.43760000 
   4   3 5 4 2 0     0.2684        3.5420      13 49 30 38 00     0.1555     13.49303800 
   5   1 3 4 4 2     0.1897        1.3442      19 13 30 30 38     0.0968     19.13303038 
   6   1 3 4 4 2     0.1897        1.3442      19 13 30 30 38     0.0968     19.13303038 
   7   1 3 6 4 0     0.2461        1.3640      17 11 26 76 00     0.1458     17.11267600 
   8   1 3 4 4 2     0.1897        1.3442      19 13 30 30 38     0.0968     19.13303038 

 
           Global Index:    1.9365      17.5648                                   1.1052    132.06847352 

        L1W      C(L1W)i     X(L1W)i           LDS          C(LDS)i      X(LDS)i 

 



Topological Indices 135 

 These indices were useful in studies of intramolecular ordering of subgraphs of 
various size as well as of intermolecular ordering (see Chap. 8). 
 
4.8.3. EATI Super-Indices 
 
 Two super-indices, EATI1 and EATI2, were recently proposed by Hu and Xu on 
weighted molecular graphs.117,118  They follow the scenario described below. 
 
(1). Set the weight of atoms.  

For EATI1 the v
iδ  valencies of Kier and Hall17 are used (see Sect. 8.3.2.1). The index 

EATI2 benefits of a more elaborated weight, based on layer matrices: the connectivity 

valence matrix CVM (whose element [CVM ]ij is the sum of  v
iδ for all vertices belonging 

to the jth layer) and the bond matrix B (whose element [B]ij is defined as the sum of 
conventional bond orders - see below - of  bonds connecting two subsequent layers). The 
weight of a vertex is given by the function 

 

j
ij

ecc

j
ji1ii

i
S −

=
+∑+= 10x][][][

1
)1( BCVMCVM        (4.93) 

Recall that both these layer matrices originate in the L1W  matrix16,119 (see Chap. 2) and 
eq 4.93 follows from eq 4.91. 
(2). Set up the adjacency matrix, according to the conventional bond orders. 














=

bond aromatic  1.5
bond  triplea  3
bond double a     2
bond single a      1

connectionno0

][ ijA                      (4.94)  

        
(3). Set up the extended adjacency matrix , EA. 

 










≠

=
=

ji
w

ji
Radii

ijij

ij

ij

6

)][(
6

)(

][
A

EA          (4.95)  

 
where (Radii)i is the covalent radii (in angstroms) of the ith atom and wij is the weighting 
for an edge (which is different for the two indices), 
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v
j

v
i

ijw
δδ

1
=   for  EATI1                      (4.96) 

 

i

j

j

i
ij S

S

S
S

w +=  for  EATI2         (4.97) 

(4). Evaluate a new matrix EA* as the sum of  EA  powers. 

 ∑
−

=
=

1

0
)(*

N

k

kEAEA            (4.98) 

where N is the number of vertices in the molecular graph. When k  = 0, then (EA)0 is the 
unity matrix. 
(5). Calculate the topological indices. 

 ( )∑
=

=
N

i
iiEATI

1

2
1 *][EA           (4.99) 

 ∑
=

=
N

i
iiEATI

1
2 *][EA           (4.100) 

The algorithm is illustrated in Figure 4.11 for calculating EATI2 of furane, G4.4 

2

34

5
O 5 4

32

O
O 5

43

2

2 O

54

3

1

1

1 1
 

 

 
Layers  CVM  B  Si (Radii)i 

1 (2,5) (3,4)  6 6 6  2 4  7.44 0.702 
2 (1,3) (4,5)  3 9 6  3 2  5.82 0.772 
3 (2,4) (1,5)  3 6 9  3 3  5.07 0.772 
4 (3,5) (1,2)  3 6 9  3 3  5.07 0.772 
5 (1,4) (2,3)  3 9 6  3 2  5.82 0.772 

 

A  EA  EA* 
0 1 0 0 1  .1396 .3358 0 0 .3358  1.612 .719 .419 .419 .719 
1 0 2 0 0  .3358 .1464 .4725 0 0  .719 1.847 1 .437 .369 
0 2 0 1 0  0 .4725 .1464 .3333 0  .419 1 1.875 .776 .437 
0 0 1 0 2  0 0 .3333 .1464 .4725  .419 .437 .776 1.875 1 
1 0 0 2 0  .3358 0 0 .4725 .1464  .719 .369 .437 1 1.874 

 
EATI2 = 9.021 

Figure 4.11. Calculation of EATI2 index for the graph G4.4 

G4.4                  G4.4{1}                 G4.4{2,5}              G4.4{3,4} 

                Layer Partitions   
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EATI1 was tested for selectivity on over 610,000 structures and also good 
correlating ability was found.118 EATI2 (also called EAID117) was particularly tested for 
selectivity (more than 4 bilion structures were investigated) and no degeneracy appeared. 
It is the most powerful index designed so far and is a candidate for CAS Registry 
Numbers. 
 

4.9.  INFORMATION  INDICES 

 
The following well-known principle 120 is generally used in construction of 

information indices. Let X  be a set consisting of n  elements. By assuming some 
equivalence criterion the elements are shared into m  equivalence classes (i.e., subsets) 

X i , each class having in  elements and ∑
=

=
m

i
inn

1
 . The probability for an element to 

belong to the ith subset is nnp ii /= . The mean information content IC, corresponding 

to one element of the considered set is given by the Shanon formula 121  
 

∑
=

−=
n

i
ii ppH

1
log                                                            (4.101) 

In chemical literature Bonchev and Trinajstic 51,122,123 and the group of Basak124,125 
have pioneered this topic. Various schemes and various topological quantities were used 
so far in devising information indices. For early work along these lines see the book.122 

Recently, Ivanciuc et al.126 have defined an information invariant on the vertex 
distance degree sequence, DDS  (see Sect. 2.16) 

 

∑
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−=
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j ii
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i ds

j
ds
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1
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where ∑
=

=
N

j
iji dds

1
, j is the magnitude of distances within DDS and ecci = max j. The 

above mean local information on the magnitude of distances was next modified in the 
view of constructing four global indices, U, V, X and Y, on the formula of J index (see 
Sect.4.2.2). 

A similar descriptor, the Information Distance Index, IDI, was introduced by 
Konstantinova127   

 ∑
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N
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d
IDI
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where the ratio 
i

ij

ds

d
 is the probability for an accidentally chosen vertex to be at the 

distance ijd  from the vertex i . Then the global IDI takes the form 

∑
=

==
N

i
iIDIGIDIIDI

1
)()(                                                                          (4.104) 

The selectivity of information indices is rather high. Thus, IDI was tested on the 
set of all unbranched hexagonal chains with three to ten rings (2562 structures).74,127 No 
degeneracy appeared within this set. However, Ivanciuc et al.126 found some pairs of trees 
with degenerate U, V, X and Y indices. 

 

4.10.  OTHER  TOPOLOGICAL  INDICES 

  
4.10.1. Stereochemical Descriptors  

 Descriptors for cis/trans stereoisomers or staggered alkane rotamers were 
introduced by the three-dimensional Wiener index, 3W. In addition to a net improvement 
of selectivity, a good correlating ability with alkane properties was reported.  63,64 

 A three dimensional χχ connectivity descriptor was developed by Randic 128 on 
the ground of topographic matrices. 
 Estrada24 included a corrected electron charge density (calculated with MOPAC) 
in a connectivity-type index, Ω, also able to differentiate cis/trans isomers of alkenes. 
 The cis/trans connectivity descriptor χct of Pogliani129 is based on an extension of 
the concept of connectivity. It considers virtual ring fragments formed by embedded cis 
structures and appears to accurate describe some physico-chemical properties of olefins. 
 Other description of stereoisomers is obtained by using the GAI index,130 (based 
on quantum chemistry considerations), the topographic indices,131 the stereoisomeric and 
optical topological indices132-135 or the complex numbers in the characterization of a 
plane.136  
 Enantiomers are more difficult to be described topologically, some results being 
reported by Schultz82 and by Galvez et al.137 

 The shape descriptors kS proposed by Randic,138 are constructed on a distance 
topographic matrix T, whose elements are raised to the power k. Next, the average row 
sum of the kT matrix 

 ∑ ∑= i j ij
kk NR ][)/1( T       (4.105) 

is normalized by division by k! 

 !/ kRS kk =         (4.106) 
The molecular shape profile S is obtained as a sequence 
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 SSSS k,...,,10=         (4.107) 

where the leading term is just the number of atoms in molecule. The factorial in the 
denominators ensures the convergence of the series. The maximum k  value will equal the 
number of atoms on the molecular periphery. The consideration of atomic profiles may 
offer an alternative route to graph center (see Chap. 8). The individual kS  descriptors can 
be used in correlating studies.139,140 

 The kappa indices Lk , of Kier141-144 are also related to as shape descriptors. A 
flexibility index ϕ for molecules was derived from the kappa shape attributes.145 

 Actually there exists a net trend for a more appropriate description of the 3D-
structures. A bright illustration of this trend the reader can find in two recent monographs 
by Balaban.146,147  

 

 

4.10.2. ID Numbers  
 
 In the design of a topological index, the two main attributes: (i) the correlating 
ability and (ii) the selectivity (i.e., the discriminating power among structures) are not 
reached at the same time. For the second purpose, an appropriate weighting scheme 
would discriminate the subgraphs (i.e., atoms, edges, paths) that are topologically (and 
chemically) different. It this respect, the so called molecular identification numbers ID  
were designed. 
 Randic 148 defined the molecular ID number as follows: 
The mapping from the edge set E(G) to the real numbers, RGEf →)(:  is 

 2/1)()( −= jiijef δδ         (4.108) 

The mapping from the path set P(G) to the real numbers, RGPf →)(:*  takes the form 

 ∏=
m

ijefpf )()(*         (4.109) 

for a path p consisting of m edges. The connectivity ID number of a molecular graph 
having N vertices is 
 
 ∑+== p pfNGIDID )(*)(       (4.110) 

where summation goes over all distinct paths in G. 
The selectivity of the connectivity ID number, CID was tested for all alkanes 

with up to 20 carbon atoms.149 The smallest pair of trees with the same ID numbers was 
found at N = 15 (a duplicate among some 7500 graphs). Recall that the first degenerate 
pair for the Balaban number J appears at N = 12.  
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The prime  ID  number,150  PID,  changed  the  weighting  scheme  (4.108) by 
(pipj)-(1/2)  where pi and pj are successive prime numbers, thus reducing the chance of 
accidental duplication of ID numbers. Indeed, for PID, Szymanski et al.151 found the first 
duplicate at N = 20, meaning one pair among 618,050 graphs. 
 Despite the failure of the ID numbers to be unique, such a high resolution among 
structures is of interest in chemical data storage.  

The race for a higher selective index continued with BID (Balaban's ID 
number),152  WID (the walk ID number),153 MINID,154 MINSID,154 (both based on self-
returning weighted distances in the graph), τ number,155 SID (the self-returning walk ID 
number)156  and EAID117 (see Sect. 4.8.3). The last two indices, for which no degeneracy 
was found so far, are constructed in a very close manner (both are self-returning walks 
but the weighting scheme differs, however).  
 A 3-dimensional molecular identification number, MID, which can be obtained 
from the Cartesian coordinates, differentiates the alkane rotamers.157 

 

*  *  * 
 The main application of TIs in chemistry is the evaluation and prediction of 
physico-chemical properties. It is related to as QSPR (Quantitative Structure-Property 
Relationship). The correlating studies make use of TIs as mathematical molecular 
descriptors.  
 The physical meaning of topological indices is a more or less proved percept.1, 158-

162 The majority of TIs show a size-dimension (e.g., W, the connectivity indices, etc.) but 
some of them emphasize a shape-component (e.g., k  and other shape descriptors).163 

Despite TIs do not offer a causal explanation of the molecular properties, they 
condense important structural features into a single numerical parameter that parallels 
some properties. The structural insight is often permitted, such that TIs are useful tools 
for looking at fragmental components of a certain property. Some aspects about the 
correlating studies are detailed in Chap. 9. 

For the computation of TIs some commercial programs, such as POLLY,164 
MOLCONN165 or CODESSA166,167 are available. 
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Chapter 5 

  
 

SZEGED  INDICES 
 
 

5.1.  INTRODUCTION 

 
5.1.1. Historical Remarks 

In the 1990s a country which once was called Yugoslavia (or more officially: 
Socialist Federal Republic of Yugoslavia) fragmented into a number of newly formed 
states, followed by a 

sequence of bloody civil wars conducted by unimaginable cruelty. A part of the 

former country retained the name Yugoslavia. In 1993 and early 1994 an unprecedented 

inflation ravaged this new Yugoslavia, reaching at its peaks a daily value of 50%. In order 

to escape from the social, economic, political, cultural, ethical etc. collapse in his country, 

one of the present authors moved to Szeged, a city in Hungary lying on the very border of 

Hungary and Yugoslavia. There he happily spent a couple of years as a Visiting Professor 

at the Institute of Physical Chemistry of the Attila József  University.  

Soon after settling in Szeged he produced a paper which eventually appeared in 

1994.1 In this work a novel distance-based graph invariant has been introduced, and some 

of its basic properties established. Neither in the paper1 nor in three subsequent articles2-4 

was any name given to that invariant. As research in this direction continued to expand, 

the lack of a name became quite annoying and in 1995 the invariant was named the 

Szeged index and denoted by Sz.5,6 This name and symbol seem nowadays to be 

universally accepted. 

A remarkably vigorous research followed these early works on the Szeged index. 
In just four years more than 30 papers on Sz were produced.7-37 The review38 covers, 
among other distance-based topological indices, also the theory of the Szeged index. The 
review39 is devoted solely to the mathematical properties of Sz. Quite a few 
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mathematicians and chemists, belonging to different and independent research groups, 
were involved in the elaboration of the theory andapplication of the Szeged index. The 
authors who worked on Sz are from Austria, Croatia, France, Hong Kong, Hungary, 
India, Romania, Russia, Slovenia and Yugoslavia. 
 

5.1.2. Towards the Szeged Index Concept 

The basic idea behind the Szeged index is the following. For a long time it is 
known40 that the identity: 

 

W = W(G) = ∑e n1,e  n2,e           (5.1) 
 
is satisfied for the Wiener index W of a molecular graph G, provided that G is acyclic. 
(For details of the notation used in eq 5.1 see the subsequent section and also Sect. 
4.2.1.1) This formula is rather attractive, because it can be understood as a decomposition 
of the Wiener index into contributions coming from individual chemical bonds of the 
respective molecule. Indeed, n1,en2e can be in a natural way interpreted as the increment 
associated with the carbon-carbon bond which in G is represented by the edge e. 

Formula (5.1) is, however, not valid for graphs containing cycles. The efforts to 
modify the right-hand side of eq 5.1 and to find an edge-decomposition of the Wiener 
index, applicable to all molecular graphs were successful,41-45 but resulted in rather 
perplexed and difficult-to-apply expressions. In the work1 a seemingly awkward idea was 
put forward: the complications with the generalization of eq 5.1 to graphs containing 
cycles could be overcome by using the right-hand side of this equation as the definition of 
a new graph invariant. If so, then the right-hand side of eq 5.1 is automatically applicable 
to all graphs and, in addition, in the case of acyclic systems the newly introduced 
invariant coincides with the Wiener index. 

Such a definition happened to be a lucky hit: the new graph invariant - the Szeged 
index - possesses interesting and nontrivial properties and, furthermore, is of some 
relevance for chemical applications. 

 
 

5.2.  DEFINITION  OF  THE  SZEGED  INDEX 
 
Let G be a molecular graph, which means that G is necessarily connected (in fact, 

G may be any connected graph). Let V(G) and E(G) be the vertex and edge sets of G. 
Denote by i and j two vertices of G, which we formally write as i,j ∈ V(G). If i and j are 
adjacent vertices, then the edge between them is denoted by (i,j). Then we write (i,j) ∈ 
E(G). Sometimes, however, we denote the edge (i,j) simply as e. One should therefore 
bear in mind that throughout this chapter, the endpoints of the edge denoted by e are the 
vertices denoted by i and j. 
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Let u,v ∈ V(G). Recall that the distance between the vertices u and v is equal to 
the number of edges in a shortest path connecting u and v, and is denoted by du,v.  
As usual, the number of elements of a set S will be denoted by |S|. Hence, |V(G)| and 
|E(G)| stand for the number of vertices and edges, respectively, of the graph G. 
 
 Definition 5.1. Let G be a connected graph and e = (x,y) its edge. The sets N1,e and N2,e 
are then defined as 
 

N1,e  = {v|v ∈ V(G) , dv,i < dv,j}      (5.2) 

N2,e  = {v|v ∈ V(G) , dv,j < dv,i}      (5.3) 
Further,  

n1,e  = | N1,e |        (5.4) 

n2,e  = | N2,e |        (5.5) 
 

When misunderstanding is avoided, we denote N1,e and n1,e  simply by N1 and n1. 
Similarly, N2,e and n2,e will sometimes be written as N2 and n2, respectively. 

In words: n1,e counts the vertices of G  lying closer to one endpoint i of the edge e 
than to its other endpoint j. The meaning of n2,e is analogous. Vertices equidistant to x 
and y are not counted. Because the quantities n1 and n2 play the crucial role in the theory 
of the Szeged index, we illustrate Definition 5.1 by the graphs G5.1 and G5.2, depicted in 
Figure 5.1. 
  

 

2

3
4

5

16
1

15

6
7

8

9
14

13
12

11

10e

 
i

e

j  

                                 G5.1              G5.2 

Figure 5.1. Two molecular graphs and an edge e = (i,j) in them; the vertices 
belonging to the set  N1 are joined by thin lines; those belonging to N2 by thick lines; 
vertices that do not belong to either N1 or N2 are joined by dashed lines; such vertices 
exist only in non-bipartite graphs (such as G5.2) whereas in bipartite graphs (such as G5.1) 
are necessarily absent. 
 

For the molecular graph G1 we have: 
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N1,e  = {1,2,3,4,5,6,7,8,9,13,14,15,16} 

N2,e  = {10,11,12}  

Consequently, n1,e(G5.1) = 13 and n2,e (G5.1) = 3.  Note that  

N1,e(G5.1) ∪ N2,e(G5.1) = V(G5.1) 
and 

n1,e(G5.1) + n2,e(G5.1) = |V(G5.1)| 
The latter two relations are properties of all molecular graph which do not 

possess odd-membered cycles (molecular graphs of alternant hydrocarbons). 
For the molecular graph G5.2 we have n1,e = 13 and n2,e = 7, see Figure 5.1. Note 

that G5.2 possesses 10 vertices that do not belong to either N1,e(G5.2) or N2,e(G5.2). Such 
vertices are encountered in the case when the edge e belongs to an odd-membered cycle, 
hence in the case of graphs representing non-alternant molecules. 

Note that 

n1,e(G5.2) + n2,e(G5.2) < |V(G5.2)| 

We are now prepared to formulate our main: 

Definition 5.2. The Szeged index Sz(G) of the molecular graph G is equal to 

∑
∈

⋅==
)(

,2,1 )()()(
GEe

ee GnGnGSzSz           (5.6) 

where the summation goes over all edges of G.  

Examples 

We now illustrate the calculation of the Szeged index, directly from its definition 
(5.6). We first do this on the example of 1,1,-dimethyl cyclopentane (G5.3), depicted in 
Figure 5.2. 

 

5 6

7
3

4

1 2

 

G5.3 G5.4 G5.5 G5.6 G5.7 

 

Figure 5.2. The molecular graph of 1,1-dimethyl,cyclopentane G5.3 and 
representatives of the special graphs: star SN , path PN , cycle CN  and complete graph KN  
(here G5.4 = S8 , G5.5 = P7, G5.6 = C7 and G5.7 = K7). 
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First of all, notice that in G5.3 the edges e1 = (1,3) and e2 = (2,3) are symmetry-
equivalent. Therefore the values of the products n1,e1(G5.3)n2,e1(G5.3) and 
n1,e2(G5.3)n2,e2(G5.3) will necessarily be equal. The same is true for the edge-pairs (3,4) and 
(3,7), as well as (4,5) and (6,7). Therefore, in actual calculations of Sz we need to 
determine the value of n1,e(G5.3)n2,e(G5.3) only for four edges.  

Nevertheless, here we examine all the seven edges of G5.3: 

 
Edge  N1    N2   n1 n2  

(1,3)  {1}   {2,3,4,5,6,7}  1 6  
(2,3)  {2}    {1,3,4,5,6,7}  1 6  
(3,4)  {1,2,3,7}  {4,5}   4 2 
(3,7)  {1,2,3,4}  {6,7}   4 2  
(4,5)  {1,2,3,4}  {5,6}   4 2 
(5,6)  {5}   {6}   1 1  
(6,7)  {5,6}   {1,2,3,7}  2 4  

 

Then application of formula (5.6) yields: 

Sz(G5.3) = [1x6] + [1x6] + [4x2] + [4x2] + [4x2] + [1x1] + [2x4] = 45 

As more advanced examples we now deduce the general formulas for the Szeged 
index of some special graphs, the most frequently occurring ones in graph theory; their 
structure is shown in Figure 5.2. In what follows N denotes the number of vertices. 

The star SN  has N-1 edges that all are symmetry-equivalent. For each edge of SN  
we have n1  = 1 and n2  = N-1. Therefore, 

 

Sz(SN) =( N-1) x [(N-1) x 1] = (N-1)2          (5.7) 
 

The path PN has N-1 edges. On one side of the ith edges there are i 
vertices, on the other side there are N-i vertices, i=1, 2, ..., N-1. Therefore, 
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The cycle  CN has N edges that all are symmetry-equivalent. If N is even, then for 
each edge of CN we have n1 = n2 = N/2; if N is odd, then n1 = n2 =(N-1)/2.  
Therefore, for even values of N, 
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 ⋅⋅=            (5.9) 

whereas for odd values of N, 
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The complete graph KN has N(N-1)/2 edges that all are symmetry-equivalent. If e 
= (x,y) is an edge of KN  then N1 = {x} and N2 = {y}, implying n1 = n2 = 1. This is because 
every other vertex of KN  is on equal distance to both x and y, this distance, of course, 
being unity. Consequently, 
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KSz N        (5.11)  

* * *  

Because the Szeged index is intimately related to the Wiener index, we recall 
here that the Wiener index W(G) equals the sum of all topological distances in the graph 
(see eq 4.23) 

At the first glance Definitions 1 and 2 look quite dissimilar. However, the 
following result is an immediate consequences of eqs (5.1) and (5.6). 

 

Theorem 5.1. If G is a tree (i.e., a connected acyclic graph), then  

Sz(G) = W(G)           (5.12) 

Hence, in the case of molecular graphs of alkanes there is no difference between 
the Wiener and Szeged index and, as far the Szeged index is concerned, there is no need 
for any additional research. Therefore, in what follows we will be almost exclusively 
interested in the properties of the Szeged index of cycle -containing (molecular) graphs. 
 
 

5.3. FURTHER  RELATIONS  BETWEEN  SZEGED  AND   
WIENER  INDICES 

 

Examples show1 that in addition to trees there exist other graphs whose Szeged 
and Wiener indices coincide. [The simplest such example is the complete graph. Because 
the distance between any two vertices in KN is unity, W(KN) = number of edges of KN = 
N(N-1)/2. Above we have shown that Sz(KN) is also equal to N(N-1)/2.] 
The problem of relation between Sz and W is basically resolved by the following result.2,3 

Let K be the set of all connected graphs, all blocks of which are complete graphs. 
Recall that trees and complete graphs belong to K. 
 

Theorem 5.2. 

(a) Sz(G) = W(G) if and only if G ∈ K. 
(b) If G is connected, but G ∉ K, then Sz(G) > W(G). 
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 In Figure 5.3 are depicted examples of cycle -containing graphs for which Sz = W, 
that is graphs belonging to the class K. 

 
 

 

Figure 5.3. Examples of connected cycle -containing graphs, all blocks of which 
are complete graphs; for these the Szeged and Wiener indices coincide; only very few of 
these graphs (e.g., G5.10 and G5.11) are molecular graphs. 
 
 Because of Theorem 5.1 the trees with minimal and maximal Szeged indices are 
precisely those which have minimal and maximal Wiener indices. These latter trees are 
known for a long time46,47 and we state the respective result only for the sake of 
completeness. As before, let SN and PN be the N-vertex star and path, cf. Figure 5.2. 
 
Theorem 5.3. If TN is an N-vertex tree, other than SN and PN, then  

Sz(SN) < Sz(TN) < Sz(PN)          (5.13) 

 The connected unicyclic graphs with minimal and maximal SZ have been 

determined already in the first study of this quantity.1 Let SN+e be the graph obtained by 

adding one more edge to SN. Let CN be the N-vertex cycle and let 1
NC be the graph 

obtained by attaching a new vertex of degree one to some vertex of CN.  
 

Theorem 5.4. 
(a) Let N be an odd number, greater than one. If UN is an N-vertex connected unicyclic 

graph, other than SN+e or 1
1−NC , then 

Sz(SN+e) < Sz(UN) < Sz( 1
1−NC )          (5.14) 

(b) Let N be an even number, greater than two. If UN is an N-vertex connected unicyclic 
graph, other than SN+e or CN, then  
 

Sz(SN+e) < Sz(UN) < Sz(CN)          (5.15) 

Analytical formulas for Sz of bicyclic graphs have been derived in terms of the 
length of the cycles and the length of their common part.31 Formulas for the connected 
bicyclic graphs withminimal and maximal Sz have been determined in.37 Let SN+e+f be 
the graph obtained by adding two nonadjacent edges to the star SN. Let XN and X'N be the 
N-vertex bicyclic graphs, the structure of which is shown in Figure 5.4. 

 

    G5.8                  G5.9                 G5.10                         G5.11 
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Theorem 5.5.  
(a) Let N be an odd number, greater than five. If BN is an N-vertex connected bicyclic 

graph, other than SN  + e + f  or  XN, then  
 

Sz(SN  + e + f ) < Sz(BN) < Sz(XN)        (5.16) 
  
(b) Let N be an even number, greater than six. If BN is an N-vertex connected bicyclic 
graph, other than SN  + e + f  or X 'N , then  

 
 Sz(SN  + e + f ) < Sz(BN) < Sz(X 'N)        (5.17) 

 

 

 
        XN            X ’

N      YN     Y ’
N 

 
Figure 5.4. Bicyclic and tricyclic graphs with maximal Szeged index. 

 
In the work37 also formulas for N-vertex tricyclic graphs with minimal and 

maximal Sz value have been determined. The structure of tricyclic graphs with maximal 
Sz value is shown in Figure 5.4:  Sz(YN) is maximal in the case of even N, N ≥ 12, and 
Sz(Y '

N) is maximal if N is odd, N ≥ 13. 
It should be noted that the extremal graphs depicted in Figure 5.4 have a 

completely different structure than the bicyclic graphs with maximal Wiener index. 
It is easy to show1 that among connected N-vertex graphs and N-vertex bipartite 

graphs the complete graph KN and the star SN, respectively, have minimal Sz value. The 
analogous result holds also for the Wiener number. The N-vertex graph with maximal Sz 
value is, however, completely different than the N-vertex graph with maximal W value. 
(Recall that this latter graph is the path, PN.46) The following result was first conjectured 
by Klavžar et al.9 and then proven in a rigorous mathematical manner by Dobrynin.32  
 
Theorem 5.6.  

Among connected N-vertex graphs the complete bipartite graph48 KN / 2, N / 2 (if N 
is even) or K(N -1) /2 , (N +1) / 2 (if N is odd) has maximal Sz value. 

We mention in passing that Sz(Ka,b) = a2b2. 
 

* * *  
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A number of profound and somewhat unexpected analogies between the Szeged 
and Wiener indices have been found. Of them we mention here only two. For those who 
are not interested in mathematical details (for which nobody can claim to be of great 
chemical significance), it will suffice to compare the forms of the relations (5.1) and 
(5.6). 

Let C(h,k ) be a class of connected bipartite graphs consisting of cycles of equal 
size, characterized as follows. Let k  and h be positive integers. If h = 1, then the class 
C(1,k) consists of one element only, namely the cycle C2k+2. If h > 1,then every element 
of C(h,k ) is a graph obtained by joining the endpoints of a path with 2k  vertices to a pair 
of adjacent vertices of some graph from C(h-1,k). 

It has been shown previously49 that if G' and G'' are graphs from the class 
C(h,k),then  

 

W(G' ) ≡ W(G'' ) (mod 2k2)         (5.18) 

To clarify: relation (5.18) means that the remainder after division of W(G' ) by 
2k2 is equal to the remainder after division of W(G'' ) by 2k2. In other words, the 
difference W(G' ) - W(G '' ) is divisible by 2k2.  
 A fully analogous result has been established for the Szeged index:4 
 
Theorem 5.7. Let G' and G'' be arbitrary graphs from the class C(h,k). Then 

Sz(G ' ) ≡ Sz(G '' ) (mod 2k2)         (5.19) 
 

Eventually, several generalizations and extensions of Theorem 5.7 have been put 
forward.11,20,28 In what follows we will pay particular attention to a special case of this 
theorem important in chemical applications.5 Namely in the case k = 2 some, but not all, 
elements of the class C(h,k) are molecular graphs of catacondensed benzenoid 
hydrocarbons50 with h hexagons. In fact, molecular graphs of all h-cyclic catacondensed 
benzenoid hydrocarbons belong to the class C(h,k). As a curiosity we mention that the 
below result was independently and practically simultaneously, but prior to the discovery 
of Theorem 5.7, obtained in Indore (India), Novosibirsk (Russia) and Szeged (Hungary) 
and was then published jointly in a single paper.5 
 
Theorem 5.8. Let H' and H'' be the molecular graphs of two catacondensed benzenoid 
hydrocarbons with h hexagons. Then  
 

Sz(H' ) ≡ Sz(H '' ) (mod 8)        (5.20) 

or, what is the same, the difference Sz(H ' ) - Sz(H '') is divisible by 8.  
In Figure 5.5 are depicted three catacondensed benzenoid hydrocarbons with 4 

hexagons. Their Szeged indices differ considerably: Sz(G5.12) = 1269, Sz(G5.13) = 1301, 
Sz(G5.14)) = 1381, but in accordance with Theorem 8, the remainder after division of both  
1269, 1301 and 1381 with 8 is 5. 
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                       G5.12                         G5.13               G5.14 

 
Figure 5.5. Isomeric catacondensed benzenoid systems with h = 4; 
                  Sz(G5.12) = 1269, Sz(G5.13) = 1301, Sz(G5.14) = 1381. 

 
Needless to say that a fully analogous modulo 8 regularity holds also for the 

Wiener indices of catacondensed benzenoids.51 The chemical meaning of such 
congruencies is obscure, but these certainly reflect some peculiar intrinsic symmetry in 
the distance-based properties of the underlying benzenoid molecules. An 
extension/generalization of Theorem 5.8 (and of its Wiener-number-counterpart) to 
pericondensed benzenoids50 has never been accomplished. 

 
* * * 

 
Let G and H be graphs with |V(G )| and |V(H )| vertices, respectively. Let G×H 

denote the Cartesian product of G and H. It is known that52,53  
 

W(G× H ) = |V(G )| 2 W(H ) + |V(H )| 2 W(G )      (5.21) 

For the Szeged index the analogous result reads:9 
 
Theorem 5.9. 

Sz(G× H) = |V(G )| 3 Sz(H ) + |V(H )| 3 Sz(G )       (5.22) 
 

Because the Cartesian product of graphs plays hardly any role in chemical graph 
theory, we skip here its definition (which, however, can be found elsewhere9,52,53) and 
only call the readers' attention to the intriguing parallelism between eqs (5.21) and (5.22). 

In our opinion such close analogies between W and Sz in polycyclic graphs must 
have a deeper-lying cause. The discovery of this unifying principle remains a task for the 
future. 

 
* * * 

Concluding this section, in which the mathematical results pointing at concealed 
connections between Sz and W were outlined, we wish to note the following. When 
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investigating the Szeged index, the strategy often is to try to prove properties of Sz 
analogous to known properties of W. Sometimes, however, the opposite direction of 
reasoning happened to be useful. For instance, it was noticed11,28 that some specific 
subgraphs of benzenoid graphs - those isomorphic to the linear polyacenes - play an 
important role in certain considerations of Sz. 
Bearing this in mind, new results for the Wiener index of benzenoid hydrocarbons were 
recently obtained, in which W is expressed in terms of such subgraphs.54-56 

 

5.4.  METHODS  FOR  THE  CALCULATION  OF  THE  SZEGED INDEX 
 

In the general case the Szeged index is computed by using its definition, eq 5.6. 
This means that for each edge e the sets N1,e and N2,e have to be found (eqs 5.2  and 5.3) 
and then the numbers n1,e and n2,e (eqs 5.4 and 5.5). For this we need to know the distance 
between any two vertices in the underlying molecular graph, cf. (5.2) and (5.3), that is the 
elements of the distance matrix (see Chap. 2). 

In summary, the calculation of the Szeged index is done by the following steps:  
1. Determine the distance matrix of the molecular graph considered, i.e., find the 

distances between all pairs of its vertices.  
2. Choose an edge e.  
3. Construct the sets N1,e and N2,e  using their definition, eqs 5.2 and 5.3.  
4.Count the elements of N1,e and N2,e and thus determine n1,e and n2,e, eqs 5.4 and 5.5.  
5.Repeat Steps 3 & 4 consecutively for all edges of the molecular graph considered.  
6.Apply eq 5.6 and calculate Sz. 

The distance matrix, required in Step 1, can be calculated by one of the several 
techniques developed in the theory of graphs and networks (see, for instance Chapters 11 
and 12 in the book57). The algorithm for the calculation of Sz can always be designed in 
such a way that Step 3 is not explicitly performed; yet the elements of the sets N1 and N2 
must somehow be recognized before they are counted in Step 4. 
A general algorithm for the calculation of the Szeged index was put forward by 
Žerovnik.10 Chepoi and Klavžar showed17 that in the case of benzenoid hydrocarbons Sz 
can be obtained in linear time (with regard to the number of vertices).  
 

5.4.1. The Gutman-Klavžar Algorithm 

A special algorithm for the calculation of the Szeged indices of the so-called 
Hamming graphs58 was designed by Gutman and Klavžar.7 For chemical applications, the 
fact that the molecular graphs of benzenoid hydrocarbons are Hamming graphs58 is 
particularly important. Thus we have a special, quite convenient and efficient, method for  
computing the Sz value of benzenoid systems.7 The Gutman-Klavžar algorithm was 
eventually quite successfully applied in the theory of the Szeged index.7,8,13,30,34 
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In order to formulate the Gutman-Klavžar algorithm (stated below as Theorem 
5.10), we need some preparation. 

Benzenoid systems are plane graphs representing benzenoid hydrocarbons.50 
They are always considered as being embedded into the hexagonal (graphite) lattice. All 
their hexagons are regular, mutually congruent. A benzenoid system is always drawn so 
that some of its edges are vertical. Denote by B a benzenoid system and by N the number 
of its vertices. An elementary cut or elementary edge-cut of B is a straight line segment, 
passing through the centers of some edges of B, being orthogonal to these edges, and 
intersecting the perimeter of B exactly two times, so that at least one hexagon lies 
between these two intersection points.  

At this point some examples are purposeful. In Figure 5.6 are shown three 
elementary cuts of benzo[c]phenanthrene (G5.15) as well as all elementary cuts of 
anthracene (G5.16). 
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Figure 5.6. Three elementary edge-cuts of benzo[c] phenanthrene (G5.15) and  

all elementary edge-cuts of anthracene (G5.16). 
 

Let B be a benzenoid system, V(B) its vertex set and C one of its elementary cuts. 
Then C partitions the vertices of B into two non-empty classes N1(C;B) and N2(C;B), such 
that 

N1(C;B) ∩ N2(C;B) = ∅          (5.23) 

N1(C;B) ∪ N2(C;B) = V(B)         (5.24) 

The elements of N1(C;B) are the vertices of B lying on one side of C, the 
elements of N2(C;B) are the vertices of B lying on the other side of C. In what follows it 
makes no difference which side of C corresponds to N1(C;B) and which to N2(C;B). 

The number of elements of N1(C;B) and N2(C;B) are denoted by n1(C;B) and 
n2(C;B), respectively. The number of edges of B intersected by C is denoted by r(C;B). 
 For instance, in the case of the benzenoid system G5.15 and its elementary cuts C1, 
C2 and C3, depicted in Figure 5.6, we have: 

 

G5.15           G5.16 
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N1(C1;G5.15) = {1,2,3} 
N2(C1;G5.15) = {4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}  
N1(C2;G5.15) = {1,2,3,4,10,11,12,13,14,15,16,17,18}  
N2(C2;G5.15) = {4,5,6,7,8,9} 
N1(C3;G5.15) = {12,13,14} 
N2(C3;G5.15) = {1,2,3,4,5,6,7,8,9,10,11,14,15,16,17,18} 

and further 
n1(C1;G5.15) =   3 n2(C1;G5.15) = 15 r(C1;G5.15) = 2 
n1(C2;G5.15) = 13 n2(C2;G5.15) =   5 r(C2;G5.15) = 3 
n1(C3;G5.15) =   3 n2(C3;G5.15) = 15 r(C3;G5.15) = 2 

   
We are now prepared to describe the Gutman-Klavžar algorithm.7 

 

Theorem 5.10. The Szeged index of a benzenoid system B can be calculated by means of 
the formula  

Sz(B) =∑
C

r (C;B)n1(C;B)n2(C;B)        (5.25) 

in which the summation embraces all elementary cuts of B. 
The advantage of eq 5.25 over eq 5.6 is that there are much fewer elementary cuts 

than edges, especially in the case of large benzenoid systems. Consequently, the right-
hand side of (5.25) contains much fewer summands than the right-hand side of (5.6). In 
practical applications of formula (5.25) it is not necessary to calculate both n1(C;B) and 
n2(C;B).  

Namely the sum n1(C;B) + n2(C;B) is independent of the elementary cut C and is 
equal to the number N of vertices of B. Hence, if we know n1(C;B), then we calculate 
n2(C;B) as N - n1(C;B); in this case it is reasonable that n1(C;B) is chosen to be the 
smallest among n1(C;B), n2(C;B). 

We illustrate the Gutman-Klavžar algorithm on the example of the anthracene 
graph G5.16, see Figure 5.6. The anthracene graph has 14 vertices, 16 edges, but only 
seven elementary cuts. By direct counting we get: 

 
 
n1(C1;G5.16) = 3 n2(C1;G5.16) = 14-3 = 11 r(C1;G5.16) = 2 
n1(C2;G5.16) = 3 n2(C2;G5.16) = 14-3 = 11 r(C2;G5.16) = 2 
n1(C3;G5.16) = 7  n2(C3;G5.16) = 14-7 =  7 r(C3;G5.16) = 2 
n1(C4;G5.16) = 7 n2(C4;G5.16) = 14-7 =  7 r(C4;G5.16) = 2 
n1(C5;G5.16) = 3  n2(C5;G5.16) = 14-3 = 11 r(C5;G5.16) = 2 
n1(C6;G5.16) = 3 n2(C6;G5.16) = 14-3 = 11 r(C6;G5.16) = 2 
n1(C7;G5.16) = 7  n2(C7;G5.16) = 17-7 =  7 r(C7;G5.16) = 7 
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Direct application of eq 5.25 yields then 

       Sz(G5.16)=[2x3x11]+[2x3x11]+[2x7x7]+[2x7x7]+[2x3x11]+[2x3x11]+[4x7x7]= 656  

The calculation in the above example  was performed without using the symmetry 
of the molecule considered. This symmetry causes that numerous summands are mutually 
equal. Needless to say that by taking into account molecular symmetry the algorithm 
additionally gains on efficiency and simplicity.  

By means of the Gutman-Klavžar algorithm general expressions for the Szeged 
index of a large number of homologous series of benzenoid hydrocarbons could be 
determined.7-9,13 Four such expressions, pertaining to the benzenoid systems depicted in 
Figure 5.7 are given below: 

Sz(Lk) = 
3
1

(44k3+72 k  2+43 k  +3)        (5.26) 

Sz(Hk) = 
2
3

(36 k  6- k  4+ k 2)          (5.27) 

Sz(Qk) = 
6
1

(12 k  6+72 k  5+137 k  4+92 k  3+13 k  2-2 k)       (5.28) 

Sz(Tk) = 
4
1

( k  6+12 k  5+49 k  4+84 k  3+58 k  2+12 k)      (5.29) 

k

k

k
k

 
 
 

Figure 5.7. Some highly symmetric homologous series of benzenoid systems,  
k = 1,2,3,..., . 

 
Elementary cuts in benzenoid systems have found several other applications in 

the theoretical chemistry of benzenoid hydrocarbons: in studies concerned with Kekule 
structures,59 Wiener indices60-64, hyper-Wiener indices64,65 and elsewhere.66 

  

* * *  

An attempt to use the symmetry of a (molecular) graph in order to facilitate the 
calculation of its Sz value were communicated by Žerovnik.36 Expressions for the Szeged 
index of some highly symmetric graphs were earlier deduced by Klavžar et al.9 However, 
no  complete  and  practically  applicable  approach,  which  would  enable the systematic  

             Tk                                            Hk                            Qk                                   Lk 
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exploitation of molecular symmetry (or more precisely: of the automorphism group of the 
underlying molecular graph) in the theory of the Szeged index is available at the present 
moment.  
 
 

5.5 EXTENSIONS:  SZEGED  MATRICES,  HYPER-SZEGED  

AND  HARARY-SZEGED  INDICES 

 

Diudea was the first to recognize16 that the right-hand side of eqs 5.2 and 5.3 are 
well-defined also in the case when the vertices i and j are not adjacent. The same applies 
to n1 and n2 eqs 5.4 and 5.5. Consequently, the quantity 

 
nij = nij(G)=| {v|v in V(G) , dv,j < dv,j}| ;  (i,j) ∈ P(G)      (5.30) 

 
can be viewed as the (ij)-entry of some square matrix of order N. In addition, nij = 0 
whenever i = j. 
In words: nij is the number of vertices of the graph G lying closer to vertex i than to 
vertex j. 

Three so-called Szeged matrices have been defined (see Sect. 2.8):16,21,27,38 

 
the unsymmetric Szeged matrix 

[USZ]ij = nij          (5.31) 

the full symmetric Szeged matrix  

[SZp] = nij nji          (5.32) 

and the sparse symmetric Szeged matrix  

[SZe]ij = [A]ij nij nji         (5.33) 

where [A]ij is the (ij)-element of the adjacency matrix (see Chap. 2). The corresponding 
detour-Szeged matrices were also defined (see Sect. 2.8).  

Evidently, the sum of the elements of the upper (or lower) triangle of SZe is just 
the Szeged index Sz. The analogous sum of the elements of SZp has been named21,26,38 the 
hyper-Szeged index, symbolized in this book by IP(SZD). A few more graph invariants 
based on or related to the Szeged matrices have been put forward.15,35,38 

The theory of the Szeged matrices, the hyper-Szeged and Harary-Szeged indices 
is presently at a very early stage of development. Table 5.1 lists some formulas15 for 
calculating these indices in paths, cycles and stars. 
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Table 5.1. Formulas for Hyper-Szeged IP(SZD) and Harary-Szeged IP(RSZD) Indices  

in Paths, Cycles and Stars 
 
 

 Index Formula / Examples 
Paths 

1 IP(SZD) 
)36816105(

48
1 234 zNzNNNN +−−+−  

N = 11; 1285   N = 12; 1846 
Cycles 

2 IP(SZD) )1(2)12( )42()1(
8
1 zz NNNN −+ +−−  

N = 11; 1375   N = 12; 2046 
3 IP(RSZD)                                 

)2(
)1(2

zN
zN

+−
+−  

                       N = 11; 2.2    N = 12; 2.2 
Stars 

4 IP(SZD) 
)43)(1(

2
1 −− NN  

N = 11;  145 
5 IP(RSZD) 

)43(
2
1 2 +− NN  

N = 11;  46 
 

  
 
 

5.6.  CHEMICAL  APPLICATIONS  OF  THE  SZEGED  INDEX 

 

When speaking of the chemical applications of the Szeged index one has first to 
recall that the Wiener index has found numerous such applications, outlined elsewhere in 
this book and in a number of reviews.67 Namely, the Wiener index is correlated with a 
large number of physico-chemical properties of organic molecules. This is especially the 
case for alkanes, whose molecular graphs are trees. Since in the case of trees the Wiener 
and the Szeged index coincide, all studies on the possible chemical applications of Sz had 
to be done on cyclic  molecules.  

Unicyclic molecules are the obvious first target for such studies. For them, it has 
been shown that Sz and W depend on molecular structure in a remarkably similar 
manner.12,18 Systematic numerical testing14,24,25 revealed that the correlations between Sz 
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and various physico-chemical properties of monocycloalkanes are of comparable, 
sometimes slightly inferior, quality as the analogous correlations with W. 

The Sz and W values of benzenoid molecules were also found to be well 
correlated,8,13,19 yet for very large benzenoids this correlation is curvilinear.13 This means 
that also for this class of polycyclic molecules the structural information contained in Sz 
is quite similar to that contained in W. 

In conclusion: No convincing example of a chemical application of the Szeged 
index has been discovered so far, in which the Szeged index would yield reasonably 
better results than the Wiener index. In view of the relatively small number of classes of 
molecules examined (only monocycloalkanes and benzenoid hydrocarbons), this 
pessimistic conclusion needs not be taken as something absolute. On the other hand, 
bearing in mind the numerous mathematical relations between Sz and W (outlined in due 
detail above), finding cases where the Szeged index is significantly more suitable for 
modeling physico-chemical or pharmacological properties of organic compounds than the 
Wiener index should be considered as a kind of surprise.  
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Chapter 6  

 
 
 

CLUJ  INDICES 

 

In cycle-containing graphs, the Wiener matrices are not defined. (See Chap. 
Topological Matrices). Wiener indices are herein calculated by means of the distance-
type matrices1,2 but their meaning is somewhat changed (see Sect. 4.2). 

An attempt of Lukovitz to extend the Randic's definition of hyper-Wiener index 
to simple cycles resulted in a quite strange version of this index.3  

Cluj matrices try to fill the hall of the Wiener matrices, in the same manner as 
these matrices do in acyclic graphs (i.e., counting the external paths with respect to the 
path (i,j)).  
 
 

6.1.  CLUJ  INDICES,  CJ AND CF 
 

Among several conceivable versions of the Cluj indices,4 two variants are here 
discussed: (1) at least one path external to the path (i,j), (see Sect. 2.11.1) leading to CJ 
indices and (2) all paths  external to the path (i,j), (see Sect. 2.11.2) that provides the CF 
indices. As shown in Sect. 2.11.2, the entries in a CF matrix are true fragments (i.e., 
connected subgraphs). 

The Cluj indices are calculated5-10. as half-sum of the entries in a Cluj symmetric 
matrix, M, (M = CJD, CJ∆, CFD, CF∆ - see Sect. 2.11.1) 

 

iji j ijMIE ][][ )2/1()( AM∑ ∑=           (6.1) 

∑ ∑= i j ijMIP ][ )2/1()( M            (6.2) 

or from an unsymmetric Cluj matrix, by 

∑ ∑= i ijj jiijMUIE ][][][ )2/1()(2 AUMUM          (6.3)  

∑ ∑= i j jiijMUIP ][][ )2/1()(2 UMUM          (6.4) 
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The number defined on edge, IE, is an index while the number defined on path, 
IP is a hyper-index. Note that the operators IE  and IP , as well as 2IE  and 2IP  may be 
applied to both symmetric and unsymmetric matrices. When the last two operators are 
calculated on a symmetric matrix, the terms of sum represent squared entries in that 
matrix. This is the reason for the number 2 in the symbol ofthese operators. It is obvious 
that )(2)( UMIEMIE =  and )(2)( UMIPMIP =  with the condition 

TUMUMM ))((= where (UM)T is the transpose of the unsymmetric matrix UM. Only 

in trees, and only for Cluj distance indices, )()(2 UMIPUMIE = . The edge defined 

indices are identical for the two versions of Cluj indices in all graphs: 
)()();()( ∆=∆= CFIECJIECFDIECJDIE . Values of the above discussed indices 

for a set of 45 cycloalkanes5 are listed in Table 6.1. 
The boiling point of the set of cycloalkanes included in Table 6.1 correlates 

r=0.991; s=5.93; F = 2333.7 with  lnIP(CJD)5 and r=0.989; s=6.60; F = 1876.22 with 
lnIP(CFD). 
 A systematic search has been undertaken, including the calculation of the 
sensitivity, S (see Chap. Topological Indices) of these indices on the set of all cycloalkane 
isomers having ten vertices/atoms and three to ten membered cycles (376 structures).9 
That study indicated that the sensitivity of IP2(UCJD)  to distinguish among the above 
mentioned isomers is about 0,525. This value is superior to the sensitivity of the Wiener 
W (0,216) and hyper-Wiener WW (0,408) indices. 
 The cycloalkane isomers were generated by the program FRAGGEN, written in 
Turbo Pascal at the TOPO Group Cluj. 
 
 

6.2.  CLUJ  INDICES  OF  PARTICULAR  GRAPHS 

6.2.1. Cluj Indices of Path Graphs  

Cluj indices were designed to reproduce the Wiener  indices in path graphs and to 
extend the Wiener definition (see eqs 4.19, 4.20) to cycle -containing graphs. It is 
immediate that a relation of the type (4.29) also holds for the Cluj indices 
 

IP(CJD)  = IE(CJD) + I∆(CJD)      (6.5) 

For path graphs, by replacing the formulas of Cluj indices existing in Table 6.2, entries 1 
and 3, one obtains 
 
 I∆ (CJD)(PN) = N(N-1)(N-2)(N+1)/24     (6.6) 
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Table 6.1.  Boiling Points and Cluj-Type Indices for Some Cycloalkanes. 

No Graph* BP IP(CJD) IP(CJ∆) IP(CFD) IP(CF∆) IE(CJD) IE(CJ∆) 
1 C4 13.1 18 6 18 6 16 4 
2 11MC3 21 24 20 24 20 15 15 
3 EC3 35.9 32 26 32 26 17 17 
4 MC4 40.5 37 17 39 17 28 10 
5 C5 49.3 40 10 40 10 20 5 
6 112MC3 56.5 49 39 49 39 26 26 
7 123MC3 66 54 42 54 42 27 27 
8 EC4 70.7 73 41 77 41 45 21 
9 MC5 71.8 71 25 75 25 33 12 
10 C6 80.7 90 24 90 24 54 6 
11 PC4 110 132 84 138 84 68 38 
12 11MC5 88.9 105 43 113 43 48 21 
13 12MC5 91.9** 109 48 121 48 49 22 
14 13MC5 91.7** 119 46 127 46 51 21 
15 MC6 100.9 142 48 149 49 78 14 
16 C7 117 154 42 154 42 63 7 
17 112MC5 114 150 74 170 74 67 34 
18 113MC5 105 170 70 182 70 71 32 
19 123MC5 115 164 77 184 77 70 34 
20 1M2EC5 124 178 93 198 93 72 39 
21 1M3EC5 121 199 88 211 88 76 37 
22 PC5 131 215 113 227 113 78 45 
23 IPC5 126.4 186 92 198 92 73 40 
24 11MC6 119.5 197 75 211 77 104 24 
25 12MC6 123.4** 202 81 222 85 106 25 
26 13MC6 124.5** 211 80 227 82 108 24 
27 14MC6 120 220 80 234 82 110 24 
28 EC6 131.8 226 94 242 96 109 29 
29 MC7 134 225 71 235 73 88 16 
30 C8 146 288 64 288 64 128 8 
31 1123MC5 132.7 222 109 250 109 93 48 
32 113MC6 136.6 285 117 310 120 140 36 
33 124MC6 136 296 120 324 124 144 37 
34 135MC6 138.5 291 114 318 117 144 36 
35 1M2EC6 151 300 142 336 149 142 44 
36 1M3EC6 149 322 141 349 144 146 42 
37 PC6 154 352 170 377 173 148 52 
38 IPC6 146 313 143 338 146 142 46 
39 EC7 163.5 337 127 361 131 121 33 
40 C9 170 450 90 450 90 144 9 
41 1M2IPC6 171 401 206 453 216 180 65 
42 1M3IPC6 167.5 436 205 474 209 186 62 
43 13EC6 170.5 467 221 507 225 192 64 
44 PC7 183.5 503 219 541 225 163 59 
45 C10 201 705 145 705 145 250 10 

  
 * M = methyl; E = ethyl; P = propyl; IP = isopropyl; Cn = n-membered cycle  
 ** values for the trans-isomer 
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Table 6.2 include formulas7,9,11 for the Cluj indices derived from the basic and 
reciprocal Cluj matrices (see Sect. 6.3). These formulas were derived by analyzing the 
corresponding Cluj matrices and transforming, where possible, the sums in simple 
formulas. 
 Note that the two variants, CJ and CF, are both calculable by the same formulas 
in the simple graphs: paths, cycles and stars. As the reader can see, in Table 6.2 the Cluj 
indices are symbolized by CJ. 

 

6.2.2. Cluj Indices of Simple Cycles 

 
 In simple cycles, the edge-defined Cluj indices are very simple, as shown in 
Table 6.2, entries 5 and 6. The path-defined Cluj indices (entries 7 and 8) show a N mod 4 
dependency7,9 and the formulas are still simple. 
 Note that only the CJD indices depend on the parity of the cycle (by  z = N mod 2).  

The composition formula (6.5) also holds in cycle -containing graphs. From the 
formulas in entries 5, 7 and 6, 8 (Table 6.2) it results in 
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The quantities k , y, z and N have the same meaning as in Table 6.2. It is obvious that 

I∆(M)  is the part of the Cluj index defined on paths larger than 1. 
 
 
6.2.3. Graphs with Minimal IP(CJ∆) Value 

 
As in the case of the Wiener index W, the  detour-Cluj index IP(CJ∆) shows its 

minimal value7 in case of the complete graphs, KN (see the graph G6.1, Figure 6.1) 
 

2/)1())(( −=∆ NNKCJIP N            (6.9) 
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Table 6.2. Formulas for Cluj Indices of Paths and Cycles    
     Index Sums Final Relations  Examples 

     Paths:                      I(CJ) = I(CF);                       I(RCJ) = I(RCF). 

  1   IE(CJD)  
           ∑

−
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1
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i

iiN                )1)(1(
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1 +− NNN    N = 11; 220 
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ji     N = 11; 7.562 

    Cycles:                    I(CJ)=I(CF);                      I(RCJ) = I(RCF). 

  5   IE(CJD)            N(N - z)2 / 4  N  = 11; 275 

  6   IE(CJ∆)             N  N  = 11; 11 
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  N  =   9;  450 
  N  = 10;  705 
  N  = 11; 1001 
  N  = 12; 1470                                                                                                              

  8   IP(CJ∆)
  

          
            (k  + 1)N(4k2  + 3yk + 2k + 3y) / 6 
 

           k  = [(N -1)/4];  y = (N -1) mod 4 

  N  =   9;    90 
  N  = 10;  145 
  N  = 11;   209 
  N  = 12;   282                                                                                                     
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  N  =   9; 3.125    
  N  = 10; 3.317 
  N  = 11; 3.477 
  N  = 12; 3.460                           

  11  IE(RCJ∆)              N   N  = 11;  11 

  12  IP(RCJ∆)            
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−− ++
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i
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1
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k = [(N-1)/4];  y = (N-1) mod 4 

  N  =   9; 22.500   
  N  = 10; 25.556 
  N  = 11; 28.722 
  N  = 12; 32.000                                                                                                                

                                

                     y = N mod 4;  z = N mod 2;   γ(x) = int(exp(-t)t (̂x-1), t = 0,..infinity;    
                       ψ (x) = diff(ln(γ(x),x);   ψ (n,x) = diff(ψ (x), x$n); ψ  (0,x) = ψ (x).    

7   IP(CJD) 

10  IP(RCJD) 
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The minimal value, given by eq 6.9 is also obtained for star-triangulanes, G6.2, 
strips with odd girth g, G6.3, Mobius strips (irrespective of g), G6.4, and dipyramids (of 
any g), G6.5. Note that the strips with even g, G6.6, do not have a minimal value for 

)( ∆CJIP .  

The graphs showing a minimal value )( ∆CJIP are full Hamiltonian detour 
graphs,7 FH∆ (see Sect. 2.11.2) and, consequently, the nondiagonal entries in the CJ∆ 
matrix are unity. In such graphs, )()( ∆=∆ CFICJI  and the edge-defined index 

)( ∆CJIE  equals the number of their edges. Formulas7 for calculating the detour-Cluj 
indices in the above discussed graphs are given in Table 6.3. The formulas are given as 
functions of g. Also included in Table 6.3. are the classical detour indices, w and ww, as 
functions of )( ∆CJIP . 

 
 

 
 
 

 
Figure 6.1. Graphs with minimal IP(CJ∆) value 

 

Table 6.3. Formulas for Calculating Detour-Cluj* and Detour Indices  
of Some Particular Graphs 

Graphs N Q )( ∆CJIP  )( ∆CJIE  ww w 

Complete graphs g g (g-1)/2 g(g -1)/2 g(g -1)/2 ( )( ∆CJIP )2 (g -1) )( ∆CJIP   
Triangulanes g + 1 2g g(g+1)/2 2g ( )( ∆CJIP )2 g )( ∆CJIP  

 

Strips (g-even) 2g 3g g(5g - 4) 3g g(2g -1)(2g2 - 2g+1) g (4g2 -5g+ 2) 
 

Strips (g-odd) 
 & Möbius Strips 

 

2g 
 

3g 
 

g(2g -1) 
 

3g 
 

( )( ∆CJIP )2 
 

(2g-1) )( ∆CJIP  

Dipyramids g + 2 3g (g + 2)(g +1)/2 3g ( )( ∆CJIP )2 (g+1) )( ∆CJIP   
 

          * )()();()( ∆=∆∆=∆ CFIECJIECFIPCJIP  

G6.1 G6.2 G6.3 

G6.4 G6.5 G6.6 
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6.3.  DISTANCE  EXTENDED  CLUJ -TYPE  INDICES 

 
 The Tratch's and cowork.12 extended distance matrix , E, can be interpreted as a 
distance extended Wiener matrix D_Wp, at least in acyclic structures (see Sect. 2.12). The 
D_Wp matrix is just the Hadamard product13  of the De and Wp  matrices. The half sum  of 
its entries gives a distance extended Wiener index.  
 Similarly, Diudea6 performed the Hadamard product  
 

De • UCJD = D_UCJD                      (6.10) 
 
and the resulting distance extended Cluj matrix D_UCJD offered, in trees T, a new 
definition of the hyper-Wiener index WW (see eq 2.47 and also Chap. Topological 
Indices) 
 
 IP(D_UCJD)(T) = WW                      (6.11) 
 
Various other combinations: D_M or ∆_M, M being a symmetric or unsymmetric Cluj 
matrix, were performed on trees or on cycle -containing graphs, by means of the CLUJ 
software program. 
 Since the Cluj matrices are, in general, unsymmetric, an index of the form 

)(2 MUIP (eq 6.4) on the matrix D_UCJD would involve squared distances and promise 

a better selectivity 
 

 ∑=
),(

2 ][)]([)_(2
ji ijijeUCJDDIP UCJDD                     (6.12) 

 
Indeed, among the 2562 structures of the set of all unbranched cata-condensed 

benzenoid graphs with three to ten rings14 )_(2 CJDUDIP  showed no degeneracy.  

An extension of eq 6.10 to a 3D-De matrix6
 (e.g., by using the geometric matrix, 

G) allows the construction of various 3D-distance extended matrices, such as G_UCJD 
(see Figure 2.19). They can offer 3D- sensitive indices (see Chap. Fragmental Property 
Indices). 

 
 

 6.4.  INDICES  DEFINED  ON  RECIPROCAL  CLUJ  MATRICES 
 

The half sum of entries in reciprocal matrix RM of a square matrix M is an 
index, referred to as a Harary-type index (see Sect. 4.3). The symbol used in ref9 is HM, 
where M recall the info matrix (i.e., the square matrix whose reciprocal entries give RM). 
 Because of many Cluj matrices (symmetric or not, edge-defined or path-defined), 
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we adopted here symbols of the type (6.1)-(6.4). Thus, IE(RCJD) denote an edge-defined 
index (i.e., an index) on the symmetric reciprocal Cluj-Distance matrix while 
IP2(URCJ∆) is a path-defined index (i.e., a hyper index) on the unsymmetric reciprocal 
Cluj-Detour matrix. 
 Table 6.2 includes formulas9,11 for the indices defined on reciprocal Cluj 
matrices. These formulas were derived by analyzing the corresponding Cluj matrices and 
transforming the sums in simple formulas. Some formulas for these Harary-type indices 
in cycles (entries 10 and 12) involve the well-known gamma, digamma and polygamma 
function, given at the end of Table 6.2. Numerical values of these formulas are also given. 
In path graphs, simple formulas could, however, not be derived. 

A systematic testing has been undertaken of the sensitivity, S (see Chap. 
Topological Indices) of the indices defined on reciprocal Cluj matrices within the set of 
all cycloalkane isomers having ten vertices/atoms and three to ten membered cycles (376 
structures).9 The study indicated that the sensitivity of IP(RCJD)  to distinguish among 
these isomers is about unity.9,14 Its discriminating ability is superior to that of the Wiener 
W (0,216) and hyper-Wiener WW (0,408) indices. 

In the class of all unbranched cata-condensed benzenoid graphs with three to ten 
rings14 (2562 structures), IP(RCJD) showed S = 0.988. 
 In addition to an increased sensitivity, the Harary-Cluj indices showed good 
correlating ability. The boiling point of a set of 30 cycloalkanes9 correlated 0.978 with 
the classical Harary index, HDe and the Harary-Cluj index IP(RCJD). The viscosity of a 
set of 25 cycloalkanes14 with a saturated aliphatic side chain correlated 0.974 with 
IP(RCJD) and 0.996 when combined with the Wiener index, as lnW, and the IP(RCJ∆) 
index. 
 

6.5.  INDICES  DEFINED  ON  SCHULTZ -CLUJ  MATRICES 
 

The Schultz matrices, SCH(G) (see Sect. 2.15) are related to the molecular 
topological index, MTI, or the Schultz index,15  (see Chap. Topological Indices). In the 
extension of Diudea and Randic16 the Schultz matrix is defined as 

 

31131),,( )(31 MMAMMAMSCH MAM +=+=       (6.13) 

and a composite index (edge-defined or path-defined) can be calculated by 

TuSCHuSCH M3)A,(M1,ijM3)A,(M1,)3,,1( ][)( == ∑ ∑i jMAMSCHI     (6.14) 

 A Schultz-extended number is walk matrix calculable as16,17 

             T
MM

T
AM

T
MAM uuWuuWuuW

31 ),1,(),1,())(,1,()3,,1( 311
)( +== +MAMSCHI    (6.15) 
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When one of the M1 or M2 matrices is unsymmetric, the resulting Schultz matrix 
will also be unsymmetric. In such a case an index of the form I2(UM) can be derived 

 

 ∑= pMAMUSCHI ji31ij31)3,,1( ][][)(2 )MA,,(M)MA,,(M USCHUSCH     (6.16) 

Of course, the relation )(2)( UMIMI =  (see Sect. 6.1) is preserved, with the condition  
TUMUMM ))((= . Within this book, M1 is a symmetric matrix (e.g., A, De, ∆e) and M3 

is an unsymmetric Cluj matrix (e.g., CJD, CF∆).  
If we write now a Schultz-type index as 
 

           
3,11311 ,),1,(),1,()( MMAM)MA,,(M IISCHI

31
+=+= T

MM
T

AM uuWuuW      (6.17) 

the quantities IM1,A  and IM1,M3 can also be viewed as composite indices.16,18  Table 6.4 lists 
values of IM1,A  along with the hyper-Cluj IP2(UCJD) and Schultz-Cluj  
IP2(USCH(De,A,UCJD)) index values for the octane isomers. It can be seen that IUCJD,A is the 
arithmetic mean of IDe,A and IWe,A  indices as a consequence of the relations 
 

Table 6.4. IP2(UCJD), IM1,A and IP2(USCH(De,A,M3)) Indices of Octane Isomers 
 

Graph* IP2(UCJD) IDe,A IWe,A IUCJD,A M3 = UCJD 
P8 210 280 322 301 105977 

2MP7 185 260 324 292 80240 
3MP7 170 248 318 283 68553 
4MP7 165 244 316 280 65252 
3EP6 150 232 306 269 53945 

25M2P6 161 240 326 283 59061 
24M2P6 147 228 320 274 49804 
23M2P6 143 224 318 271 47537 
34M2P6 134 216 314 265 41753 
3E2MP5 129 212 308 260 38668 
22M2P6 149 228 330 279 50940 
33M2P6 131 212 322 267 39884 
234M3P5 122 204 320 262 33326 
3E3MP5 118 200 314 257 32185 
224M3P5 127 208 332 270 35717 
223M3P5 115 196 326 261 29504 
233M3P5 111 192 324 258 27501 

2233M4P4 97 176 338 257 19885 
     * M = methyl; E = ethyl. 
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∑i∑j [((UCJD)A + A(UCJD))/2 ]ij = ∑i∑j [(DeA + AWe )/2 ]ij  
   = (IDe,A + IWe,A )/2 = IUCJD,A                              (6.18)  

          
(see also Sect. 2.15 and 4.4). They were tested for correlating ability.18 

The Schultz-Cluj composite indices showed a powerful ability to discriminate 
isomeric structures. A family of spiro-graphs showing degenerate sequences of terminal 
paths, TPS, all paths sequences, APS, distance degree sequences, DDS, detour degree 
sequences, ∆DS and cycle sequence, CyS and, consequently, degenerate indices based on 
these quantities was successfully separated by IP2(USCH(De,A,UCFD)) and 
IP2(USCH(De,A,UCJD)) indices (see Sect. 8.6.1, Table 8.14). 
 
 

6.6.  CLUJ  INDICES  OF  DENDRIMERS 
 

Dendrimers are hyperbranched macromolecules, with a rigorous structure.10 The 
topology  of dendrimers is basically that of a tree (dendron in Greek means tree). The 
number of edges emerging from each branching point is called progressive degree, p.10,19  
It equals the classical degree δ, minus one:  p = δ - 1.  

A regular dendrimer has all its branching points of the same degree, otherwise it 
is irregular. In graph theory, dendrimers correspond to the Cayley trees or Bethe 
lattices.20,21 
 A tree has either a monocenter or a dicenter22 (i.e., two points joined by an edge ). 
Accordingly, a dendrimer is called monocentric (G6.7) and dicentric (G6.8), respectively 
(Figure 6.2).  
 
 

 
                           G6.7                  G6.8 

 

Figure 6.2. A monocentric  (G6.7) and a dicentric (G6.8) regular dendrimer 
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The numbering of orbits (i.e., generations) starts with zero at the core and ends 
with r,  which is the radius of the dendrimer (i.e., the number of edges along a radial 
chain, starting from the core and ending to the periphery). 
 A wedge is a fragment of a dendrimer resulting by cutting an edge in a 
dendrimer.  
  
6.6.1. Enumeration in Regular Dendrimers  
 

A first problem in the topology of dendrimers is the enumeration of its 
constitutive parts: vertices, edges, and fragments.65,70 The number of vertices Ni in the ith 
orbit of a regular dendrimer can be expressed as a function of the progressive degree p 
and a parameter z: z = 1 for a monocentric dendrimer and z = 0 for a dicentric one 

 

 0;))(2( )1( >+−= − ipzpzN i
i

        (6.19) 

For the core, the number of vertices is N0 = 2-z, and the number of external vertices (i.e., 
the vertices  on the rth orbit) can be calculated by 
 

 )1())(2( −+−= r
r pzpzN          (6.20) 

 The total number of vertices N in a dendrimer is obtained by summing the 
populations on all orbits 
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A recursive formula relates the members of a dendrimer family 

 21 +=+ rr pNN           (6.22) 

 The number of vertices in a wedgeal fragment Fi, starting at the ith orbit and 
ending at the periphery can be evaluated by 
 

 ∑
=

−=
r

is

sr
i pF )(            (6.23) 

The number of fragments (i.e., wedges) starting at the ith orbit equal the number of 
vertices lying on that orbit and is calculated by eq 6.19. 
 

6.6.2. Cluj Indices of Regular Dendrimers  
 
 

In regular dendrimers, Cluj indices are evaluated10 according to eqs 4.19 and 
4.20, by using the fragmental enumeration (see above) . The procedure is illustrated in 
Figure 6.3. Note that Ni is actually Fi. 
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i 1

i 2
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10  

                                 UCJD 

 1 2 3 4 5 6 7 8 9 10 
1 0 7 7 7 7 7 7 7 7 7 
2 3 0 3 3 9 9 3 3 3 3 
3 3 3 0 3 3 3 9 9 3 3 
4 3 3 3 0 3 3 3 3 9 9 
5 1 1 1 1 0 1 1 1 1 1 
6 1 1 1 1 1 0 1 1 1 1 
7 1 1 1 1 1 1 0 1 1 1 
8 1 1 1 1 1 1 1 0 1 1 
9 1 1 1 1 1 1 1 1 0 1 
10 1 1 1 1 1 1 1 1 1 0 

 

IP2(UCJD) = A + B +  C = 237 

A = N1(N1-1)/2 [F1]2 + N2(N2-1) [F2]2  
A = 3(3-1)/2 [3]2 + 6(6-1)/2 [1]2 = 42 
B = N1[F1(N-F1)] + N2 [F2(N-F1)] + N2[F2(N-F2)]  
B = 3 [3·7] + 6 [1·7] + 6 [1·9] = 159 
C = N1(N2-2)[F1·F2] 
C = 3(6-2) [1·3] = 36 

 

Figure 6.3. Calculation of IP2(UCJD) index of dendrimers 

 

Recall that IP2(UCJD) = IP(CJD), where CJD is the symmetric Cluj matrix. 
Following the above procedure, one obtains: 
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By virtue of the identity between Wiener and Cluj matrices, in acyclic graphs, the 
following identities: IE(CJD) ≡ WWe ; IP(CJD) ≡ WWWp hold. The same is true for the 
corresponding Harary-type indices: HWe ≡ IE(RCJD);  HWp ≡ IP(RCJD).  

Expansion of the above symbolic relations lead to the simple formulas:10 

 
 
Monocentric dendrimers: 

   
           IP(CJD) = {2p2r  (p2 -1)2 r2 + p2r (p2 -1)(p2 - 8p -5) r +  

                   ( p +1)( pr - 1)[ pr ( p2 + 10p + 3) - 2]} / 2( p-1)4     (6.26) 
              
           IE(CJD) = {[r(p+1)3 - 2(r+1)(p+1)2 + (p+1)]p2r + 2(p+1)2pr - (p+1)}(p-1)-3   (6.27) 
 
 
Dicentric dendrimers: 

 
           IP(CJD) = {4p2r+2  (p -1)2 r2 + 4p2r+2 (p- 4)(p -1)r + p2r+2 (p2 - 3p + 16) -  

         pr+1 (p2 + 10p + 5) + (p +1)} / (p-1)4                             (6.28) 
 
           IE(CJD) = [4p(2r+2)(p-1)r + (p-1)(p(r+1) -1)2 - 2p(pr -1)(3p(r+1) - 1)] (p-1)-3        (6.29) 

 

Values of Cluj indices in regular dendrimers having p = 2 and 3, up to generation 
ten are listed in Table 6.5. Values for the corresponding Harary-Cluj indices are presented 
in Table 6.6. 

From Table 6.6 one can see that the IE(RCJD) values decrease as the radius (i.e., 
generation) of dendrimer increases. For the family of dendrimers having the progressive 
degree 2, the limit of convergence is 0.6067 while for the family with the progressive 
degree 3, the limit is 0.7286, irrespective they are mono- or dicentric -dendrimers. The 
convergence is a characteristic feature of IE(RCJD) index.  
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Table 6.5. Cluj Indices IE(CJD) and IP(CJD) in Regular Dendrimers 
Having p = 2 and 3 and Generation up to 10. 

p r       IE(CJD) IP(CJD) 

  z = 0  z = 1 z = 0 z = 1 
2 1 

2 
3 
4 
5 
6 
7 
8 
9 
10 

29 
285 
1981 
11645 
62205 

312829 
1510397 
7084029 
32518141 

146825213 

9 
117 
909 

5661 
31293 
160893 
788733 

3740157 
17310717 
78661629 

47 
667 

6195 
46179 
301251 

1798531 
10085123 
53986819 
278891523 

1400838147 

12 
237 

2535 
20427 
139923 
863523 

4958787 
27022467 
141535491 
718754307 

3 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

58 
1147 
16564 

207157 
2392942 
26310703 

279816808 
2905693033 
29637785506 

298120420579 

16 
400 

6304 
82336 
975280 

10897456 
117191488 

1226857792 
12591244624 
127267866832 

97 
2842 
55546 
885067 

12486859 
162614932 

2001654484 
23632595701 
270225628693 

3012581235310 

22 
862 

18988 
322684 

4737346 
63370330 
795156568 

9524050936 
110124165742 

1238679833686 
 

 
Table 6.6. Cluj Indices IE(RCJD) and IP(RCJD) in Regular Dendrimers 

Having p = 2 and 3 and Generation up to 10. 
 

 p r IE(RCJD) IP(RCJD) 
  z = 0  z = 1 z = 0 z = 1 
2 1 

2 
3 
4 
5 
6 
7 
8 
9 
10 

0.91111 
0.75700 
0.67978 
0.64248 
0.62434 
0.61544 
0.61105 
0.60886 
0.60778 
0.60724 

1.00000 
0.80952 
0.70526 
0.65479 
0.63034 
0.61840 
0.61251 
0.60959 
0.60814 
0.60742 

8.24444 
39.48428 

171.93340 
718.89205 
2942.94684 
11913.41433 
47945.57042 

192376.55943 
770707.04503 
3085243.85345 

4.00000 
21.00000 
93.99806 

398.36215 
1642.52530 
6674.41687 
26914.25133 

108099.91432 
433297.01294 
1734996.10484 

3 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.91964 
0.79410 
0.75027 
0.73578 
0.73099 
0.72941 
0.72888 
0.72870 
0.72864 
0.72862 

1.00000 
0.82692 
0.76122 
0.73939 
0.73219 
0.72980 
0.72901 
0.72875 
0.72866 
0.72863 

17.41964 
179.54978 
1696.45922 
15533.98437 

140639.34503 
1268302.06937 
11422421.63083 

102824974.44435 
925494391.69444 
8329658484.38390 

7.00000 
77.12500 

744.63142 
6873.80590 
62412.87672 

563405.57044 
5075774.57299 
45697411.49634 

411323103.15047 
3702047217.72089 
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6.6.3. Enumeration in Triangulanes and Quatranes  

 
Triangulanes and quatranes10 are the line graphs (see Chap. 1 and Sect. 8.2.1) of 

the dendrimers with the progressive degree p = 2 and 3 respectively (i.e., the branching 
usually encountered in organic chemical structures). Their line graphs are lattices of 
complete graphs (of three and four vertices, respectively) generated around each 
branching vertex in dendrimer and then transformed into a dendritic spiro-structure (see 
Figure 6.4). 

 

 
         G6.9                                                                                        G6.10 
 
Figure 6.4. A monocentric triangulane (G6.9) and a dicentric quatrane (G6.10) 
 

A spiro-graph results by fusing a vertex of degree δi, belonging to a ring, with a 
vertex of degree δj, of another ring, for giving a spiro-vertex of degree δk = δi + δj in the 
resulted structure (analogue to spiranes in organic chemistry).  

In the line graphs of a dendrimer, the degree of a vertex ))(( GLVi ∈  is 
calculated by 

 

 )(),(; GEvupp vui ∈+=δ          (6.30) 

where pu and pv are the progressive degrees of the endpoints of the edge (u,v) and δi is just 
the degree of that edge in G. The branching points of a regular dendrimer have the same 
progressive degree, so that δi = 2p. For the external edges in G it results δi = p. 
 The progressive degree of the complete graph units in the line graphs of 
dendrimers in discussion is derived from their reduced graphs (i.e., the graphs resulted by 
replacing each unit by a point and then joining those points of which corresponding units 
have a common spiro-vertex). In triangulanes, p = 2 while in quatranes p = 3. 

The number of vertices on the ith orbit in the reduced graph of the line graph of a 
regular dendrimer is given by  
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i
i pzpzN ))(2( +−=           (6.31) 

where z = 1 for monocentric and z = 0 for dicentric triangulanes and quatranes. 
The total number of vertices is obtained by summing the orbital contributions Ni, 

over all orbits (the core included) of the reduced graph 
 

∑
=

−+−+−=
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i

irpzpzzN
0

)())(2()1(         (6.32) 

which (after developing the sum) becomes 
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By definition, the number of vertices in L(G) equals the number of edges or the number 
of vertices less one, in the corresponding dendrimer (having an additional generation, 
r+1, as compared to the reduced graph of  L(G)) 
 

 1)()())(( −== GNGEGLN          (6.34) 

 A recursive relation among the members of a family of L(G) in regular 
dendrimers is as follows 
 
 

 )1()(()((1 ++=+ pGLpNGLN rr         (6.35) 

The number of edges in L(G) can be counted by considering the line graph as a 
collection of spiro-complete graphs built up around each vertex of the corresponding 
dendrimer, till the (r-1)th generation. Since the number of vertices in a complete graph 
unit, equals (p+1) and its number of edges is combinations of (p+1) choose 2 and keeping 
in mind eq 6.21, the number of edges in the line graph of a regular dendrimer is 
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where r in the right hand side of eq 6.36 is the radius of the reduced graph of L(G). 
Vertices on a wedgeal fragment starting on the ith orbit are counted by 
 

∑
=

−=
r

is

sr
i pF )(            (6.37) 

The number of all vertices, N, number of vertices on the last added generation 
and the number of all edges in triangulanes and quatranes, up to generation ten, are listed 
in Table 6.7. 
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Table 6.7. Enumeration in Triangulanes (p = 2) and Quatranes (p = 3): 

         Global Vertex Population, N , Periphery Orbital Population, Nr,  
                                                    and Number of Edges, E. 

 
p r N Nr E N Nr E 

                      z = 1 z = 0 

2 1 9 6 12 13 8 18 
 2 21 12 30 29 16 42 
 3 45 24 66 61 32 90 
 4 93 48 138 125 64 186 
 5 189 96 282 253 128 378 
 6 381 192 570 509 256 762 
 7 765 384 1146 1021 512 1530 
 8 1533 768 2298 2045 1024 3066 
 9 3069 1536 4602 4093 2048 6138 
 10 6141 3072 9210 8189 4096 12282 

3 1 16 12 30 25 18 48 
 2 52 36 102 79 54 156 
 3 160 108 318 241 162 480 
 4 484 324 966 727 486 1452 
 5 1456 972 2910 2185 1458 4368 
 6 4372 2916 8742 6559 4374 13116 
 7 13120 8748 26238 19681 13122 39360 
 8 39364 26244 78726 59047 39366 118092 
 9 118096 78732 236190 177145 118098 354288 
 10 354292 236196 708582 531439 354294 1062876 
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6.6.4. Cluj Indices of Triangulanes and Quatranes 

 
Cluj indices are defined in any connected graph, so that it is tempting to calculate 

them for cycle -containing networks such as triangulanes and quatranes. A procedure 
similar to that described for dendrimers is illustrated in Figure 6.5 allowed the 
description10 of the dendritic line graphs with p = 2 and 3, according to the Cluj 
definitions (see Sect. 2.11). Note that, in dendrimers, as well as in triangulanes and 
quatranes, both CJ and CF Cluj indices give identical values. 
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 As can be seen, the edge-defined indices are identical both for distance- and 
detour-Cluj indices. Note the formal similarity between the relations for calculating the 
Cluj indices in dendrimers and those in their line graphs, particularly for the detour-Cluj 
indices (eqs  6.24; 6.25 and 6.39; 6.40). In the opposite, the formula for the distance-Cluj 
index IP(CJD), (6.38) is far more complicated. Expansion of the above symbolic relations 
did, however, not offer simple formulas.  

Values of Cluj indices in triangulanes (p = 2) and quatranes (p = 3) up to generation 
ten10 are listed in Tables 6.8. to 6.11. 
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i2i1

1

2
3

4

8 5

67

9

10
11

12

13

 

 

                   UCJ∆ 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 0 7 7 7 7 7 7 7 7 7 7 7 7 
2 3 0 3 3 3 11 11 3 3 3 3 3 3 
3 3 3 0 3 3 3 3 11 11 3 3 3 3 
4 3 3 3 0 3 3 3 3 3 11 11 3 3 
5 3 3 3 3 0 3 3 3 3 3 3 11 11 
6 1 1 1 1 1 0 1 1 1 1 1 1 1 
7 1 1 1 1 1 1 0 1 1 1 1 1 1 
8 1 1 1 1 1 1 1 0 1 1 1 1 1 
9 1 1 1 1 1 1 1 1 0 1 1 1 1 
10 1 1 1 1 1 1 1 1 1 0 1 1 1 
11 1 1 1 1 1 1 1 1 1 1 0 1 1 
12 1 1 1 1 1 1 1 1 1 1 1 0 1 
13 1 1 1 1 1 1 1 1 1 1 1 1 0 

 
 

IP2(UCJ∆) = A + B +  C = 382 

A = N0(N0 -1)/2 [F0]2 + N1(N1-1) [F1]2  
A = 4(4-1)/2 [3]2 + 8(8-1)/2 [1]2 = 82 

B = N0[F0(N-2F0)] + N1[F1(N-2F0)] + N1[F1(N-2F1)]  
B = 4 [3·7] + 8 [1·7] + 8 [1·11] = 228 

C = N0(N1-2) [F0 F1] 
C = 4(8-2) [1·3] = 72 

 

Figure 6.5. Calculation of IP2(UCJD) index of triangulanes 
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 Table 6.8. Cluj Indices IE(CJD) and IP(CJD) of Triangulanes (p = 2)  
                                and Quatranes (p = 3) with Generation up to 10. 

p r IE(CJD) IP(CJD) 
  z = 0 z = 1 z = 0 z = 1 
2 1 194 72 946 264 
 2 1546 678 12218 4470 
 3 9754 4626 108874 45186 
 4 54330 26922 793194 353754 
 5 280698 142938 5100714 2381706 
 6 1380602 715962 30157098 14532330 
 7 6562298 3447162 167924266 82787754 
 8 30426106 16134906 894215210 448494378 
 9 138446842 73950714 4600711210 2338518570 
 10 620826618 333499386 23034236970 11833568298 
3 1 822 264 8679 2046 
 2 13404 4926 243606 74748 
 3 177996 69456 4677222 1607484 
 4 2128314 857910 73818741 26995314 
 5 23922498 9836760 1035358077 393561786 
 6 258303288 107632110 13430112780 5240628840 
 7 2712012312 1140784032 164846025516 65548466040 
 8 27894481878 11816462694 1942134733659 783264588510 
 9 282430156494 120294475176 22170706080627 9040351900278 
 10 2824297224852 1208172034974 246843377284962 101541238563540 

 
 

Table 6.9. Cluj Indices IE(RCJD) and IP(RCJD) of Triangulanes (p = 2)  
and Quatranes (p = 3) with Generation up to 10. 

p r IE(RCJD) IP(RCJD) 
  z = 0 z = 1 z = 0 z = 1 
2 1 5.13997 4.19048 13.38442 8.19048 
 2 9.23189 7.15947 48.71617 28.15947 
 3 17.65167 13.42958 189.58507 107.42764 
 4 34.59912 26.11971 753.49117 424.48187 
 5 68.54440 51.56906 3011.49124 1694.09436 
 6 136.45903 102.50041 12049.87337 6776.91728 
 7 272.29997 204.37886 48217.87039 27118.63019 
 8 543.98760 408.14347 192920.54704 108508.05779 
 9 1087.36569 815.67649 771794.41072 434112.68943 
 10 2174.12328 1630.74441 3087417.97674 1736626.84925 
3 1 19.30857 13.29808 36.72821 20.29808 
 2 55.94973 37.59520 235.49951 114.72020 
 3 166.23298 111.08109 1862.69220 855.71251 
 4 497.19102 331.70877 16031.17538 7205.51469 
 5 1490.09927 993.64410 142129.44430 63406.52082 
 6 4468.83511 2979.46685 1272770.90449 566385.03730 
 7 13405.04630 8936.94059 11435826.67713 5084711.51358 
 8 40213.68106 26809.36364 102865188.12541 45724220.85999 
 9 120639.58575 80426.63339 925615031.28020 411403529.78386 
 10 361917.29996 241278.44285 8330020401.68386 3702288496.16374 

 



Cluj Indices 193 

Table 6.10. Cluj Indices IE(CJ∆) and IP(CJ∆) of Triangulanes (p = 2)  
and Quatranes (p = 3) with Generation up to 10. 

p r IE(CJ∆) IP(CJ∆) 
  z = 0 z = 1 z = 0 z = 1 
2 1 194 72 382 120 
 2 1546 678 4214 1626 
 3 9754 4626 34534 14766 
 4 54330 26922 239046 108630 
 5 280698 142938 1485702 702630 
 6 1380602 715962 8574726 4170054 
 7 6562298 3447162 46902790 23282310 
 8 30426106 16134906 246373382 124224774 
 9 138446842 73950714 1254012934 640092678 
 10 620826618 333499386 6224179206 3208516614 
3 1 822 264 1695 462 
 2 13404 4926 38982 12684 
 3 177996 69456 677910 240348 
 4 2128314 857910 10093917 3762066 
 5 23922498 9836760 136304229 52472874 
 6 258303288 107632110 1721837676 677965080 
 7 2712012312 1140784032 20726902668 8297193144 
 8 27894481878 11816462694 240587843187 97532921118 
 9 282430156494 120294475176 2714460814731 1111411966854 
 10 2824297224852 1208172034974 29937528342642 12356290538148 

 
 

Table 6.11. Cluj Indices IE(RCJ∆) and IP(RCJ∆) of Triangulanes (p = 2)  
and Quatranes (p = 3) with Generation up to 10. 

p r IE(RCJ∆) IP(RCJ∆) 
  z = 0 z = 1 z = 0 z = 1 

2 1 5.13997 4.19048 38.72727 20.19048 
 2 9.23189 7.15947 171.25362 93.29280 
 3 17.65167 13.42958 718.24957 397.70737 
 4 34.59912 26.11971 2942.32250 1641.89496 
 5 68.54440 51.56906 11912.79889 6673.79848 
 6 136.45903 102.50041 47944.95937 26913.63882 
 7 272.29997 204.37886 192375.95057 108099.30473 
 8 543.98760 408.14347 770706.43725 433296.40480 
 9 1087.36569 815.67649 3085243.24622 1734995.49742 
 10 2174.12328 1630.74441 12345822.02431 6943615.07018 
3 1 19.30857 13.29808 178.75568 76.29808 
 2 55.94973 37.59520 1695.70896 743.87020 
 3 166.23298 111.08109 15533.24859 6873.06652 
 4 497.19102 331.70877 140638.61404 62412.14453 
 5 1490.09927 993.64410 1268301.33997 563404.84065 
 6 4468.83511 2979.46685 11422420.90195 5075773.84398 
 7 13405.04630 8936.94059 102824973.71565 45697410.76760 
 8 40213.68106 26809.36364 925494390.96580 411323102.42181 
 9 120639.58575 80426.63339 8329658483.65528 3702047216.99226 
 10 361917.29996 241278.44285 74967553341.83228 33318842928.83120 
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Chapter 7 

 

FRAGMENTAL  PROPERTY  INDICES 
 

7.1.  INTRODUCTION 

 In the last decade, structural indices used in QSAR/QSPR (Quantitative 
Structure-Activity Relationships/ Quantitative Structure-Property Relationships) are 
rather calculated from steric/geometric and/or electrostatic/partial charges 
considerations1-3 than from (older) topological basis.4 In the view of a QSAR analysis, the 
set of molecules under study is somehow aligned.5 CoMFA method6 proposes an 
algorithm consisting of the following steps: (1) build a set of molecules with known 
activities and their 3D-structure (eventually obtain the 3D-structure from any specific 
program, such as: MOPAC, SYBYL,7,8 HyperChem,9,10 Alchemy2000,7  MolConn9,11); 
(2) align the set in the 3D space according to a chosen superimposing method (e.g., those 
maximizing the steric overlap of some fragments in the molecules,7,12,13 or those based on 
a pharmacophore theory14,15); (3) construct a grid of points surrounding the superposed 
molecules (in standard form6 or in modified form16); (4) atomic charges are then 
calculated for each molecule, at a chosen level of theory, (5) the fields: steric (Lennard-
Jones), electrostatic (Coulomb16), hydrophobic (e.g., HINT),17 hydrogen-bond potential,18 
molecular orbital field,19,20 or any other user-defined field21, are further calculated for 
each molecule by interaction with a probe atom8,21 at a series of grid points; (6) The 
resulting descriptors are correlated, by the use of partial least squares (PLS), with the 
chosen property. A cross-validation procedure will give the measure of the predictive 
ability of the model. The best results were obtained in a series of congeners but non-
congeneric series were also investigated.  

CoMFA is a good tool in investigating a variety of biological activities, such as 
cytotoxicity,22 enzyme inhibition,19 binding properties.23-25 Moreover, CoMFA is 
ultimately used in drug design,14,26 eventually by searching for active substructures in a 
database. Modifications of the above discussed method were used in 3D-QSAR/QSPR 
studies.28-32 

 In this chapter a new approach, leading to a family of fragmental property 
indices, FPI, is proposed. These indices are calculated as local descriptors of some 
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fragments of the molecule and, a global index is then obtained by summing the 
fragmental contributions. This idea is implemented on a set of four models with four 
default properties, eight descriptors of property, five models of superposition, and four 
type of summative indices, resulting in 2560 indices for one method of breaking up. 

 

 

7.2.  FORMULAS  FOR  FRAGMENT  CALCULATION 
 
 The calculation of fragmental property indices starts with a decomposition of 
molecule into fragments (i.e., spanning subgraphs) corresponding to all pairs of vertices 
(i,j) in the molecule , i being the reference vertex (see below). 
 In Cluj fragmentation criteria, the path  p joining the vertices i and j of the pair 
(i,j) play the central role in selecting the fragments. In cycle -containing graphs, more than 
one path could join the pair (i,j) thus resulting in more than one fragment referred to i. In 
such a fragmentation, the most frequently occurring fragments will bring the greatest 
contribution to a global value of the calculated index for the molecule. In Szeged 
fragmentation criteria, for each pair (i,j) results one fragment. 
 Before introducing the fragmental property indices some formulas for calculating 
the fragments are needed. 
 Recall that these fragments are entries in the Cluj and Szeged matrices, 
respectively (see Chap. 2).  
 Let G = (V, E ) be a graph and  i, j ∈ V.  Let p = (i = v1, v2,...,v| p|-1 , v| p| = j) ∈ 
P(G)i,j be a path from i to j in G. 
 
 

7.2.1 CJ and CF Fragments  

 Collections of maximal fragments of type CJ ( M
j,iCJDiS  and M

j,iCJDeS ) and CF 

( M
j,iCFDiS  and M

j,iCFDeS ) are available by applying the following equations: 

           { }{ }jijiji
M

pji
M

pji
M

ji CXDyScxdycxdyCXDyCXDyCXDyS ,,,,,,,, ,max, ∈==    (7.1) 

           CXDySi,j    = {CXi,j,p∈CXS i,j | p∈ P(G)i,j , p ∈ Y(G)}        (7.2) 

with the meaning for X, x, Y, y : 

X; x Y; y maximal fragment set 
X = J;  x = j  Y = D;  y = i M

jiCJDiS ,  
X = J;  x = j  Y = ?;  y = e M

jiCJDeS ,  
X = F;  x = f  Y = D;  y = i M

jiCFDiS ,  
X = F;  x = f  Y = ?;  y = e M

jiCFDeS ,  
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where Di is related to the distance dij while De to the detour δij in the graph (see Chap. 1).  
More explicitly, the quantities in eq 7.2 (see also (2.37) and (2.42)) are: 
 
   CJi,j,p   = {v |v∈V(G); d(G)i,v < d(G)j,v;  and ∃ w∈Wv,i, w∩ p  = {i}; p∈D(G) or ∆(G)} 

               (7.3) 

   CFi,j,p = {v  |v∈V(G); d (Gp ) iv<d(Gp ) j ,v ; Gp  = G – p ; p∈D(G) or  ∆(G) } 
               (7.4) 

where  d(Gp)iv and d(Gp)jv are distances measured in the spanning subgraph  Gp = G - p 
resulted by cutting off the path p except its endpoints. CJi,j,p and CFi,j,p represent 
fragments (connected or not) in G, constructed according to eqs (7.3) and (7.4) 
respectively, with respect to the endpoints  i and j of the path p.  
 

7.2.2 Sz Fragments  
 
 The Szeged fragments are constructed by the equations: 

SzDii,j   = {v| v∈ V(G);   d(G)v,i < d(G)v,j }    (7.5) 

SzDei,j  = {v | v∈ V(G);  δ(G)v,i < δ(G)v,j } (7.6) 

  
Note that in the definition of the Szeged fragments, the path between the vertex i and 
vertex j is irrelevant. 
 
 

7.3.  FRAGMENTAL  PROPERTY  INDICES 

7.3.1 Model Parameters  

 It is well known that the physical laws govern the natural phenomena. 
Macroscopic interactions are interactions of field-type. This means that the field is 
produced by a scalar function of potential. Let f(x, y, z) be a scalar function. This 
function induces a field given in terms of the gradient of f : 
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 For the potential of type  
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 f(x, y, z) = pz             (7.8) 

and applying eq 7.7 we obtain the associated field of the form: 
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 This is the case of the well-known uniform gravitational field: 

 gmG
rr

=            (7.10) 

the potential of which is given by  

 mgzzEE pp == )(           (7.11) 

where m is the mass of probe and z is the reference coordinate. 
 Note that eq 7.9 is applicable not only to the Newtonian (gravitational) 
interactions but also to the Coulombian (electrostatic) interactions. In both cases the 
relation is valid if the mass M (or the charge Q) that generates the potential f and 

associated field f⋅∇
r

  is far enough (r >> z) for the approximation  
 

 (r + z)2/r2 = (r2 + 2rz + z2)/r2 = 1 + 2z/r + (z/r)2 ≅ 1 

be applied in the equation of field produced by M or Q (see below). 
 For the potential of type : 
 

 f(x, y, z) = p/z            (7.12) 

eq 7.7 leads to the associated field: 
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 This is the case of well-known (non-uniform) gravitational field given by: 

 r
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and the associated potential of the form: 

 
r
m

krmUU == ),(           (7.15) 

where m is mass of probe and r is the position relative to the location of the point that 
produces the field. 
 For the Coulombian field eq 7.13 becomes: 
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 r
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and the potential associated to the Coulombian field: 

 
r
q

krqUU == ),(           (7.17) 

 For fragmental property indices four models of interaction are implemented: two 
of them topological (dense topological and rare topological) and two others geometric 
(dense geometric and rare geometric).  
 The models are related to two types of field interactions: one of weak dependence 
on distance for the potential of the type (7.8) generating a uniform field (7.9) and the 
second, of strong dependence on distance for the potential of the type (7.12) that generate 
a non-uniform field (7.13). 
 The variables in the models are metrics of distance d (topological dT and 
geometrical dE), property Φ (mass M, electronegativity E, cardinality C, partial charge or 
any other atomic property P), property descriptor Ω (p, d, pd, 1/p, 1/d, p/d, p/d2, p2/d2) 
and method of superposition Ψ (S, P, A, G, H). 
Given rational numbers x1, …, xn, the (mathematical) superposition is 
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The expressions for the property descriptors are: 
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   (7.19) 
where p is any property (p ∈ Φ ) and d is any metric of distance. 
 These variables are most frequently used in building of our models by the 
reasons: 

- The expressions of the property descriptor Ω simulate the most occurring 
physical interactions (e.g., p, pd, p/d, p/d2, p2/d2)33 and the most usual descriptor in 
topological and geometric models.34-36 The property descriptor is used either in the 
calculation of the vertex descriptor (when d is the distance from the vertex v to j and p is 
any atomic property) or in the evaluation of the fragment descriptor (when d is the 
distance between the center of property of the fragment and j, while p is a calculated 
fragment property). 
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- The (mathematical) superposition is applied upon a string of vertex descriptors 
for giving a fragment descriptor. Note that S = sum operator; P = product operator; A = 
arithmetic mean operator; G  =  geometric mean operator; H  =  harmonic sum operator.  
The summation is suitable  in the case of any additive property (mass, volume, partial 
charges, electric capacities, etc.)37. The multiplication occurs in concurrent phenomena 
(probabilistically governed).38-40 The arithmetic mean is useful in evaluating some mean 
contributions (corresponding to some uniform probabilistic distribution).41,42 The 
geometric mean is used in calculating the group electronegativities.43,44 Finally, the 
harmonic sum is present in connection with the elastic forces, electric fields and group 
mobility in viscous media.45-47 

 

7.3.2 Description of the Models  
 
 Let (i,j) be a pair of vertices and Fri,j any fragment referred to i with respect to j. 
 

Dense Topological Model 

 Let v be a vertex in the fragment Fri,j. The vertex descriptor applies the property 
descriptor to the vertex property and topological distance Tvjd . The global property 

descriptor, resulting by the vertex descriptor superposition, gives the interaction of the 
whole fragment Fri,j with the point j: 
 

 PD( jiFr , ) =
jiFrv

?
,∈

( Ω ( Tvjd  , pv ) )        (7.20) 

The j point can be conceived as an internal probe atom  (see the CoMFA approach). 
However, the chemical identity of j is not considered.  
 
Rare Topological Model 

 Within this model the global property results by superposing the vertex properties 
pv. The vertex descriptor applies the property descriptor to the global property and 
topological distance dT i,j. The global property descriptor models the interaction of the 
fragment Fri,j with the point j and the global property being  concentrated in the vertex i: 
 
 PD( jiFr , ) = Ω ( dT i,j  ,

jiFrv
?

,∈
( pv ))        (7.21) 
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Dense Geometric Model  

 The global descriptor is the vector sum of the vertex vector descriptors. It applies 
the property descriptor to the vertex property pv and the Euclidean distance dE v,j in 
providing a point of equivalent (global) property located at the Euclidean distance dE CP,j

  
 
(with dE CP,j being the distance of property). The global property descriptor vector has the 
orientation of this distance vector. The model simulates the interactions in non-uniform 
fields (gravitational, electrostatic, et al): 
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 dE CP,j = 1−Ω p ( DG( jiFr , ),P( jiFr , )),        (7.22) 

 

or, in words, dE CP,j is the distance that satisfies: Ω( dE CP,j , P( jiFr , ) ) = PD( jiFr , ) 
 
Rare Geometric Model 

 The scalar global descriptor applies the property descriptor to the center of 
fragment property  and Euclidean distance between this center and the vertex j.  

The model simulates the interactions in uniform fields (uniform gravitational, 
electrostatic, etc.): 
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7.3.3 Fragmental Property Matrices 

 
 The fragmental property matrices are square matrices of the order N (i.e., the 
number of non-hydrogen atoms in the molecule). The non-diagonal entries in such 
matrices are fragmental properties, evaluated for the maximal fragments (equations 7.1-
7.6) corresponding to a pair of vertices (i,j) by a chosen model.  
 In Szeged criteria (eqs 7.5 and 7.6), the fragmentation related to the pair of 
vertices (i,j) results in a unique fragment Fri,j. 



M. V. Diudea, I. Gutman and L. Jantschi 204 

In case of Cluj criteria, the fragmentation can supply more than one maximal 
fragment for the pair (i,j). In such a case, the matrix entry is the arithmetic mean of the 
individual values. 

 Thus, if i, j in V(G), i ≠ j and Pi,j  = { k
jijiji ppp ,

2
,

1
, ,...,, } paths joining i and j, then 

cf. CJ or CF definition (eqs 7.1-7.4), the fragments k
jijiji FrFrFr ,

2
,

1
, ,...,,  are generated. Let  

m be the number of maximal fragments (cf. eq 7.1) among all the k fragments, 1≤m ≤ k , 
and let σ1, …,σm   be the index for the maximal fragments. 
 Applying any of the equations 7.20-7.23 for all the m maximal fragments we 
obtain the following m values (for example, by eq 7.20): 
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The matrix entry associated to the pair (i,j) is the mean value: 
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          (7.24) 

The resulting matrices are in general unsymmetric but they can be symmetrized 
as shown in Chap. 2. The symbols for the fragmental property matrices will be detailed 
below. 
 
7.3.4 Fragmental Property Indices 

 
 Fragmental property indices are calculated at any fragmental property matrices  
given by eqs 7.20-7.24. Four types of index operators are defined: P_, P2, E_, E2 
according to  the relations: 
 

 P_(M) = ½ΣΣ[M]i,j                 ; P2(M) = ½ΣΣ[M]i,j[M]j,i;  

 E_(M) = ½ΣΣ[M]i,j [A]i,j   ; E2(M) = ½ΣΣ[M]i,j[M]j,i[A]i,j    (7.25) 

where M is any property matrix, symmetric or unsymmetric. 
 

7.3.5 Symbolism of the Fragmental Property Matrices and Indices 

 
 The name of fragmental property matrices is of the general form: 
 ABcDdEfffffG           (7.26) 
where: 
 A ∈ {D, R}; D = Dense; R = Rare; 
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 B ∈ {T, G}; T = Topological; G = Geometric; 
 c ∈ {f, j, s};  f = CF-type; j = CJ-type; s = Sz-type; 
 Dd ∈ {Di, De};  Di = Distance; De = Detour; 
 E ∈ Φ  (i.e., E∈{M, E, C, P} where M = mass; E = electronegativity; C = 
cardinality ; P = other atomic property - implicitly, partial charge; explicitly, a property 
given by manual input); 
 fffff ∈ Ω (i.e., fffff∈{__p__, _1/p_, __d__, _1/d_ , _p.d_ , _p/d_, _p/d2, p2/d2} 
with the known meaning given in eq 7.19); 
 G ∈ Ψ (i.e., G∈{S, P, A, G, H} with the known meaning from eq 7.18). 
 The name of fragmental property indices is of the general form: 

 ABcDdEfffffGii           (7.27) 

where: 
 ii ∈ {P_, P2, E_, E2} with the known meaning from eq 7.25. 
 If an operator, such as f(x)=1/x (inverse operator) or f(x)=ln(x), is applied the 
indices are labeled as follows: 
 
 lnABcDdEfffffGii := ln(ABcDdEfffffGii);  

 1/ABcDdEfffffGii := 
fGiiABcDdEffff

1
       (7.28) 

 For example, index lnDGfDeM__p__SP_ is the logarithm of index 
DGfDeM__p__SP_ computed on the property matrix DGfDeM__p__S. The model used 
is dense, geometric, on fragment of type CF, with the cutting path being detour. The 
chosen property is mass, the descriptor for property is even the property (mass) and the 
sum operator counts the vertex descriptors. 
 

7.3.6 Some Particular Fragmental Property Models  
 
           Let i, j  be two vertices in V(G) and Fri,j any fragment referred to i with respect to j. 
Fragmental Mass 

           In evaluating the fragmental mass, the chosen property is Φ  = M, descriptor Ω = p, 
superposition Ψ = S, and the model is rare topological, RT. The fragmental mass 
descriptor takes the form: 
 
 

 PD(Fri,j) = 
jiFrv ,∈

Σ Mv          (7.29) 

It models the molecular mass of the fragment. The name of the associated property matrix 
is RTcDdM__p__S, with the known meaning for c and Dd.  
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             If c = s and Dd = Di then RTsDiM__p__S, it models the molecular mass of the 
Szeged Distance Fragments (equation 7.5). If c = f and Dd = Di then the matrix 
RTfDiM__p__S collects mean values (see eq 7.24) of mass of all the fragments 
belonging to i (with respect to j) according to the CF criterion (eqs 7.1, 7.4 ). 
 
Fragmental Electronegativity 

 The well known equalizing principle of electronegativity E, is here considered: 
the fragment electronegativity is the geometric mean of electronegativities of the s atoms 
joined to form that fragment (see also Section 7.3.1).  
Let the property Φ  = E (electronegativity); descriptor Ω  = p; superposition Ψ = G; the 
model is rare topological, RT. The fragmental electronegativity descriptor of Fri,j is: 
 

 PD(Fri,j) || ,
,

ji
ji

Fr v
Frv

E
∈
Π=          (7.30) 

 It models the electronegativity of the fragment. The name of the property matrix 
associated with it is RTcDdE__p__G . Note that Ev is the group electronegativity for 
vertex v calculated with formula: 
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where b(v, j ) is the conventional bond order between v and j (e.g., 1, 1.5, 2, 3 for single, 
aromatic, double and triple bonding, respectively), Ea is the atomic electronegativity 
(Sanderson) and j∈Γv is any atom ( H atoms included) consisting the group Γv. 
 

Fragmental Numbers  

 The property Φ = C (cardinality) was introduced for recovering some graph-
theoretical quantities and/or graph theoretical analogue indices (see below).  
 For descriptor Ω = p, superposition Ψ = {P, A, G}, and the model rare 
topological, RT, the cardinal numbering descriptor of Fri,j is: 
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The arithmetic mean A, geometric mean G and product P applied to 1 (value for 

vertex property) leave it unchanged. The mean value for all fragments belonging to i vs. j 
(CJ and CF only) is also 1. All matrices RTcDdC__p__P, RTcDdC__p__A and 
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RTcDdC__p__G have all their entries unity, except the main diagonal elements that are 
zero. 

The indices RTcDdC__p__PP_, RTcDdC__p__AP_, RTcDdC__p__GP_  give 
the number of edges in the complete graph having the same number of vertices N, as the 
considered molecular graph:  
 RTcDdC__p__PP_ = RTcDdC__p__AP_ = RTcDdC__p__GP_ = N(N - 1)/2 

Similarly, the indices calculated on edge, RTcDdC__p__PE_, RTcDdC__p__AE_, 
RTcDdC__p__GE_ give the number of edges in the molecular structure. 
  

Uniform Field Gravity 

Let the property Φ  = M, descriptor Ω = p/d2, superposition Ψ =  S and rare 
geometrical model. 
The uniform gravity descriptor of Fri,j is calculated by: 

 PD(Fri,j) =
jiFrv ,∈

Σ
2
, jv

v

d

M
         (7.33) 

 It models the value of the gravitational field induced by the fragment Fri,j in the 
point j. Values given by (7.33) are collected in the matrix RGsDdM_p/d2S while 
averaged  values are considered in RGfDdM_p/d2S and RGjDdM_p/d2S matrices. 
 
Non-Uniform Field Gravity 

Let the property Φ  = M, descriptor Ω = p/d2, superposition Ψ = S and dense 
geometrical model. The distance (vs. j) of the center of equivalent fragmental gravity of 
Fri,j is: 
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    (7.34) 

It models the distance at which a point mass equal to the fragment mass ∑
∈ jiFrv

vM
,

 should 

be located vs. j such that the gravitational field induced by Fri,j in j be equal to the field 
induced by all atoms of the fragment. The associated matrix is of the form 
DGcDdM_p/d2S. 
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Uniform Electrostatic field 

Let the property Φ   = P (QP implicitly, in the Cluj Program), descriptor Ω = p/d2, 
superposition Ψ  = S and rare geometrical model. The uniform electrostatic field 
descriptor of Fri,j is: 

 

 PD(Fri,j) = 
jiFrv ,∈

Σ
2
, jv

vP

d

Q
      (7.35) 

It models the value of electrostatic field induced by the fragment in j. The property matrix 
is of the form: RGcDdP_p/d2S. 
 
Non-Uniform Electrostatic Field 

For the property Φ  = P (QP implicitly), descriptor Ω = p/d2, superposition Ψ  = S 
and dense geometrical model, the distance (vs. j) of the center of equivalent electrostatic 
field of Fri,j is: 
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It models the distance at which a point charge equal to the fragment charge ∑
∈ ji

v
Frv

PQ
,

  

be located vs. j such that the electrostatic field induced by it in j be equal to the field 
induced by the all atoms of the fragment. The associated matrix is of the form: 
DGcDdP_p/d2S. 
 
Uniform Field Gravitational Potential 

It is obtained for the property Φ  = M, descriptor Ω = p/d , superposition Ψ = S and 
rare geometrical model. The property descriptor of Fri,j is: 
 

 PD(Fri,j) =
jiFrv ,∈

Σ
jv

v

d

M

,

         (7.37) 

It models the value of the gravitational potential induced by the fragment in j. The 
property matrix is of the form: RGcDdM_p/d_S. 
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Non-Uniform Field-Type Gravitational Potential 

For the property Φ   = M; descriptor Ω = p/d; superposition Ψ =  S; dense 
geometrical model, the distance (vs. j) of the center of equivalent fragmental gravity  of 
Fri,j is: 
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It models the distance at which a point mass equal to the fragment mass ( ∑
∈ jiFrv

vM
,

) 

should be located vs. j such that the gravitational potential induced by it in j be equal to 
the potential induced by the all atoms of the fragment. The associated matrix is of the 
form DGcDdM_p/d_S. 
 
Uniform Field Coulombian Potential 

It is obtained for the property Φ   = P (Qp implicitly), descriptor Ω = p/d, 
superposition Ψ = S and rare geometrical model. The electrostatic potential descriptor of 
Fri,j is:   

 PD(Fri,j) =
jiFrv ,∈

Σ
jv

vP

d

Q

,

          (7.39) 

It models the value of the electrostatic potential induced by the fragment in j. The 
property matrix is of the form: RGcDdP_p/d_S. 
 
Non-Uniform Field Electrostatic Potential 

For the property Φ  = P (QP implicitly); descriptor Ω = p/d; superposition Ψ = S 
and dense geometrical model, the distance (vs. j) of the center of equivalent electrostatic 
potential of Fri,j is: 
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It models the distance at which a point charge equal to the fragment charge ( ∑
∈ jiFrv

vPQ
,

) 
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should be located vs. j such that the electrostatic potential induced by it in j be equal to 
the potential induced by all the atoms of the fragment. The associated matrix is of the 
form DGcDdP_p/d_S. 
 
Fragmental Numbers and Graph-Theoretical Matrices of CJ-, CF- and Sz -Type  

Let the property Φ = C, descriptor Ω = p, superposition Ψ = S and rare 
topological model. Value of cardinal numbering descriptor for Fri,j is: 
 

 PD(Fri,j) =
jitFrv ,

σ∈
Σ 1 = jitFr ,

σ         (7.41) 

It models the number of atoms in the fragment. The associated matrices are of the 
form: RTcDdC__p__S. Note that these matrices are exactly the graph-theoretical 
matrices corresponding to the Cluj and Szeged criteria (see eqs 7.1-7.6): 
 
 RTfDiC__p__S =CFD ;        RTfDeC__p__S =CF?  

 RTjDiC__p__S =CJD ;         RTjDeC__p__S =CJ?  

RTsDiC__p__S = SZD ;       RTsDeC__p__S =SZ?   

   
In all the above presented models, j appears as a virtual probe atom . In the 

opposite to the CoMFA approach, whose descriptors are calculated as interactions of the 
molecule with external grid probe atoms, our approach makes use of internal probe 
atoms: the property of fragment Fri,j is viewed as the interaction of atoms forming the 
fragment Fri,j with the atom j (with no chemical identity, however).  
 

Model Degeneration and Computational Features 

 The degeneration in the above models may occur in cases when the values of 
property are not diverse enough, like is case of cardinality (see Fragmental Numbers, this 
Section). Another degeneration is in the case: RTfDiC__p__H = TfDiC_1/p_S.  
 The fragmental analysis was made by the aid of four original 16-bit 
windows computer programs. First program, ClujTeor calculates topological 
descriptors of Cluj and Szeged type and generates the fragments for the 
molecules. Second, ClujProp calculates the fragmental properties. The third one, 
StatMon makes monovariate regressions and sorts indices according to the 
correlation score. The forth program, StatQ performs multi-linear regression (2-
variate, 4-variate, etc.) and saves on disk the best couples of indices. The total 
number of indices is given by: 2560(see Sect. 7.1) × 3(i.e., x, ln(x), 1/x) × 3(i.e., 
the cutting methods: CJ, CF, Sz) × 2(i.e., the path criteria: Di, De) = 46080. Note 
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that in most cases, the degeneration induced by property values and operators lead 
to a total number of distinct indices around 19,000. In bivariate regression, the 
first 214-1=16383 indices recording the best scores in monovariate regression are 
considered. 
 
 
 
 
 
 
 
 
 

7.4.  STUDY  OF  CORRELATION 
 

 To illustrate the quality of the family of fragmental property indices in correlation 
a set of 17 chemical structures from the class of substituted 3-(Phthalimidoalkyl)-
pyrazolin-5-ones was selected. 
 
7.4.1 Structure of substituted 3-(Phthalimidoalkyl)-pyrazolin-5-ones 

 The structure of the selected chemical compounds is given in Figures 7.1.(a, b). 
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Figure 7.1.a. Structure of 17 substituted 3-(Phthalimidoalkyl)-pyrazolin-5-ones;  
molecules 1 to 9 
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Figure 7.1.b. Structure of 17 substituted 3-(Phthalimidoalkyl)-pyrazolin-5-ones; 
molecules 10 to 17. 

 

7.4.2 Properties of substituted 3-(Phthalimidoalkyl)-pyrazolin-5-ones 

 The sum of one-electron energy calculated at the Extended-Huckel level was the 
first molecular property taken in correlation. A second molecular property was the 
biological activity of the above listed pyrazolin-5-ones, namely the inhibitory activity (in 
%) of a solution of 0.05 mg/ml pyrazolin-5-one on Lepidium sativum L. (Cresson). The 
The data are listed in Table 7.1. 
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Table 7.1. The Sum of One-Electron Energy Calculated at Single Point Semi-Empirical 
Extended-Huckel and the Inhibitory Activity on Lepidium sativum L. (Cresson) for 17 

Substituted 3-(Pthalimidoalkyl)-Pyrazolin-5-Ones* 
 

No. Compound Energy 
(kcal/mol) 

Inhibition (%) 
(0.05 mg/ml) 

1 Gly-Pyr -50978.12 28.4 
2 Gly-Pyr-O-Me -48531.44 28.0 
3 Gly-Pyr-1-N-Me -50863.04 30.4 
4 Gly-Pyr-2-N-Me -53416.95 27.7 
5 Gly-Pyr-Decarb -38604.68 14.3 
6 Gly-Ph-Pyr -62330.33 68.3 
7 Gly-Ph-Pyr-O-Me -64752.65 49.4 
8 Gly-Ph-Pyr-2-N-Me -64751.09 65.2 
9 Gly-Ph-Pyr-Decarb -38588.46 46.9 
10 Ala-Pyr -43209.47 29.3 
11 Ala-Pyr-O-Me -55729.99 28.9 
12 Ala-Pyr-1-N-Me -55832.12 32.6 
13 Ala-Pyr-Decarb -41020.54 12.2 
14 Ala-Pyr-1-N-Me-Decarb -43743.36 18.2 
15 Ala-Ph-Pyr -64701.39 71.7 
16 Ala-Ph-Pyr-O-Me -67104.63 50.6 
17 Gly-Pyr-1-N-Me-Decarb -41057.45 15.1 

 

* Values of inhibition are taken from ref.48 and values of energy are calculated by 

HyperChem program (HyperCube Inc.) 

 

7.4.3 QSPR Analysis for Energy 

7.4.3.1. Monovariate Regression for Energy 

For the first five best indices in monovariate correlation, the equation of the 
model is: 
 
 Predicted energy = b0 + b1⋅lnIndex     (7.42) 

The indices and their values are shown in Table 7.2. 
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Table 7.2 Values of the Best Five Indices in Monovariate Regression 

Index 1 2 3 4 5 

Name DGjDeC_1/p_SP_ DGfDeC_1/p_SP_ DGjDiC_1/p_SP_ RTsDiC_1/p_GP2 RTsDiC__p__SP_ 

r -0.999466 -0.999463 -0.999439 -0.999414 -0.999405 
b0 89016.518 89128.374 89375.155 89382.165 81477.187 
b1 -25198.270 -25214.115 -25150.194 -25379.594 -16830.753 
1 257.98245 258.17130 263.03785 253 2644.0 
2 235.67776 235.86768 240.61058 231 2296.5 
3 262.04099 262.37413 268.90715 253 2644.0 
4 287.68696 287.93773 296.79757 276 3001.0 
5 155.73903 155.92757 159.59795 153 1233.5 
6 414.86839 415.11870 425.81775 406 5376.5 
7 445.15796 445.41579 456.60416 435 5953.5 
8 448.66651 448.91642 460.66835 435 5941.5 
9 156.12878 156.32527 160.50819 153 1233.5 

10 193.88140 194.13758 197.96803 190 1691.0 
11 312.32217 312.59997 321.23457 300 3406.0 
12 312.17034 312.44917 321.26878 300 3390.0 
13 174.41853 174.62444 178.39353 171 1449.0 
14 194.01648 194.23557 198.60151 190 1702.0 
15 444.70485 444.96963 455.79605 435 5946.0 
16 476.02635 476.29883 487.62160 465 6560.0 
17 174.26687 174.46487 178.66246 171 1461.0 

 

 

The best single variable QSPR (boldface in Table 7.2) was 

 Predicted energy = 89016.5 − 25198.3⋅lnDGjDeC_1/p_SP_    (7.43) 

Statistics for the best regression are given in Table 7.3. 

 

Table 7.3. Statistics for eq 7.43 

 r s F (1,15) t (15) p-level 

Intercept    74.59 .0000 

lnDGjDeC_1/p_SP_ -0.999466 338.5 14046 -118.5 .0000 

 

For the meaning of statistic parameters, the reader is invited to consult Chapter 9 of this 
book.  
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Figure 7.2. shows the plot of the calculated energy (cf eq 7.43) vs. the natural 
logarithm of the DGjDeC_1/p_SP_  index. 
 

 

 
Figure 7.2. The best monovariate regression (cf eq 7.43) 

  

Values of lnDGjDeC_1/p_SP_  , energy and predicted energy (cf eq 7.43) are included in 
Table 7.4. 

 

 
 

 

 

Table 7.4 Regression Results: lnIndex, Energy and Predicted Energy, cf eq 7.43. 

No lnDGjDeC_1/p_SP_ Energy Predicted Energy 

1 5.55289 -50978.12 -50906.74219 
2 5.46246 -48531.44 -48628.16016 
3 5.56850 -50863.04 -51300.07031 
4 5.66187 -53416.95 -53652.88281 
5 5.04818 -38604.68 -38188.92969 
6 6.02796 -62330.33 -62877.67969 
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Table 7.4 (Continued) 

7 6.09843 -64752.65 -64653.34766 
8 6.10628 -64751.09 -64851.17187 
9 5.05068 -38588.46 -38251.91016 
10 5.26725 -43209.47 -43708.98437 
11 5.74403 -55729.99 -55723.23437 
12 5.74355 -55832.12 -55710.98047 
13 5.16146 -41020.54 -41043.28906 
14 5.26794 -43743.36 -43726.53516 
15 6.09741 -64701.39 -64627.68359 
16 6.16547 -67104.63 -66342.74219 
17 5.16059 -41057.45 -41021.36719 

 

 

7.4.3.2. Bivariate Regression for Energy 

 The first 16383 indices in monovariate regression are input for bivariate 
correlation. The algorithm searches for the best correlation for every pair (i, j) of indices 
(1≤ i < j ≤ 16383), and writes on disk the new best found correlation. 
 Here, the first best found three pairs of indices for bivariate correlation. Indices 
are labeled with their monovariate rank score. The pairs are biv1(1, 11717), biv2(95, 
1414) and biv3(108, 1383). 
 Case biv3(108,1383) was the best found correlation within the fragmental 
property  family. 
 Note that the best scored index in monovariate correlation is not present in the 
pair of best bivariate correlation (1∉{108,1383}). This fact suggests that the best scored 
index in monovariate correlation does not explain at the best the property, when coupled 
with another index belonging to the family. Selection of the pairs of indices for bivariate 
correlation must be done among all the set (1...16383). Experimental it is proved that 
there is no method less time consuming (such as an orthogonalization procedure) in 
obtaining the best scored pair of indices. 
 
 
 The bivariate scores are shown below: 
 

biv1 (1 = lnDGjDeC_1/p_SP_ , 11717 = lnRGsDeMp2/d2SE2 ) 

 biv1 = -25958.9⋅lnDGjDeC_1/p_SP_ + 1220.67⋅lnRGsDeMp2/d2SE2 + 80244.9 
             (7.44) 

Correlation coefficient:  Energy vs biv1, r  = 0.999570 
 



M. V. Diudea, I. Gutman and L. Jantschi 218 

Values of indices, energy and biv1 (predicted energy cf eq 7.44) are given in Table 7.5. 
 
 

Table 7.5 Indices, Energy  and biv1 (Predicted Energy cf eq 7.44) 

 
No lnDGjDeC_1/p_SP_ lnRGsDeMp2/d2SE2 Energy biv1  

1 5.55289 10.78950 -50978.12 -50731.59240 
2 5.46246 10.41587 -48531.44 -48840.30885 
3 5.56850 10.56440 -50863.04 -51411.57213 
4 5.66187 10.60332 -53416.95 -53787.89129 
5 5.04818 10.40413 -38604.68 -38100.29205 
6 6.02796 11.07533 -62330.33 -62714.98246 
7 6.09843 10.82098 -64752.65 -64854.73277 
8 6.10628 11.27766 -64751.09 -64501.06933 
9 5.05068 10.41900 -38588.46 -38588.46280 

10 5.26725 10.81842 -43209.47 -43281.26493 
11 5.74404 10.90985 -55729.99 -55546.56394 
12 5.74355 10.60678 -55832.12 -55903.89805 
13 5.16146 10.44110 -41020.54 -40995.68193 
14 5.26794 10.44431 -43743.36 -43756.00117 
15 6.09741 11.00936 -64701.39 -64598.33663 
16 6.16547 10.82029 -67104.63 -66595.96010 
17 5.16059 10.41325 -41057.45 -41007.09916 

 

 

 
 

biv2 (95 = DTjDeP_1/d_SE_ , 1414 = 1/DTsDiP__d__AE_ ) 

 biv2 = -385.13⋅ DTjDeP_1/d_SE_  + 796417⋅1/DTsDiP__d__AE_  - 37166 

             (7.45) 

Correlation coefficient:  energy vs biv2, r = 0.999884 

 

 

Values of indices, energy and biv2 (predicted energy cf eq 7.45) are given in Table 7.6. 
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Table 7.6 Indices, Energy  and biv2 (Predicted Energy cf eq 7.45) 

 
No DTjDeP_1/d_SE_  1/DTsDiP__d__AE_ Energy biv2 

1 59.70321 0.01174 -50978.12 -50813.46614 
2 55.55278 0.01270 -48531.44 -48448.36827 
3 59.70321 0.01174 -50863.04 -50813.46614 
4 64.99726 0.01129 -53416.95 -53207.83788 
5 38.10040 0.01653 -38604.68 -38673.81954 
6 81.74904 0.00801 -62330.33 -62268.72347 
7 87.25182 0.00776 -64752.65 -64592.17922 
8 88.15976 0.00786 -64751.09 -64855.46663 
9 38.10040 0.01653 -38588.46 -38588.43460 
10 47.66825 0.01510 -43209.47 -43496.59129 
11 70.34408 0.01082 -55729.99 -55640.48566 
12 70.83694 0.01093 -55832.12 -55742.02042 
13 43.00040 0.01598 -41020.54 -41002.88913 
14 47.31508 0.01481 -43743.36 -43593.46139 
15 88.34726 0.00788 -64701.39 -64917.41882 
16 94.01670 0.00763 -67104.63 -67299.73910 
17 42.21508 0.01527 -41057.45 -41261.34229 

 

 
 
 
 
 

biv3 (108 = RTfDeM_p/d2SP_ , 1383 = 1/DTsDeE_1/p_SE_ ) 

 biv3 = -54.019⋅ RTfDeM_p/d2SP_  + 697864.87⋅1/DTsDeE_1/p_SE_ - 43266.3 

             (7.46) 

Correlation coefficient:  energy vs biv3, r = 0.999934 

 

Values of indices, energy and biv3 (predicted energy cf eq 7.46) are given in Table 7.7. 
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    Table 7.7. Indices, Energy  and biv3 (Predicted Energy cf eq 7.46) 
 

No RTfDeM_p/d2SP_ 1/DTsDeE_1/p_SE_ Energy biv3 

1 291.65807 0.01169 -50978.12 -50861.14698 
2 253.84179 0.01204 -48531.44 -48578.47928 
3 286.32871 0.01101 -50863.04 -51050.62598 
4 318.26541 0.01013 -53416.95 -53390.70245 
5 141.99293 0.01752 -38604.68 -38707.64398 
6 435.14085 0.00641 -62330.33 -62302.08286 
7 475.71099 0.00600 -64752.65 -64773.71407 
8 475.03007 0.00600 -64751.09 -64737.52944 
9 141.99293 0.01752 -38588.46 -38588.45484 
10 195.34755 0.01526 -43209.47 -43166.88331 
11 358.32197 0.00986 -55729.99 -55742.37228 
12 349.41745 0.00932 -55832.12 -55639.52197 
13 164.77147 0.01577 -41020.54 -41162.38985 
14 188.35158 0.01428 -43743.36 -43476.32911 
15 474.16792 0.00599 -64701.39 -64698.52071 
16 516.35251 0.00563 -67104.63 -67231.41652 
17 164.07111 0.01579 -41057.45 -41107.89635 

 

 
Figure 7.3. illustrates the plot of energy (quantum mechanically 

calculated) vs biv3 (predicted energy cf eq 7.46).  
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Figure 7.3. The plot: energy vs biv3 (predicted energy cf eq 7.46)  

 

Statistics for the regression: energy vs biv3 are given in Table 7.8. 

 

Table 7.8 Statistics for the Regression: Energy vs biv3 

 r s F(1,15) t(15) p-level 

Intercept    -0.0000 1.0000 

biv3 0.99993 119.14 113500 336.904 0.0000 
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7.4.3.3. Conclusions to Energy Analysis 

 1. The best index in monovariate regression does not provide the best explanation 
for the measured property when coupled (in a bivariate correlation) with any other index 
belonging to the discussed family. 
 2. The best bivariate correlation is not obtained as the best orthogonal indices, 
(see the Randic's DCA, Section 9.6.)  but only as the best couple of indices, resulted by 
the trial of the whole family. 
 3. The constant high correlation (r > 0.999) between the best indices and the 
quantum mechanically calculated energy provided by the semi-empirical Extended-
Huckel approach demonstrates the quantum nature of FPI. 
 4. Sum of one-electron-energies for the set of 17 molecules is best modeled by 
biv3 (i.e., the calculated energy by eq 7.46). 
 5. An insight of eq 7.46 (i.e., biv3), reveals the dependency of this energy by the 
molecular topology (topological models) and the nature of atoms (mass and 
electronegativity). 

 6. Let Σ abs(b1⋅x1)/(Σ (abs(b1⋅x1) + Σabs(b2⋅x2)) be a measure of individual 
contribution of indices in variation of biv3. The value given by 
 

Σ |-54⋅RTfDeM_p/d2SP_ |/(Σ |-54⋅RTfDeM_p/d2SP_|+Σ |697864⋅1/DTsDeE_1/p_SE_ |) 

= 0.68035 

says that about 68% sum of one-electron-energy is a measure of field (p/d2 in the 
expression of RTfDeM_p/d2SP_ ).  
 7. The preferred operator in monovariate regression is ln (all the best 5 indices, 
see eq 7.42 and Table 7.2). 
 
 

7.4.4. QSAR Analysis for Inhibition 
 

7.4.4.1. Monovariate Regression for Inhibition 

For the first seven best indices in monovariate regression, the equation of the 
model is: 

 
 Predicted inhibition = b0 + b1⋅Index        (7.47) 

the index values of which are shown in Table 7.9 and statistics in Table 7.10. 
The best monovariate QSAR was 

Predicted inhibition = -194.68 + 0.003370⋅RGsDeCp2/d2SE2     (7.48) 

Statistics for the best scored index RGsDeCp2/d2SE2 (cf eq 7.48) are given in Table 7.11. 
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Table 7.9 Inhibition and Values of the Best Seven Indices  
in Monovariate Regression 

No Inhib 1 2 3 4 5 6 7 

1 28.4 64089 11.068 1.5603E-05 -345.37 82.636 4775.5 637.31 
2 28 64448 11.074 1.5516E-05 -221.58 76.173 3596.9 569.26 
3 30.4 68490 11.134 1.4601E-05 -286.06 84.060 4846.4 772.27 
4 27.7 65346 11.087 1.5303E-05 -213.29 105.128 6000.1 966.24 

5 14.3 64947 11.081 1.5397E-05 -161.27 77.538 3085.2 491.68 
6 68.3 77978 11.264 1.2824E-05 -538.20 154.502 13086.9 1807.18 
7 49.4 72755 11.195 1.3745E-05 -455.55 116.674 8640.4 1314.55 

8 65.2 77294 11.255 1.2938E-05 -588.78 143.425 11578.5 1742.13 
9 46.9 65165 11.085 1.5346E-05 -255.93 78.655 3166.4 504.32 
10 29.3 65341 11.087 1.5304E-05 -278.17 85.016 4816.9 643.25 

11 28.9 65547 11.091 1.5256E-05 -186.94 96.383 7273.2 1037.66 
12 32.6 66652 11.107 1.5003E-05 -272.94 91.621 6019.0 970.02 
13 12.2 65588 11.091 1.5247E-05 -229.75 79.968 3410.3 546.83 

14 18.2 65333 11.087 1.5306E-05 -147.46 78.974 3586.2 574.37 
15 71.7 77537 11.259 1.2897E-05 -643.15 140.442 11386.1 1669.85 
16 50.6 73461 11.205 1.3613E-05 -648.32 112.870 8445.2 1320.70 

17 15.1 65119 11.084 1.5356E-05 -102.56 77.259 3264.8 520.13 
 

 

 

Table 7.10 Name of the Best Seven Indices and their Monovariate Correlation 

No Index r b0 b1 

1 RGsDeCp2/d2SE2 0.899523 -194.68 0.003370 
2 lnRGsDeCp2/d2SE2 0.897333 -2612.4 237.92 
3 1/RGsDeCp2/d2SE2 0.894772 281.7 -16741138.9 
4 DGjDiP_p/d_AP_ 0.894351 4.9767 -0.095527 
5 RGsDeM_p/d2SE_ 0.888106 -28.384 0.654080 
6 RGsDeEp2/d2SE_ 0.887772 3.6751 0.005184 
7 RGsDeMp2/d2SE_ 0.885762 1.8078 0.036454 

 

 

Table 7.11 Statistics for the Best Scored Index RGsDeCp2/d2SE2 (cf eq 7.48). 
 

 r s F(1,15) t(15) p-level 

Intercept    -6.704 .000007 

RGsDeCp2/d2SE2 0.89952 8.591 63.59 7.975 .000001 
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 The plot of the inhibition vs. the index RGsDeCp2/d2SE2 is shown in Figure 7.4. 

 

 

 
Figure 7.4 Monovariate regression best predicted inhibition 

 

7.4.4.2. Bivariate Regression for Inhibition 

 The first best found three pairs of indices in bivariate correlation are presented. 
Indices are labeled with their monovariate scores. The pairs are: biv1(1, 11961), biv2(235, 
4052) and biv3(235, 7783). The second index for the bivariate correlation was chosen  
from the 1..16383 best scored monovariate indices. 
 The case biv3(235, 7783) was the best found correlation in the algorithm 
selection. For algorithm details see section Bivariate Regression for Energy.  

Note that, as in the case of energy, the best scored index in monovariate 
correlation is not present in the pair of best bivariate correlation (1∉{235, 7783}). 
Selection of pairs of indices for bivariate correlation must be done among all the family 
(1...16383). 
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The bivariate correlations are as follows: 

biv1 (1 = RGsDeCp2/d2SE2, 11961 = 1/DGjDeP_p/d2GE2) 

biv1 = 0.003054⋅RGsDeCp2/d2SE2 − 1719.3⋅1/DGjDeP_p/d2GE2 − 138.6 

         (7.49) 
Correlation coefficient:  inhibition vs biv1, r = 0.988830 

 

Table 7.12 Values of Indices, Inhibition and biv1 (Predicted Inhibition, cf eq 7.49). 

 
No RGsDeCp2/d2SE2 DGjDeP_p/d2GE2 Inhibition biv1  
1 64088.68725 55.64699 28.4 26.265 
2 64447.53674 64.68759 28.0 31.679 
3 68490.38729 43.68903 30.4 31.253 
4 65345.82007 52.33072 27.7 28.147 
5 64947.11517 37.00776 14.3 13.326 
6 77978.39585 52.22715 68.3 66.667 
7 72755.40201 52.00063 49.4 50.570 
8 77293.73666 52.54815 65.2 64.776 
9 65165.30346 40.14345 46.9 46.900 

10 65340.85566 48.57654 29.3 25.593 
11 65546.50225 48.61544 28.9 26.249 
12 66652.22261 51.43069 32.6 31.562 
13 65587.90626 38.58451 12.2 17.182 
14 65332.92136 38.58311 18.2 16.401 
15 77536.67347 57.10956 71.7 68.132 
16 73460.71348 59.88603 50.6 57.078 
17 65119.29156 38.30207 15.1 15.422 

 

 

biv2 (235 = DGsDiPp2/d2SE2, 4052 = lnDTsDiE_p/d_HE2) 

 biv2 = 0.775⋅ DGsDiPp2/d2SE2 + -30.994⋅lnDTsDiE_p/d_HE2 + 30.782 
          (7.50) 

Correlation coefficient:  inhibition vs biv2, r = 0.993240 

 
biv3 (235 = DGsDiPp2/d2SE2, 7783 = lnRGsDiEp2/d2HE2) 

 biv3 = 0.9372⋅ DGsDiPp2/d2SE2 – 10.058⋅lnRGsDiEp2/d2HE2 + 14.488 
          (7.51) 

Correlation coefficient:  inhibition vs biv3, r = 0.993770 
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Table 7.13. Values of Indices, Inhibition, biv2 (Predicted Inhibition, cf eq  7.50) 
and  biv3 (Predicted Inhibition, cf eq  7.51). 

No DGsDiPp2/d2SE2 DTsDiE_p/d_HE2 RGsDiEp2/d2HE2 Inhibition biv2 biv3 

1 -14.80225 0.78665 0.05815 28.4 26.748 29.229 
2 -16.55124 0.79529 0.05973 28.0 25.054 27.321 

3 -15.07688 0.71684 0.07599 30.4 29.416 26.281 
4 -12.22525 0.69343 0.06758 27.7 32.655 30.133 
5 -17.15632 1.20376 0.29558 14.3 11.738 10.668 

6 14.24503 0.45129 0.02181 68.3 66.482 66.317 
7 -3.66908 0.44415 0.01870 49.4 53.093 51.078 
8 15.21789 0.49053 0.03332 65.2 64.652 62.966 

9 -16.87848 1.20376 0.27948 46.9 46.903 46.902 
10 2.91247 1.17026 0.35940 29.3 28.167 27.511 
11 -10.87153 0.79379 0.07637 28.9 29.514 30.172 

12 -11.10275 0.73055 0.06304 32.6 31.909 31.885 
13 -13.62422 1.27247 0.30716 12.2 12.755 13.592 
14 -15.50583 1.03057 0.13654 18.2 17.832 19.984 

15 22.24726 0.49099 0.02304 71.7 70.071 73.268 
16 -1.97165 0.48236 0.02024 50.6 51.851 51.871 
17 -17.44972 0.96513 0.13847 15.1 18.359 18.021 

 

The plot of inhibition vs biv3 (predicted inhibition cf eq 7.51) is shown in Figure 7.5. 

 

Figure 7.5. The plot: inhibition vs biv3 (predicted inhibition cf eq 7.51)  
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Statistics for the regression: inhibition vs biv3 (predic ted inhibition cf eq 
7.51) are given in Table 7.14. 

 
Table 7.14. Statistics for the Regression: Inhibition vs biv3 

 r s F(1,15) t(15) p-level 

Intercept    0.00031 .9997 

biv3 0.99377 2.19 1193 34.54 .0000 

 

7.4.4.3. Conclusions to Inhibition Analysis 

1. The best index in monovariate regression does not offer the best 
explanation for the measured property when coupled  with any other index 
belonging to this family in a bivariate correlation. 
 2. The best bivariate correlation is the best couple of indices, resulted by 
the trial in the whole family of fragmental property indices. 
 3. The constant high correlation (r > 0.88) between the best indices and the 
mitodepressive activity on Lepidium Savitium L. (Cresson) demonstrate ability of 
this family of indices to estimate the biological activity of the considered set of 
chemical structures. 
 4. An inspection onto eq 7.51 suggests that the mitodepressive activity on 
Lepidium Savitium L. (Cresson)  is dependent on the  geometric feature of 
molecules, the nature of atoms (electronegativity) and the electrostatic field of 
atoms induced by their partial charges. 
 5. The geometric models are dominant both in monovariate and bivariate 
regression (7 of the best 7 among the monovariate regressions and 5 of the best 6 
in the bivariate regressions). 
 

 
7.4.5. Correlation between Energy and Inhibition 

 
 The plot: inhibition vs energy (Figure 7.6) reveals that between the two properties 
no good correlation exists: r = 0.77898363. It implies that these properties cannot be 
modeled by the same indices. Our results clearly showed that the inhibition is best 
modeled by geometric models whereas topological models better describe the energy. 
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Figure 7.6. The plot: inhibition vs. energy (quantum mechanically calculated – see text). 

 

 The low correlation between inhibition and the sum of one-electron energy 
demonstrates that the inhibition is not dependent on the energy. 
 

7.4.6. General Conclusions to Correlating Studies 
 

1. Fragmental property indices take into account the chemical nature of atoms 
(mass and electronegativity), various kinds of interactions between the fragments of 
molecules and the 3D geometry of molecular structures. 
 2. There exist an analogy between CoMFA and FPI: both of them calculate the 
interaction of a chemical structure (or substructure) with a probe atom in the 3D space. 
The property of fragment Fri,j is viewed as the interaction of atoms forming the fragment 
Fri,j with the atom j . The major difference is that CoMFA uses external probe atoms (with  
 
defined chemical identity) whereas FPI considers internal probe atoms with no chemical 
identity. Only the fragments (i.e., substructures) are chemically well defined. 
 3. Bivariate correlations with indices belonging to the fragmental property index 
family can offer good quality models for quite diverse molecular properties such as the 
inhibition of mitodepressive activity on Lepidium Savitium L. (r > 0.99) as well as the 
sum of one-electron energy calculated at the Extended-Huckel level (r > 0.9999).  These 
results demonstrate the correlating ability of this family of indices. 
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 4. The best couple of indices are found by performing all combinations of two 
indices bivariate regressions within the family. At such a large pool of indices, the two-
dimensional description (i.e., bivariate correlation), providing a direct structural 
interpretation of a molecular property, appears to be one of the most powerful methods in 
the characterization of molecular structures. 
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Chapter 8.  
 
 
 

SYMMETRY AND SIMILARITY 
 

 
 
 The investigation of molecular structure involves research on its constitution (i.e., 
the number and chemical identity of atoms and bonds joining them) and configuration in 
3D-space. 
 Molecules show various types of geometrical symmetry. The symmetry is 
reflected in several molecular properties, such as dipole moments, IR vibrations, 13C - 
NMR signals etc., properties which are dependent on the spatial structure of molecules. 
The molecular topology reveals a different type of symmetry: the topological symmetry 
(i.e., constitutional symmetry). It is defined in terms of connectivity, as a constitutive 
principle of molecules and expresses the equivalence relationships between elements of 
graph: vertices, bonds or larger subgraphs. It makes use of groups theory formalism in 
modeling an N - dimensional space. The geometrical aspects are disregarded. 
 Similarity (or relatedness) of molecular structures expresses the common features 
occurring within a set of molecules. It is established on the ground of various criteria and 
procedures. Both symmetry and similarity provide equivalence classes: the first one at the 
level of molecular graph and its subgraphs while the last one among the members of a 
whole set of molecules. The two notions are interrelated, as will be detailed in the 
following. 
 
 
8.1. Isomorphism and Automorphism 
 
 Let  G = (V, E) and G' = (V', E')  be two graphs, with V  = V' , and a function  
f, mapping the vertices  of  V onto the vertices belonging to the set V',  f : V →  V' . That 
is, the function f makes a one-to-one correspondence between the vertices of the two sets. 
The two graphs are called isomorphic, G ˜ G', if there exists a mapping f that preserves 
adjacency (i.e., if  (i, j)∈ E, then  (f (i), f ( j ))∈ E' ). In searching isomorphicity, labeled 
graphs are compared. In the chemical field, such a study will answer if two molecular 
graphs represent one and the same chemical compound. 

Let the mapping be a permutation P, represented in a two-row notation1  as: 
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which  shows that vertex 1 gets permuted to vertex p1, vertex 2 to vertex  p2, vertex i to 
vertex pi and so on. The permutation that leaves the graph unchanged is called the 
permutation identity  and denoted P11. Some permutations preserve the adjacency and 
some others not. The former type provides an isomorphism of a graph with itself,  which 
is called an automorphism. 
 Let Aut(G) = (P11, P1i, P1j...) be the set of automorphisms of a graph G and ⊗  a 
binary operation (i.e., a composition rule) defined on that set. Aut(G) is called an 
automorphism group if the following conditions are satisfied: 2, 3   

1. For any two permutations P1i, P1j ∈ Aut(G)  there exists a unique element, 
P1k ∈ Aut(G), such that  P1k = P1i ⊗ P1j . 

2. The operation is associative:  P1i ⊗  P1j ⊗  P1k = P1i⊗  (P1j ⊗ P1k ) = (P1i 

⊗ P1j) ⊗  P1k, for all  P1i, P1j  and P1k ∈ Aut(G). 
3. The set Aut(G) contains a unique permutation P11 , called permutation 

identity,  such that  P1i ⊗ P11 = P11 ⊗ P1i = P1i, for all  P1i ∈ Aut(G). 
       4.   For every permutation P1i ∈ Aut(G) there exists an inverse, P-1

1i ∈ Aut(G) that  
      obey the relation:  P1i ⊗ P-1

1i = P-1
1i ⊗  P1i = P11 

 
 A permutation can be described by a permutation matrix  P, whose elements [P]ij 
= 1 if vertex i is permuted to vertex j  and [P]ij = 0  otherwise. The permutation identity, 
P11, is a diagonal matrix whose elements equal unity.  

In matrix form, an isomorphism can be expressed as: 4, 5  

 12
1

12 )G()G( 12 PAPA −=             (8.1) 

where A(G1) and A(G2)  are the adjacency matrices of the two isomeric graphs and P is 
the permutation matrix. Since the P matrix is orthogonal, eq 8.1 can be written as: 

 

121122 )G()G( PAPA T=             (8.2) 

 relation  in which PT is the transpose of matrix P.  

 In case of an automorphism the relation 8.2 becomes: 4 

PAPA )G()G( T=            (8.3) 

Figure 8.1 illustrates the above notions. It can be seen that a permutation P in a 
two-row notation is easily written in its matrix form. In this Figure, P113 leads to an 
isomorphism (cf. eq 8.2) while P12  provides an automorphism (cf. eq 8.3). Furthermore, 
condition 1 is satisfied, as shown in the multiplicative table and any P matrix admits an 
inverse (see above and condition 4); the permutation P11 leaves the graph unchanged 
(condition 3) and finally, the composition rule ⊗ , which is just the  matrix multiplication)  
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G8.13 
    

A(G8.1 - G8.12):  0 0 0 1 1   A(G8.13): 0 0 1 0 1  

  0 0 0 1 1    0 0 1 0 1  

  0 0 0 1 1    1 1 0 1 0  

  1 1 1 0 0    0 0 1 0 1  
  1 1 1 0 0    1 1 0 1 0  

 

Isomorphism :     T
113P  A (G8.1) P113 = A (G8.13) 

 

      T
113P              A (G8.1)                      P113                           A (G8.13) 

1 0 0 0 0    0 0 0 1 1    1 0 0 0 0    0 0 1 0 1 

0 0 1 0 0    0 0 0 1 1    0 0 0 1 0    0 0 1 0 1 

0 0 0 1 0  x  0 0 0 1 1  x  0 1 0 0 0  =  1 1 0 1 0 

0 1 0 0 0    1 1 1 0 0    0 0 1 0 0    0 0 1 0 1 

0 0 0 0 1    1 1 1 0 0    0 0 0 0 1    1 1 0 1 0 
 

Automorphism :    T
12P  A (G8.1) P12 = A(G8.2) = A(G8.1) 

                  T
12P                               A(G8.1)                       P12                                A(G8.2) = A(G8.1) 

0 1 0 0 0    0 0 0 1 1    0 0 1 0 0    0 0 0 1 1 

0 0 1 0 0    0 0 0 1 1    1 0 0 0 0    0 0 0 1 1 

1 0 0 0 0  x  0 0 0 1 1  x  0 1 0 0 0  =  0 0 0 1 1 

0 0 0 1 0    1 1 1 0 0    0 0 0 1 0    1 1 1 0 0 

0 0 0 0 1    1 1 1 0 0    0 0 0 0 1    1 1 1 0 0 
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Matrix Multiplication Table of Aut(G8.1) 

 p11 p12 p13 p14 p15 p16 p17 p18 p19 p110 p111 p112 
p11 p11 p12 p13 p14 p15 p16 p17 p18 p19 p110 p111 p112 
p12 p12 p16 p14 p15 p13 p11 p18 p112 p110 p111 p19 p17 
p13 p13 p15 p11 p16 p12 p14 p19 p111 p7 p112 p18 p110 
p14 p14 p13 p12 p11 p16 p15 p110 p19 p18 p17 p112 p111 
p15 p15 p14 p16 p12 p11 p13 p111 p110 p112 p18 p17 p19 
p16 p16 p11 p15 p13 p14 p12 p112 p17 p111 p19 p110 p18 
p17 p17 p18 p19 p110 p111 p112 p11 p12 p13 p14 p15 p16 
p18 p18 p112 p110 p111 p19 p17 p12 p16 p14 p15 p13 p11 
p19 p19 p111 p17 p112 p18 p110 p13 p15 p11 p16 p12 p14 
p110 p110 p19 p18 p17 p112 p111 p14 p13 p12 p11 p16 p15 
p111 p111 p110 p112 p18 p17 p19 p15 p14 p16 p12 p11 p13 
p112 p112 p17 p111 p19 p110 p18 p16 p11 p15 p13 p14 p12 

 

 
 Figure 8.1. Isomorphic (G8.1 and G8.13) and automorphic (G8.1  - G8.12) graphs 

 and matrix multiplication table, cf. eqs 8.1 - 8.3. 

 
is associative (condition 2). Thus, Aut(G8.1), with its 3!2!=12 automorphic permutations, 
is a group. 
 Thus, these permutations lead either to isomorphic or automorphic labeled 
graphs, G(Lb). A graph having N vertices can be labeled in N! ways, thus resulting N! 
different G(Lbi); i = 1,2,...N!  but representing one and the same abstract graph (as 
proposed by Klin and Zefirov).6  Among these G(Lbi), only the automorphic ones 
preserve the connectivity (and the adjacency matrix) in the original graph. Any graph 
possesses at least one automorphism, e.g., that induced by the permutation  identity, P11. 

Given a graph G=(V, E) and  a group Aut(G), two vertices,  i, j ∈ V  are called 
equivalent if there is a group element, aut(ni) ∈ Aut(G), such that  j aut(ni) i  (i.e., an 
automorphic permutation that transforms one to the other - a permutation that is edge 
invariant). The set of all vertices j obeying the above equivalence relation (see also Sect. 
8.4) is called the orbit of vertex i, Vni. Synonyms are: automorphic partition, class of 
equivalence. Vertices belonging to the same equivalence class can not be differentiated 
by graph-theoretical parameters.4  

Suppose Vn1, Vn2,...Vnm  are the m disjoint automorphic partitions of the set of 
vertices, V(G) (with V(G)= N = n1 +  n2+ ... +  nm   vertices):  

 

U UU mn2n1n V...VVV =                                                                    (8.4) 

I φ=jnin VV              (8.5) 

The group of automorphisms, Aut(G),  

)x...x)x) m21 n(autn(autn(aut)G(Aut =          (8.6) 
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(with aut(ni)  being a group element containing ni! permutations) is a subgroup (of 
n1!n2!...nm! permutations), of the complete permutation group, of N! elements Per(G).1, 4, 7  

The quotient set V/Aut(G) is often called the orbit space.8 It describes all 
symmetry properties of a graph.4  

A search for Aut(G) may provide a canonical code. A code, Cd(G,Lb) of a 
labeled graph, G(Lb), is a string derived from the graph by a set of rules. It is a 
description of G(Lb) which allows the (labeled) graph reconstruction. Codes are useful in 
computer structure storage and retrieval procedures as well as in enumeration and 
generation of isomers.  

Two codes may be compared and ordered (by either a lexicographical or a 
numerical relation): they may differ or may be identical, Cd(G,Lb1) = Cd(G,Lb2), 
situation in which the corresponding labeling are equal:  Lb1 = Lb2. It comes out that, if 
two vertex labelings are identical, V(Lb1) =V(Lb2) , the corresponding vertices are 
automorphic.  

A rigorous search for  Cdcan(G,Lb), has to construct all N! permutations,  to 
generate and compare all corresponding codes, Cd(G,Lb i); i = 1,2,...N! . Finally, a 
maximal, CdMcan(G,Lb),  (or a minimal, Cdmcan(G,Lb)) canonical code is selected along 
with the automorphism partitions. The process of generating Cdcan(G,Lb)  by 
investigating automorphism permutations is called canonical code generation by 
automorphism permutation, CCAP. 9 The identification of topological symmetry allows 
reduction of the number of tests (N!) by avoiding the generation of non-automorphic 
permutations. 4, 10, 11  

Consider a vertex invariant, In = In1, In2,...,InN, which assigns a value Ini to 
vertex i. Two vertices, i and j, showing Ini = Inj  belong to the same  atomic invariant 
class, AIC. The  process of vertex partitioning in AIC induced by a given In is called 
graph invariant atom partitioning, GIAP. The partitioning of vertices into m classes, with 
n1, n2,...nm vertices in each class, is taken as a basis in generating the canonical code. 
Note that GIAP  may by different from the orbits of automorphism since no vertex 
invariant is known so far to always discriminate two non-equivalent vertices in any graph. 
The classes of vertices are ordered with some rules, vertices in the first class being 
labeled by 1, 2, ...n1, vertices in the second class by n1 + 1, n1 + 2, ..., n1+ n2, and so on. 

A reliable algorithm for canonical coding would obligatory include two steps: 9 

(i)  GIAP: computes a discriminant atom invariant and provides an initial atom       
partitioning along with a GIAP labeling ;   
(ii) CCAP: generates codes and identifies the canonical code (by exploring all       
permutations over the GIAP classes); from the canonical labeling, (i.e., those       
providing the canonical code)  true orbits of automorphism are identified. 

Thus, the GIAP results can be used as ground for both canonical coding and 
search for Aut(G), as shown above. For some applications, such as the numbering of 13C-
NMR signals,12 the knowledge of  Aut(G) is not necessary; only the automorphic 
partitions are quite sufficient. Other major chemical applications of topological symmetry 
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include: (i) chemical documentation system, storage and retrieval of chemical compounds 
in structure databases and (ii) computer generation of chemical structures, involved in 
molecular and synthesis design as well as in structure elucidation search. 

Several procedures for canonical coding (or only GIAP procedures) were 
developed. 4, 5, 13-38   Among these, the Morgan algorithm13  was the first and the best 
known, in the original form (EC -Extended Connectivity algorithm – used by the CAS in 
the chemical registry system) or as its extensions (SEMA - Stereochemically Extended 
Morgan Algorithm17, 39 ). Balaban et al.24  have proposed a variant, which provides 
automorphic partitions by  hierarchic ordering (and numbering) of vertices (HOC - 
Hierarchically Ordered extended Connectivities). The HOC algorithm also considers the 
stereochemical information24 and is followed by a CCAP procedure. The ordering 
provided by HOC for the carbon atoms in some polycyclic aromatic hydrocarbons was 
shown to parallel the experimental 1H-NMR chemical shifts of their attached hydrogen 
atoms.40 Balasubramanian developed algorithms for generating the equivalence classes in 
edge-weighted graphs1, 7 as well as in 3D-molecular structures1 and proposed applications 
in NMR and ESR spectroscopy.41, 42 Among the more recent GIAP procedures, the 
MOLORD (MOLecular ORDering) performed by Diudea et al. 43  is presented. 
 

8.2.  TOPOLOGICAL  SYMMETRY  BY  MOLORD  ALGORITHM 
 
 The MOLORD algorithm is built on the ground of iterative line graphs, Ln ,43-45  
that will be discussed before the algorithm. 
 
8.2.1. Line Graphs  
 
 The points of the line graph, L(G), represent lines of G and two points of L(G) 
are adjacent if the corresponding lines of G are incident to a common point.46 By 
repeating this procedure n times, the iterative line graph, Ln ; n = 0, 1, 2, . . . (with n = 0 
for the original graph, G) can be obtained. Figure 8.2 illustrates the line graphs Ln for 
G8.14 (2-Methylbutane); n = 0 - 3. 
 The number of vertices, Nn+1 and edges Qn+1 in Ln+1 is given by relations:43-45 

 
  Nn+1 = Qn                (8.7) 
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where ki is the vertex degree and  Bn - Bertz' s branching index,45 which is the exact 
number of edges in the Ln+1 line graph. 
 In regular graph (i.e., graphs in which all vertices have the same degree), the 
number of edges Qn+1 can be calculated by a recursive relation, derived from eq 8.8 or eq 
8.9 by substituting the value for the vertex degree (see also45) : 
 
 kn = 2Qn / Nn = 2Qn /Qn-1         (8.10) 

 1
2

1 /2 −+ +−= nnnn QQQQ          (8.11) 

 
 The number of edges in Ln+1 can also be calculated by: 

 Qn+1 = (1/2) kn+1 Nn+1          (8.12) 

Since in regular graphs: 

 kn+1 = 2 (kn -1)           (8.13) 
and taking into account eq 8.7, eq 8.12  becomes 

 Qn+1 = Qn (kn - 1)          (8.14) 

 From relations (8.13) and (8.14) kn and Qn can be expressed in terms of the 
starting parameters, k0 and Q0 (i.e., the degree and number of edges in the initial graph, 
L0). 
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 In case of multigraphs, the (multiple) line graphs47 will account for the bond 
orders. 
 
8.2.2. MOLORD Algorithm 

 The MOLORD algorithm43 characterizes vertices or subgraphs (of various size) of 
the initial graph by means of invariants derived from the topology of line graphs, L0 
(=G), L1, ... Lm. 
 Some notations need to be introduced. 

 Vertices in ∈ Ln (i.e., the current line graph) denote pairs of vertices i.e., lines in 

the lower-order line graph, Ln-1: 
   

in = ( jn - 1 , kn - 1 )                      (8.17) 
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where the two points  j and k  are necessarily connected by an edge in Ln-1.  One can write 
that jn-1 ∈ in and kn-1 ∈ in. The relatedness of vertices (subgraphs) in process of  iteration 
can be expressed by:  
 

 
otherwise0

)(if1
),( 1

1
+

+
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= nn
nn

ii
iiδ                     (8.18) 

 
The definition can be easily extended for any two arbitrary ranks n and m ≥ n, stating that  
δ (in, im) = 1 only if the vertex in appears in at least one of the subgraphs defining vertex 
im. On going back to L0, it can be seen that in denotes a subgraph consisting of  n edges, in 
L0. 
 The algorithm consists of the following four steps: 

 Step 1 : computes local, I(in) , and global, GI(Ln) classical invariants on each  Ln 
within the set of line graphs L0 to Lm :  
 
 ∑=

ni
nn iILGI )()(           (8.19) 

 Step 2 : evaluates a partial local invariant PIm (in ) of a vertex in, with respect to 
the mth order line graph, Lm : 
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 Here, I(im) denotes a certain local invariant of vertex im , with respect to the 
topology of graph  Lm. Furthermore, the partial invariant of in with respect to Lm is 
calculated by summing up all the local invariants I(im) of those vertices in Lm which are 
related to in, according to the m-n successive line graphs, Ln, . . .Lm. The ratio  GI(Ln) / 
GI(Lm) is used as a normalizing factor meant to ensure that the resulting PI values can be 
compared with each other, irrespective of the current Lm  for which they are evaluated. 
 
 Step 3 : computes a synthetic local invariant of vertex in, in a series of successive 
line graph, Ln , . . ., Lm: 
 

 ∑
=

−=
m

nk

)kn(f)) nknm iPIiSI ((         (8.21) 

Subscript m in SIm(in) indicates the last line graph (Lm ) taken into account. The 
factor f can be used to give different weight to the contributions arising from line graphs 
of various ranks (usually 10 unless otherwise specified) . Note that in case n = m, the 
synthetic invariant SIm(in)  is reduced to the classical invariant I(in). 
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 Step 4 : evaluates the final expression for the global synthetic index of a graph, 
Ln: 
 

∑=
ni

)()( nmnm iSILGSI       (8.22) 

 The MOLORD algorithm offers a GIFP (Graph Invariant Fragment Partitioning) 
and a (decreasing) ordered GIFP labeling according to a certain invariant (i.e., 
topological index). The spectrum of local values, SIm(in) (per fragments of various size) 
and global values, GSIm(Ln), can be used both for partitioning purposes and correlating 
studies. The algorithm is exemplified on 2-Methylbutane G8.14, (Figure 8.2). The line 
graphs, Ln; n = 0-3 are given along with the corresponding LDS matrices within an output 
list with including some detailed calculations. The focused data are marked by gray 
and/or boldface letters/numbers (see below).  
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Figure 8.2.   Line graphs Ln; n = 1-3, of 2-Methylbutane (G8.14).  
         The corresponding DS are given in brackets. 

 
 
An Example of MOLORD algorithm: 
 

Graph G8.14; matrices LDS; values derived for I = X(LDS);  ti = 1. 
 
Current rank of line graph: 0 

LDS(L0); (ki0);   (line graph evolution)  

5 vertices & 4 edges in line graph 
 
   1 (1) :     8     5   14     9  ( 1 ) 
   2 (3) :     5   22     9     0  ( 2 ) 
   3 (2) :     6   14   16     0  ( 3 ) 
   4 (1) :     9     6     5   16  ( 4 ) 
   5 (1) :     8     5   14     9  ( 5 ) 

 Global operator value, GI(L0):  1.25903433 
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Fragments of 1 atoms after 0 line graph: 
 
   1- Fragment: 2   Atoms:  2   Bonds:   I:  0.5746136 
   2- Fragment: 3   Atoms:  3   Bonds:   I:  0.3256480 
   3- Fragment: 5   Atoms:  5   Bonds:   I:  0.1242019 
   4- Fragment: 1   Atoms:  1   Bonds:   I:  0.1242019 
   5- Fragment: 4   Atoms:  4   Bonds:   I:  0.1103690 
 
** Sum of fragmental indices (I):   1.259034329 

 
 Current rank of line graph: 1 

LDS(L1); (k i 1);   (line graph evolution)  
   4 vertices & 4 edges in line graph 
 
   1 (2) :     4     7    5  ( 1   2 ) 
   2 (3) :     3   13    0  ( 2   3 ) 
   3 (2) :     4     7    5  ( 2   5 ) 
   4 (1) :     5     3    8  ( 3   4 ) 
 
 Global operator value, GI(L1):   2.13992226 
 
Fragments of 1 atoms after 1st line graph: 
 

   1- Fragment: 2   Atoms:  2   Bonds:   I:  0.6888219 
   2- Fragment: 3   Atoms:  3   Bonds:   I:  0.3937350 
   3- Fragment: 1   Atoms:  1   Bonds:   I:  0.1531101 
   4- Fragment: 5   Atoms:  5   Bonds:   I:  0.1531101 
   5- Fragment: 4   Atoms:  4   Bonds:   I:  0.1220641 
 
** Sum of fragmental indices (I):   1.510841194 

Note: 
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Fragments of 2 atoms after 1st line graph: 

   1- Fragment: 2   Atoms:  2  3   Bonds:  2   I:  0.9584665 
   2- Fragment: 3   Atoms:  2  5   Bonds:  3   I:  0.4913401 
   3- Fragment: 1   Atoms:  1  2   Bonds:  1   I:  0.4913401 
   4- Fragment: 4   Atoms:  3  4   Bonds:  4   I:  0.1987755 
 
** Sum of fragmental indices (I):    2.139922257 
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Current rank of line graph: 2 

LDS(L2); (k i 2);   (line graph evolution)  
   4 vertices & 5 edges in line graph 
 
   1 (3) :     3   11    0  ( 1   2   3 ) 
   2 (2) :     4     6    4  ( 1   2   5 ) 
   3 (3) :     3   11    0  ( 2   3   5 ) 
   4 (2) :     4     6    4  ( 2   3   4 ) 
 
 Global operator value, GI(L2):   2.91438507 
 
Fragments of 1 atoms after 2nd line graphs: 
 
   1- Fragment: 2   Atoms:  2   Bonds:   I:  0.7014123 
   2- Fragment: 3   Atoms:  3   Bonds:   I:  0.4041974 
   3- Fragment: 5   Atoms:  5   Bonds:   I:  0.1594053 
   4- Fragment: 1   Atoms:  1   Bonds:   I:  0.1594053 
   5- Fragment: 4   Atoms:  4   Bonds:   I:  0.1241920 

** Sum of fragmental indices (I):    1.548612224 

 
Fragments of 2 atoms after 2nd line graphs: 

   1- Fragment: 2   Atoms:  2  3   Bonds:  2   I:  1.1362917 
   2- Fragment: 1   Atoms:  1  2   Bonds:  1   I:  0.5983362 
   3- Fragment: 3   Atoms:  2  5   Bonds:  3   I:  0.5983362 
   4- Fragment: 4   Atoms:  3  4   Bonds:  4   I:  0.2349425 

** Sum of fragmental indices (I):    2.567906708 
 
Note: 
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Fragments of 3 atoms after 2nd line graph: 
 
   1- Fragment: 3   Atoms:  2  3  5   Bonds:  2   3   I:  0.9646302 
   2- Fragment: 1   Atoms:  1  2  3   Bonds:  1   2   I:  0.9646302 
   3- Fragment: 4   Atoms:  2  3  4   Bonds:  2   4   I:  0.4925623 
   4- Fragment: 2   Atoms:  1  2  5   Bonds:  1   3   I:  0.4925623 
 
** Sum of fragmental indices (I):    2.914385068 
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Current rank line graph: 3 

LDS(L3); (ki3);   (line graph evolution)  
    5 vertices & 8 edges in line graph 
 
   1 (3) :     5   14    5  ( 1   2   3   5 ) 
   2 (4) :     4   20    0  ( 1   2   3   5 ) 
   3 (3) :     5   14    5  ( 1   2   3   4 ) 
   4 (3) :     5   14    5  ( 1   2   3   5 ) 
   5 (3) :     5   14    5  ( 2   3   4   5 ) 
 
 Global operator value, GI(L3):   3.28678422 
 
Fragments of 1 atoms after 3rd line graph: 
 
   1- Fragment: 2   Atoms: 2   Bonds:   I:  0.7026713 
   2- Fragment: 3   Atoms: 3   Bonds:   I:  0.4054564 
   3- Fragment: 1   Atoms: 1   Bonds:   I:  0.1604408 
   4- Fragment: 5   Atoms: 5   Bonds:   I:  0.1604408 
   5- Fragment: 4   Atoms: 4   Bonds:   I:  0.1246391 
 
** Sum of fragmental indices (I):    1.553648361 
 
Fragments of 2 atoms after 3rd line graph: 
 
   1- Fragment: 2   Atoms: 2  3   Bonds:  2   I:  1.1576909 
   2- Fragment: 3   Atoms: 2  5   Bonds:  3   I:  0.6159358 
   3- Fragment: 1   Atoms: 1  2   Bonds:  1   I:  0.6159358 
   4- Fragment: 4   Atoms: 3  4   Bonds:  4   I:  0.2425418 
 
** Sum of fragmental indices (I):    2.632104376 
 
Fragments of 3 atoms after 3rd line graph: 
 
   1- Fragment: 1   Atoms: 1  2  3   Bonds: 1  2   I:  1.2043210 
   2- Fragment: 3   Atoms: 2  3  5   Bonds: 2  3   I:  1.2043210 
   3- Fragment: 2   Atoms: 1  2  5   Bonds: 1  3   I:  0.6805053 
   4- Fragment: 4   Atoms: 2  3  4   Bonds: 2  4   I:  0.5960578 
 
** Sum of fragmental indices (I):    3.685205051 
 
Fragments of 4 atoms after 3rd line graph: 
 
   1- Fragment: 1   Atoms: 1  2  3  5   Bonds: 1  2  3   I: 2.1195826 
   2- Fragment: 3   Atoms: 2  3  4  5   Bonds: 2  3  4   I: 0.5836008 
   3- Fragment: 2   Atoms: 1  2  3  4   Bonds: 1  2  4   I: 0.5836008 
 
** Sum of fragmental indices (I):    3.286784221 
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Note: 
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 The index used in the above example  is defined by: 
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where ti / k i is a weighting factor (i.e., electronegativities per degree - in Figure 8.2, t = 1), 
ecci is  the eccentricity of vertex i;  z is the maximal number of  bites of an entry in the 
matrix LDS.  
 If in the first step of  MOLORD, the values I(in) are normalized by max I(in)∈Ln 

and in step 2, the scaling factor GI(Ln) /GI(Lm) is omitted, a variant called MOLCEN is 
obtained.48 This algorithm provides centric ordering of vertices (see below), with values 
in the range [0 - 1]; value 1 is assigned for the central vertices.  
 

 
8.3. INTRAMOLECULAR ORDERING 

 

 Under this topic, we include both the identification of GIFP classes and fragment 
ordering, by the following criteria: (i) of centrality; (ii) of centrocomplexity and (iii) 
lexicographic (see also Chap. Topological Indices).  
 

8.3.1. Criteria of Centrality 

The center of a graph is the set of vertices, {i}∈V(G), which obey the relation: 

 ecci = r(G)           (8.24) 
where 
 ecci   = max Di,j∈V(G)           (8.25) 

 r(G) = min ecci∈V(G) = min max Di,j∈V(G)       (8.26) 

ecci being the eccentricity of the vertex i while r(G) the radius of the graph. In other 
words, the central vertices have their eccentricity equal to the radius of the graph, which, 
in turn, is the minimal maximal distance in the graph. The diameter, d(G), is, in the 
opposite, the maximal eccentricity  in the graph: 
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d(G) = max ecc i∈V(G)  = max max Di,j∈V(G)         (8.27) 

 

Any tree has either a center or a dicenter.46, 49, 50 Note that the requirement (8.24) is only  
necessary but not sufficient. The finding of the graph center, in cycle -containing 
structures, is not always a simple task. In this respect, Bonchev et al.49 have proposed the 
distance-based criteria, 1D-3D, as follows: 
 

 1D: minimum vertex eccentricity:   min ecci  
 2D: minimum vertex distance sum:  min ∑ j Dij 

3D: minimum number of occurrence of the largest distance:  min [LC]ij, max 
(see Chap. Topological Matrices, Sect. Layer Matrices). If the largest 
distance occurs for several vertices, the next largest distance (i.e., 
[LC]ij,max -1) is considered, and so on. 
 

Criteria 1D-3D are applied hierarchically. The algorithm which implements these 
criteria is called IVEC.50 It finds the center of a graph and its orbits of GIFP, which are 
ordered from the center to the periphery (i.e., the vertices having max ecci ). The 
centrality ordering given by IVEC is illustrated on a set of polycyclic graphs,50 included 
in Table 8.1. On the same set, the MOLCEN algorithm48 (working by indices C(LK) and 
X(LK) - see Chap. Topological Indices) finds the same ordering, with only slight 
differences. 

In layer matrices, particularly in LDS, the 1D criterion49 is scanned by the column 
counter, j; the 2D criterion is included in the column j=0 (the distance sum being just the 
property collected by this matrix). The 3D criterion is somewhat nondecisive. It is known 
that there are graphs having pairs of vertices with the same distance degree sequence, 
DDS:51-53 17, 24, 29, 25, 26, 23, 9. Figure 8.3 illustrates such graphs, which are labeled in 
a canonical ordering given just by LDS matrix.53 

 These graphs show identical global sequence, DDS. Moreover, vertices labeled 
15 and 16 show the same sequence DDSi : 4, 4, 2, 4, 3, in both graphs. It is obvious that 
the two vertices can not be discriminated by the 1D-3D criteria. More powerful is the 
matrix LDS and index C(LDS)i which separate these vertices, both intra- and 
intermolecularly. Figure 8.3 shows matrices LDS along with the canonical-LDS and 
central ordering induced by C(LDS)i. It can be seen that the central ordering reverses the 
canonical-LDS one, with a single inversion (vertex 15 before vertex 16 in G8.15). 
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Table 8.1. IVEC and  MOLCEN Ordering (According to the Values of  

Indices C(LK) and X(LK) Calculated on L0 - L2). 
 

Graph  Vertices 

2

3 4

1
6

5
 

IVEC 
C(LK) 
X(LK) 

(1), (2), (3), (4), (5), (6) 
(1), (2), (3), (4), (5), (6) 
(1), (4), (2), (3), (5), (6) 

  Edges 
 IVEC 

C(LK) 
X(LK) 

(12), (14), (23), (15), (34), (45), (26) 
(14), (12), (15), (34), (23), (45), (26) 
(14), (12), (15), (34), (45), (23), (26) 

  Vertices 

4

5 2

1
3 6

 

IVEC 
C(LK) 
X(LK) 

(1:2), (3), (4;5), (6) 
(1:2), (3), (4;5), (6) 
(1:2), (3), (4;5), (6) 

  Edges 
 IVEC 

C(LK) 
X(LK) 

(12), (13;23), (14;45), (36), (45) 
(12), (13;23), (14;45), (36), (45) 
(12), (13;23), (14;45), (36), (45) 

  Vertices 

1 2
53

4 6
 

IVEC 
C(LK) 
X(LK) 

(1), (2), (3;4), (5;6) 
(1), (2), (3;4), (5;6) 
(1), (2), (3;4), (5;6) 

  Edges 
 IVEC 

C(LK) 
X(LK) 

(12), (13;14), (25;26), (34) 
(12), (13;14), (25;26), (34) 
(12), (13;14), (25;26), (34) 

  Vertices 

4
1

3

5

2 6
 

IVEC 
C(LK) 
X(LK) 

(1), (2), (3;4), (5), (6) 
(1), (2), (3;4), (5), (6) 
(1), (2), (3;4), (5), (6) 

  Edges 
 IVEC 

C(LK) 
X(LK) 

(12), (13;14), (15), (23;24), (35;45), (26) 
(12), (13;14), (15), (23;24), (35;45), (26) 
(12), (13;14), (15), (23;24), (35;45), (26) 

  Vertices 

5
2

4
1

3 6

 

IVEC 
C(LK) 
X(LK) 

(1;2), (3), (4), (5), (6) 
(1;2), (3), (4), (5), (6) 
(1;2), (3), (4), (5), (6) 

  Edges 
 IVEC 

C(LK) 
X(LK) 

(12), (13;23), (14;24), (34), (15;25), (36) 
(12), (13;23), (14;24), (34), (15;25), (36) 
(12), (13;23), (14;24), (34), (15;25), (36) 
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  Vertices 

5 3 4 6

1

2
 

IVEC 
C(LK) 
X(LK) 

(1;2;3), (4), (5), (6) 
(1;2;3), (4), (5), (6) 
(1;2;3), (4), (5), (6) 

  Edges 
 IVEC 

C(LK) 
X(LK) 

(12;13;23), (14;24;34), (15;25;35), (46) 
(12;13;23), (14;24;34), (15;25;35), (46) 
(12;13;23), (14;24;34), (15;25;35), (46) 

  Vertices 

4
1

5 3

2 6

 

IVEC 
C(LK) 
X(LK) 

(1), (2), (3), (4), (5), (6) 
(1), (2), (3), (4), (5), (6) 
(1), (4), (2), (3), (5), (6) 

  Edges 
 IVEC 

C(LK) 
X(LK) 

(12), (13), (23), (15), (14), (24), (35), (26) 
(12), (13), (23), (14), (24), (15), (26), (35) 
(12), (13), (23), (14), (15), (24), (26), (35) 

  Vertices 

1
4

3
25

6

 

IVEC 
C(LK) 
X(LK) 

(1), (2), (3), (4), (5), (6) 
(1), (2), (3), (4), (5), (6) 
(1), (4), (2), (3), (5), (6) 

  Edges 
 IVEC 

C(LK) 
X(LK) 

(12), (13), (14), (23), (15), (25), (34), (26), 
(46) 
(12), (13), (23), (14), (15), (25), (34), (26), 
(46) 
(12), (13), (23), (14), (15), (25), (26), (34), 

(46) 

  Vertices 

5
1

2

3

4
6

 

IVEC 
C(LK) 
X(LK) 

(1), (2;3), (4;5), (6) 
(1), (2;3), (4;5), (6) 
(1), (2;3), (4;5), (6) 

  Edges 
 IVEC 

C(LK) 
X(LK) 

(12;13), (23), (14;15), (24;35), (26;36), (45) 
(12;13), (23), (14;15), (24;35), (26;36), (45) 
(12;13), (23), (14;15), (24;35), (26;36), (45) 

  Vertices 

             

4 3 6 5
1

2
 

IVEC 
C(LK) 
X(LK) 

(1;2), (3), (4), (5), (6) 
(1;2), (3), (4), (5), (6) 
(1;2), (3), (4), (5), (6) 

  Edges 
 IVEC 

C(LK) 
X(LK) 

(12), (13;23), (14;24), (15;25), (34), (36), (56) 
(12), (13;23), (14;24), (34), (15;25), (36), (56) 
(12), (13;23), (14;24), (34), (15;25), (36), (56) 
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    DDS: 17.24.29.25.26.23.9 

Canonical LDS (G8.15) Central C(LDS )i 10-2 
1 85 69 55 43 94 240 343 237 18 0.92893 
2 79 63 49 171 201 104 260 239 17 0.98765 
3 79 63 49 171 201 104 260 239 16 0.98765 
4 79 63 49 171 201 104 260 239 15 0.98765 
5 77 61 126 173 100 118 274 237 14 0.99034 
6 77 61 126 173 100 118 274 237 13 0.99034 
7 77 140 43 94 240 343 237 0 12 1.61963 
8 69 49 169 254 118 274 237 0 11 1.68283 
9 65 49 169 254 118 274 237 0 10 1.68283 
10 65 128 171 201 104 260 239 0 9 1.70661 
11 63 128 171 201 104 260 239 0 8 1.70661 
12 63 128 171 201 104 260 239 0 7 1.70661 
13 61 203 173 100 118 274 237 0 6 1.71299 
14 55 112 179 240 343 237 0 0 5 2.83069 
15 49 234 280 104 260 239 0 0 4 2.98095 
16 49 234 254 118 274 237 0 0 3 2.96090 
17 45 92 293 497 239 0 0 0 2 4.98333 
18 43 149 309 428 237 0 0 0 1 5.03388 
   C(LDS )102 36.48041 

 

Canonical LDS (G8.16) Central C(LDS)i 10-2 
1 85 69 55 43 94 240 347 233 18 0.93163 
2 79 63 49 171 197 104 260 243 17 0.98305 
3 79 63 49 171 179 118 274 233 16 0.98405 
4 79 63 49 171 179 118 274 233 15 0.98405 
5 77 61 126 173 122 104 260 243 14 0.99260 
6 77 61 126 173 122 104 260 243 13 0.99260 
7 77 140 43 94 240 347 233 0 12 1.62391 
8 69 49 169 276 104 260 243 0 11 1.68925 
9 65 49 169 258 118 274 233 0 10 1.68981 
10 65 128 171 197 104 260 243 0 9 1.69970 
11 63 128 171 179 118 274 233 0 8 1.70115 
12 63 128 171 179 118 274 233 0 7 1.70115 
13 61 203 173 122 104 260 243 0 6 1.71633 
14 55 112 179 240 347 233 0 0 5 2.83731 
15 49 234 276 104 260 243 0 0 4 2.97033 
16 49 234 258 118 274 233 0 0 3 2.97154 
17 45 92 293 493 243 0 0 0 2 4.97244 
18 43 149 309 432 233 0 0 0 1 5.04486 
   C(LDS )102 36.48577 

 
Figure 8.3 .Canonical and central ordering (cf. LDS and C(LDS)i, respectively)  

of G8.15 and G8.16 

G8.15 G8.16 
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The matrix LDS degenerates very rarely in trees but there are cyclic regular 
graphs which show degenerate LDS.53 When included in the frame of MOLORD 
algorithm, LDS succeeded in separating the GIFP classes for subgraphs even larger than 
one edge. Figure 8.4 exemplifies such a performance in case of cuneane (G8.17). It 
illustrates the fact that the geometrical symmetry implies the topological symmetry; the 
reciprocal is, however, not always true. 
 The finding of the center of a graph is of interest in the chemical nomenclature, 
or in coding of chemical structures (see also9, 50) or also in correlating some physico-
chemical properties (e.g., centric indices and octanic number).54, 55  
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Figure 8.4. Central ordering of cuneane (cf. SI3(i3) values - see the MOLCEN algorithm) 

G8.17 
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8.3.2. Criteria of Centrocomplexity 

 If in a molecular graph , a "center of importance" is defined, the reminder 
substructures can be ordered with respect to this center. Such a criterion was called 
“centrocomplexity”53 and it takes into account the chemical nature of vertices and edges 
in molecules. 
 
8.3.2.1. Accounting for the Nature of Heteroatoms  

 Kier and Hall56 have extended the validity of Randic index57 χ  (see chap.  
Topological Indices) to heteroatom-containing molecules. They introduced the notion of 
δ vi  valences in the construction of the analogue index χ v: 
 

 i
v
i

v
i hZ −=δ            (8.28) 

where Zv
i is the number of valence electrons of atom  i and hi is the number of hydrogen 

atoms attached to atom i . For atoms belonging to the third period of Periodic Table, δv
i is 

calculated by: 

 
v
ii

i
v
iv

i
ZZ

hZ

−

−
=δ           (8.29) 

where Zi is the atomic number  of atom i. Analogue heteroatom accounting was made by 
Balaban.58 

 Diudea  and  Silaghi59 have proposed group electronegativity valences, denoted  
EVG and defined by: 
 

 ESGi = (ESAi ESH hi )1/ (1+ hi )         (8.30) 

 hi = (8 - GAi ) - vi           (8.31) 

 EVGi = (ESGi )1/(1+vi)           (8.32) 
 

where GAi  is the number of column in the Periodic Table for the atom A belonging to the 
vertex (i.e., group) i. ESA and ESH  denote the Sanderson electronegativities for the atom 
A and  hydrogen, respectively. The number of hydrogen atoms attached to the group i is 
denoted by hi while  vi stands for the degree of  i. When vi > (8 - GAi), then hi = 0. In case 
of multiple bonds, ∑=

j
iji bv , where bij is the conventional bond orders around  i. 

 Note that these group  electronegativities obey the electronegativity equalizing 
principle within the group i  (see eq 8.30) and per molecule, each group is considered 
bonded to neighbors with electronegativity 1.59 

 The EVGi  values were used in the construction of the DS index (see Chap. 
Topological Indices) that showed good correlation with several physico-chemical and 
biological properties.59 
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 A variant of EVG parameters was further developed.60 The EC valence  
electronegativities are based on the idea of the modification of covalent radius of an atom 
by its hybridization state.61  Such a modification is reflected in the electronegativity 
values corresponding to the considered state. The following scenario defined the EC 
parameters: 
  (i) - covalent radii relative to carbon atom (0.772 ANG)  are calculated by  eq. 8.33-8.35  

 rcni = rc1i + ∆ rcni           (8.33) 

 rc1i = r1i / 0.772          (8.34)  

 ∆ rcni = ( rni - r1i ) / 7.72         (8.35)  

where : rc is the atomic radius relative to the carbon atom; n is the row and i is the 
column in the Periodic Table; ∆ rc  stand for the “excess of relative radius”. 
  (ii) - values EC, for the atoms belonging to the nth row of Periodic Table are calculated 
by dividing the group electronegativities ESGi to the mean relative length, mlc , of the 
bonds around the considered vertex/group i : 
  

ECni = (ESGni / mlcni ) / ECC          (8.36)  

 ECC = 2.746 / 1.4996          (8.37)  

 mlcni = mlC  rcni           (8.38) 
 
 EC values are listed in Table 8.2. Two Randic-type indices were constructed by 
using the EC values (see Chap. Topological Indices). They showed good correlation with 
some physico-chemical properties.59, 60 
 

 

Table 8.2. EC Electronegativities. 

-Br               1.2447 -CHBr2          1.0672 -NH2              1.0644   3P=O              1.3333 
-CBr3            1.1266 -CHCl2           1.1089 -NO                1.4063  =C=                1.1581 
-CCl3            1.1932 -CHF2            1.1897 -NO2              1.4861 =CH-              1.0441 
-CF3              1.3260 -CHI2             0.9914 -O-                  1.4634 =CH2              1.0891 
-CH2-            0.9622 -CI3                1.0088 -OCH3            1.1248 =N-                 1.3147 
-CH2Br         1.0110 -COOH           1.2220 -OH                1.2325 =NH                1.2474  
-CH2Cl          1.0305 -Cl                 13717 -P(CH3) 2        0.9351 =O                   1.6564 
-CH2F           1.0674 -C≡                 1.1476 -P<                 0.8988 =P-                  0.9658 
-CH2I            0.9744 -C≡N              1.2377 -PCH3-           0.9314 =S                   1.2523 
-CH2OH        1.0228 -F                   1.6514 -PH-               0.9124 >C<                 1.0000 
-CH2SH         0.9804 -H                  0.9175 -PH2              0.9170 >C=                 1.0747 
-CH3              0.9575 -I                    1.0262 -PHCH3         0.93053 >C=O              1.2397 
-CH<             0.9716 -N(CH3) 2        1.0292 -S-                 1.1064 -NHCH3          1.0379 
-CH=CH2      1.0381 -N<                 1.2234 -SCH3            1.0073 ≡CH                1.2142 
-CH=O          1.1596 -NH-               1.1021 2PO                0.1222 ≡N                   1.5288 
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8.3.2.2. X(LeM) Descriptors 

 The descriptors X(LeM) are built on layer matrices: LDS, LeW, etc. The chemical 
nature of atoms is considered by means of the parameter ti  (see Chap. Topological 
Indices). 
 Figure 8.5 offers an example of centrocomplexity ordering (and separating of 
automorphism groups) in which the important property is the valence/degree of vertices. 
The graph G8.18 shows vertices 3 and 6, those are endospectral (i.e., have the same 
sequence of eWi  parameters- see Figure): these vertices can be distinguished by means of 
L1W and  index X(L1W)i, respectively. 

 
 (a)               (b)  L1W (G8.18): 

          1 1 3 3 2 3 3 2 2 1  
       2 3 4 2 3 3 2 2 1 0 
       3* 2 5 5 3 2 2 1 0 0 
       4 2 5 6 4 2 1 0 0 0 
       5 3 5 4 5 3 0 0 0 0 
   G8.18    6* 2 5 5 3 3 2 0 0 0 
       7 2 4 4 3 2 3 2 0 0  
       8 2 3 2 3 3 2 3 2 0 
       9 1 2 2 2 3 3 2 3 2 
                            10 1 3 3 2 3 3 2 2 1 
                             11 1 3 4 4 5 3 0 0 0  
 

eW( 3;6)   : 2, 5, 9 ,21, 39, 88, 168, 370, 721, 1560                       X(L1W)3   = 2.553221 
                            X(L1W)6  = 2.553320 

Figure 8.5. (a) Endospectral vertices (3 and 6 -marked with *) in the graph G8.18. 
      (b) Matrix L1W and the index X(L1W)i,  which separates these vertices. 

 
Perception of heteroatom, by means of X(LDS) index and MOLORD algorithm, is 

illustrated in Figure 8.6. and Tables 8.3 and 8.4, for a set of cuneanes. Values are listed in 
decreasing ordering of centrocomplexity.  
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Figure 8.6  Cuneane and heterocuneanes. 

*

*
1

2
3

4
5

6
7

8
9

10

11

G8.17            G8.19            G8.20            G8.21            G8.22 



M. V. Diudea, I. Gutman and L. Jantschi 254 

Table 8.3. MOLORD Ordering of Cuneanes (Figure 8.6); 
  Values SIm  (i0 ) and GSIm  (L0 ); f =10; I = X(LDS).  

    Graph        G8.17     G8.19              G8.20           G8.21      G8.22 

      Values SI0 (i0  ): vertices  

 2    0.337702    2    0.353210    7    0.353210    2    0.353210    2    0.353210 
 5    0.337702    5    0.337702    8    0.353210    5    0.353210    5    0.353210 
 7    0.337702    7    0.337702    2    0.337702    7    0.337702    7    0.353210 
 8    0.337702    8    0.337702    5    0.337702    8    0.227702    8    0.353210 
 1    0.310649    1    0.324915    1    0.310649    1    0.310649    1    0.310649 
 3    0.310649    3    0.310649    3    0.310649    3    0.310649    3    0.310649 
 4    0.310649    4    0.310649    4    0.310649    4    0.310649    4    0.310649 
 6    0.310649    6    0.310649    6    0.310649    6    0.310649    6    0.310649 

   Values GSI0  (L0  ): 
       2.593402   2.623177          2.624419             2.624419          2.655436 

     Values SI1  (i0  ): vertices 

 2    0.404711    2    0.422259    7    0.420017    2    0.422272    2    0.422311 
 5    0.404711    5    0.405217    8    0.420017    5    0.422272    5    0.422311 
 7    0.402482    7    0.402963    2    0.404749    7    0.402493    7    0.420029 
 8    0.402482    8    0.402481    5    0.404749    8    0.402493    8    0.420029 
 1    0.374424    1    0.390656    1    0.374943    1    0.374943    1    0.375461 
 3    0.374424    3    0.374931    3    0.374943    3    0.374943    3    0.375461  
 4    0.374424    4    0.374883    4    0.374943    4    0.374943    4    0.375461 
 6    0.374424    6    0.374426    6    0.374943    6    0.374943    6    0.375461 

     Values GSI1  (L0  ): 
       3.112083          3.147812         3.149303          3.149303          3.186523 

 

Table 8.4.  MOLORD Ordering of Cuneanes (Figure 8.6); 
  Values Sim  (i1 ) and GSIm  (L1 ); f =10; I = X(LDS).  

 
Graph   G8.17              G8.19                G8.20                   G8.21        G8.22      
 

 

Values SI1  (i1  ):  edges 

 (2, 5)   0.268012    (1, 2)   0.280276    (7, 8)   0.280261    (2, 5)   0.280320    (2, 5)   0.280320 
 (1, 2)   0.267970    (2, 5)   0.274097    (2, 5)   0.268012    (1, 2)   0.274054    (7, 8)   0.280261  
 (2, 3)   0.267970    (2, 3)   0.274054    (1, 2)   0.267970    (2, 3)   0.274054    (1, 2)   0.274054 
 (4, 5)   0.267970    (4, 5)   0.267970    (2, 3)   0.267970    (4, 5)   0.274054    (2, 3)   0.274054 
 (5, 6)   0.267970    (5, 6)   0.267970    (4, 5)   0.267970    (5, 6)   0.274054    (4, 5)   0.274054 
 (7, 8)   0.267956    (7, 8)   0.267956    (5, 6)   0.267970    (7, 8)   0.267956    (5, 6)   0.274054 
 (1, 7)   0.254624    (1, 7)   0.260405    (1, 7)   0.260405    (1, 7)   0.254624    (1, 7)   0.260405 
 (3, 8)   0.254624    (3, 8)   0.254624    (3, 8)   0.260405    (3, 8)   0.254624    (3, 8)   0.260405 
 (4, 7)   0.254624    (4, 7)   0.254624    (4, 7)   0.260405    (4, 7)   0.254624    (4, 7)   0.260405 
 (6, 8)   0.254624    (6, 8)   0.254624    (6, 8)   0.260405    (6, 8)   0.254624    (6, 8)   0.260405 
 (1, 4)   0.242557    (1, 4)   0.248064    (1, 4)   0.242557    (1, 4)   0.242557    (1, 4)   0.242557 
 (3, 6)   0.242557    (3, 6)   0.242557    (3, 6)   0.242557    (3, 6)   0.242557    (3, 6)   0.242557 

Values GSI1  (L1  ): 
            3.111455             3.147218                  3.146885      3.146099              3.183529 
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Table 8.4. (continued) 

 
Values SI2  (i2  ):  edges 

      (2, 5)   0.320767   (1, 2)   0.334647   (7, 8)   0.334616   (2, 5)   0.334692   (2, 5)   0.334693 
      (1, 2)   0.320733   (2, 5)   0.327854   (1, 2)   0.320936   (1, 2)   0.327828   (7, 8)   0.334628 
      (2, 3)   0.320733   (2, 3)   0.327824   (2, 3)   0.320936   (2, 3)   0.327828   (1, 2)   0.328032 
      (4, 5)   0.320733   (4, 5)   0.321131   (4, 5)   0.320936   (4, 5)   0.327828   (2, 3)   0.328032 
      (5, 6)   0.320733   (5, 6)   0.320937   (5, 6)   0.320936   (5, 6)   0.327828   (4, 5)   0.328032 
      (7, 8)   0.320704   (7, 8)   0.320907   (2, 5)   0.320771   (7, 8)   0.320717   (5, 6)   0.328032 
      (1, 7)   0.305766   (1, 7)   0.312525   (1, 7)   0.312524   (1, 7)   0.305978   (1, 7)   0.312737 
      (3, 8)   0.305766   (4, 7)   0.306145   (3, 8)   0.312524   (3, 8)   0.305978   (3, 8)   0.312737 
      (4, 7)   0.305766   (3, 8)   0.305970   (4, 7)   0.312524   (4, 7)   0.305978   (4, 7)   0.312737 
      (6, 8)   0.305766   (6, 8)   0.305771   (6, 8)   0.312524   (6, 8)   0.305978   (6, 8)   0.312737 
      (1, 4)   0.293140   (1, 4)   0.299612   (1, 4)   0.293518   (1, 4)   0.293543   (1, 4)   0.293918 
      (3, 6)   0.293140   (3, 6)   0.293340   (3, 6)   0.293518   (3, 6)   0.293543   (3, 6)   0.293918 

Values GSI2  (L1  ): 
                 3.733746     3.776662               3.776261              3.777719               3.820234 

 

 
8.3.2.3.  eWM   and  eEM  Descriptors 

 The descriptors eWM represent walk degrees weighted by the property collected by 
the square matrix M.62, 63 They can be calculated by the eWM algorithm (see Chap. 
Topological Matrices). If the algorithm runs on the matrix C (of connectivities) then the 
resulting eWC naturally  take into account the multiple bond. If in the first step the EC 
values are setting as diagonal  elements, the resulting descriptors are the weighted 
electronegativities, eEM , of rank e:55 

 

 M +  eE = eEM            (8.39)
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where M is the matrix used for weighting eEM, and eE is the diagonal matrix of atomic 
electronegativities. Summing the two matrices results in the matrix eEM whose elements 
are defined by eqs 8.40 and 8.41. Finally, [eEM]ii  is assigned to eEM,i (see above). Note 
that relation (8.40) is in agreement with the  equalizing principle of atomic 
electronegativities . 
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 Descriptors eEM,i  can be used as independent parameters or in association with 
eWM  parameters, to give the parameters eWME,i: 
 

 iM,
e

iM,
e

iME,
e EWW =        (8.42) 

 The eWME,i descriptors allow the perception of both heteroatom and  multiple 
bond in graphs. Figure 8.7 illustrates such descriptors for the graph  G8.14. 
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Figure 8.7. Heteroatom and multiple bond perception  in  G8.14 
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MOLECULAR  SIMILARITY 

 
"Similarity is one of the most instantly recognizable and universally experienced 

abstractions known to humankind".64   
Because of its fundamental role in a large variety of situations and fields, 

the similarity concept has strongly attracted the interest of scientific world. It is 
reflected in the occurrence of several English synonyms: relatedness, equivalence, 
proximity, closeness, resemblance, isomorphism, etc. 

Usually, things, facts or concepts are classified (i.e., partitioned) into groups or 
categories according to simple perceptions or more elaborated criteria. Members of such 
groups will possess one or more common attributes.  Similarity is always with respect to 
some particular characterization of groups. If the similarity is well behaved 
mathematically these members will satisfy an equivalence relationship (see below). 

Several levels of similarity in chemistry are actually recognized:65 (1) Chemical 
similarity, which compare and group chemical systems with respect to various 
macroscopic properties such as melting point, refraction index, chromatographic retention 
index, etc. (2) Molecular similarity, which involves the comparison and grouping of 
individual molecules according to their 2D and 3D structural information and property 
information, such as dipole moments and charge density. (3) Intramolecular similarity, 
which compare and group intramolecular entities, such as molecular orbitals or 
topological fragments (see Section 8.1). This Section is focused on the concept of 
molecular similarity. 

Molecular similarity, like molecular branching, is an intuitive notion.64, 66 A 
unique and unambiguous measure of similarity does not exist.65   

Molecules are nonrigid entities that preserve their identity under small 
deformations, such as vibrations or rotations at some temperature. Thus, molecules can be 
viewed as topological objects,67 mathematically well behaved.  

The descriptions of molecules used in molecular similarity analysis are named  
molecular  descriptions. A simple enumeration of atoms, or a fragment location, or an 
electrostatic potential surface characterization of the molecule can be termed as molecular 
description.65  In many cases, the molecular description is a vector of numbers, 
quantifying some local, or global attributes such as the presence or absence of a certain 
fragment, a topological index, etc. Each element of vector is called a molecular 
descriptor. All molecular descriptions induce a partitioning into equivalence classes on a 
set of molecules. It is now appropriate to define concepts such as equivalence relation, 
equivalence class, mapping, matching, partial ordering and proximity, which are 
frequently used in molecular similarity analysis.    

Equivalence relation. Let S be a set of molecular structures and R a binary 
relation on S relating pairs of its elements. If x, y ∈ S are thus related, xRy will be written. 
The relation R is an equivalence relation if some properties are satisfied: 
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1. xRx , for all  x ∈ S    (reflexivity) 
2. If  xR y, then yR x    (symmetry) 
3. If  xR y and  yR z, then  xR z  (transitivity) 
 

The set of all elements y ∈ S, such that xRy , represent the equivalence class of x. By 
imposing an equivalence relation R on a set S results in partitioning S into disjoint 
subsets, each subset being an equivalence class under R. This set of subsets is denoted by 
S/R (i.e., the quotient set,  S modulo R).8 
 Let f  be a function mapping  the elements of S onto the elements of any other set 
Y. That is, for any  x ∈ S,  f assigns a corresponding value  y = f(x)  in Y. This 
correspondence can be written as  f: S      Y. If Y is the set of descriptions, the mapping 
function associates a molecular description with each molecule in S.  Those molecules in 
S are equivalent which are mapped to the same molecular description. Such a function  f  
may be a labeling (or a coding) or simply a measuring process. It can be shown that 
various molecular descriptions associated with their algebraic representation form a 
group.8, 67 

 A matching can be achieved by overlapping two molecules. An overlapping can 
indicate the common features shared by two molecules or by two molecular descriptions. 
 A partial ordering refers to some local ordering induced by local covering (i.e., 
substructure matching) within the molecules belonging to the set S. Such an ordering can 
be illustrated by a Hasse diagram.68  

Mathematically, the ordering relation requires the antisymmetry property (2’): If 
xRy and yRx  then x = y, instead of the symmetry property (2) (see above). Randic69 

reported a partial ordering of alkane isomers with respect to the path numbers p2 and p3. 
Other graph-theoretical descriptors, such as topological indices, sequences of descriptors, 
etc.,  may be used in the characterizing and subsequently partial ordering and clustering 
of molecular structures. (see Sections 8.3 and 8.5). Molecules may also be ranked with 
respect to some experimental property. Compounds closely positioned in a derived 
ordering are expected to have close (i.e., similar) properties. 
 Proximity is basically expressed by two categories: similarity and dissimilarity. 
Similarity expresses the relatedness of two molecules, with a large number if their 
molecular descriptions are closely related and with a number going to zero in case they 
are unrelated.65 The ratio of the count of matched atoms and bonds to the corresponding 
count for the whole molecule, multiplied by the analogous ratio for a comparing molecule 
has been proposed70 as a similarity measure between two molecules. Such measures have 
the correlation property (zero for no correlation and one for full correlation). 
 Dissimilarity expresses the relatedness of two molecules, with a number close to 
zero when their molecular descriptions are closely related and with a large number if they 
are unrelated. For example, the number of atoms and bonds that cannot be matched up in 
overlapping two molecules may be a measure of dissimilarity between two molecules.  
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This particular dissimilarity measure71 constitutes a metric (see below) and is also referred 
to as chemical distance.38, 53, 72-75   

Similarity and dissimilarit are both included in the more general term proximity. 
Four main types of proximity coefficients have been reported. 

Distance coefficients usually assume a Minkowski metric within an m-
dimensional space:53, 69, 71, 76 
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where x = (x1,x2,...xm) and y = (y1,y2,...ym) are the two structures of m points. Such 
coefficients are extensively used owing to their geometrical interpretation: when z = 1, 
the city-block distance (or the Manhattan distance DM ) is obtained and when z = 2, the 
Euclidean distance DE results.77, 78 Randic 69 evaluated the Euclidean distance on a set of 
monoterpenes by using path sequences as descriptors. Basak et. al.76 performed a PCA 
(Principal Component Analysis) study on a set of 3692 molecules by using a pool of 90 
topological indices and DE  as a measure of dissimilarity. For other examples, see Sect. 
8.5. 

Any proximity measure is a metric if it satisfies the triangle inequality:   
 
D(x,y) = 0 for x = y;   
D(x,y) = D(y,x) and  
D(x,z) ≤ D(x,y) + D(y,z). 
 
Association coefficients are used when binary variables are involved. 
Correlation coefficients measure the degree of statistical correlation between two 

molecules or their descriptions. 
Probabilistic coefficients count the distribution of frequencies of occurrence of 

some common features in a dataset.79  
A molecular description is in essence a mapping from a set S of structures onto a 

set Y of molecular descriptions. This mapping, together with some concepts of matching, 
partial ordering and proximity, defines a molecular similarity space.65  

Similarity procedures thus produce a partitioning of sets of molecules into 
disjoint subsets or clusters based on their similarity. The procedures are classified as 
hierarchical or nonhierarchical depending on whether relationships can be established 
between the  clusters.80 

The clustering process is achieved in three stages: (1) the selection of appropriate 
variables for the molecular description, (2) the weighting of these variable and (3) the 
definition of the similarity measure.  The choice among a variety of possibilities depends 
very much on the nature of the molecules under study but is, ultimately, a personal 
preference of each researcher. 
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Complementarity is another form of similarity, which needs the use of some 
shape descriptors.67, 71, 81-86  

In case of flexible molecules, the similarity analysis requires a conversion from 
2D to 3D molecular structures to which analogue considerations may be addressed. For 
such a purpose, a computer program, which takes into account the torsion angles and 
Euclidean distances, is needed. Some programs are actually available: CONCORD 
(University of Texas at Austin and TRIPOS Associates87 ), ChemModel (Chemical 
Design Ltd.), ALLADIN (Martin et al.88 ), etc. 

 

8.5.  INTERMOLECULAR  ORDERING 

 Ordering of a set of molecules with respect to certain graph theoretical 
descriptors follows approximately the same criteria as the intramolecular ordering, with 
the difference that here global descriptors are used. 
 
8.5.1. Criteria of Centrality 

 Let us consider a set of isomers. Their global sequence, DDS, can be ordered 
according to the 1D-3D criteria,49, 50 this time applied "intermolecularly".89 Tables 8.5 and 
8.6 lists the distance sequences and central ordering (Cord), in increasing order, of 
heptanes and octanes, respectively. For comparison, the global value C(L3DS) (calculated 
by using  3D distances in optimized geometry) was considered. It can be seen that a 
single inversion: 3EC5; 22M2C5 (in heptanes) and 3E3M5; 223M3C5 (in octanes), 
appeared between the two central orderings. 
 

Table 8.5.Distance Degree Sequence (DDS) of Heptanes, Lexicographic (Xord) 
and Central Ordering (Cord, cf. 1D-3D Criteria), Compared with the Indices X(L1W), DM1  

and C(L3DS), Respectively. 
 

DDS Xord X(L 1W) DM 1 Cord C(L3DS) 
6 5 4 3 2 1 C7 14.3951 13.4246 C7 0.58938 
6 6 4 3 2 0 2MC6 14.6150 14.7656 2MC6 0.74061 
6 6 5 3 1 0 3MC6 14.6368 15.0821 3MC6 0.78580 
6 6 6 3 0 0 3EC5 14.6586 15.3666 24M2C5 0.99623 
6 7 4 4 0 0 24M2C5 14.8368 16.3631 3EC5 1.03608 
6 7 6 2 0 0 23M2C5 14.8764 16.9492 22M2C5 1.02187 
6 8 4 3 0 0 22M2C5 15.0546 17.9498 23M2C5 1.06819 
6 8 6 1 0 0 33M2C5 15.0942 18.4853 33M2C5 1.14982 
6 9 6 0 0 0 223M3C4 15.3120 20.5470 223M3C4 1.34805 
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Table 8.6. Distance Degree Sequence (DDS) of Octanes, Lexicographic (Xord) and Central 
Ordering (Cord, cf. 1D-3D Criteria), Compared with the Indices X(L1W) , DM 1  and 

C(L3DS), Respectively. 
 

DDS Xord X(L1W) DM 1 Cord C(L3DS) 
7 6 5 4 3 2 1 C8 16.83951 15.61028 C8 0.44479 
7 7 5 4 3 2 0 2MC7 17.05950 17.02015 2MC7 0.56848 
7 7 6 4 3 1 0 3MC7 17.08148 17.56044 3MC7 0.60339 
7 7 6 5 2 1 0 4MC7 17.08346 17.56044 4MC7 0.63236 
7 7 7 5 2 0 0 3EC6 17.10544 17.91494 25M2C6 0.71165 
7 8 5 4 4 0 0 25M2C6 17.27968 18.60840 22M2C6 0.73761 
7 8 6 5 2 0 0 24M2C6 17.30344 19.20822 3EC6 0.75937 
7 8 7 4 2 0 0 23M2C6 17.32324 19.60890 24M2C6 0.76325 
7 8 8 4 1 0 0 34M2C6 17.34502 20.00839 23M2C6 0.76779 
7 8 8 5 0 0 0 3E2MC5 17.34700 20.10744 34M2C6 0,81452 
7 9 5 4 3 0 0 22M2C6 17.49946 20.51561 33M2C6 0.82412 
7 9 7 4 1 0 0 33M2C6 17.54302 21.42983 224M3C5 1.01891 
7 9 8 4 0 0 0 234M3C5 17.56480 22.07279 3E2MC5 1.04532 
7 9 9 3 0 0 0 3E3MC5 17.58460 22.13693 234M3C5 1.05845 
7 1 5 6 0 0 0 224M3C5 17.72320 22.80578 3E3MC5 1.11623 
7 1 8 3 0 0 0 223M3C5 17.78260 24.14856 223M3C5 1.08177 
7 1 9 2 0 0 0 233M3C5 17.80240 24.49869 233M3C5 1.13486 
7 1 9 0 0 0 0 2233M4C4 18.23800 29.75000 2233M4C 1.39893 

 
 

8.5.2. Criteria of Centrocomplexity 
 

8.5.2.1. X(LeM) Descriptors  

 Descriptors of the type X(LeM) succeeded in separating pairs of recalcitrant 
isomers (i.e., which can not be discriminated by classical spectral parameters). 
 In simple cases, the ordering induced by the matrix L1W and the corresponding 
index X(L 1W) is sufficient. The ordering supplied by the above descriptors is identical to 
the lexicographic ordering of DDS (see also90) in the sets of heptanes and octanes (Tables 
8.5 and 8.6.), or to that induced by the super-index71 DM 1 (the same Tables). 
 There are graphs with pairs of vertices showing oscillating values of eWi ,(when e 
increases) . In such cases, higher elongation, e, is needed for discrimination . Figure 8.8 
shows a pair of such graphs (G8.23 and G8.24) in which vertices: 3 and 6’; 6 and 3’; 12 and 
12’  are isospectral . Using layer matrices L2W allows the discrimination of both the 
mentioned vertices and the two graphs.53  
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     (a) 

1' 2'
3' 4'

5' 6'
7' 8'

9'

10'

11'

12'

1
2

3
4

5
6

7
8

9

10

12 11
 

  G8.23         G8.24 

        eWi :     3; 6’ :           3,    6,  14,    29,    66,  136,    310,    633,  1449,    2937,    6747  
                  6; 3’ :           2,    5,    9,    22,    40,    92,    180,    432,    816,    1941,    3717 
               12; 12’:           1,    3,    6,    14,    29,    66,    136,    310,    633,    1449,    2937 
        eW :          11,  24,  49,  106,  222,  479,  1014,  2186,  4651,  10023,  21380  

    L2W matrices: 
      L2W(G 8.23)     L2W(G 8.24) 

1 3 5 9 9 5 8 4 3 2  3 4 8 5 6 9 8 3 2 
2 5 12 9 5 8 4 3 2 0  4 11 5 6 9 8 3 2 0 
3 6 14 11 8 4 3 2 0 0  5 9 12 9 8 3 2 0 0 
4 6 11 16 10 3 2 0 0 0  5 11 13 14 3 2 0 0 0 
5 5 14 10 11 8 0 0 0 0  6 14 13 7 8 0 0 0 0 
6 5 9 12 8 8 6 0 0 0  6 14 11 7 4 6 0 0 0 
7 4 8 7 9 6 8 6 0 0  5 9 11 8 5 4 6 0 0 
8 3 6 5 5 9 6 8 6 0  3 7 6 9 8 5 4 6 0 
9 2 3 4 5 5 9 6 8 6  2 3 5 6 9 8 5 8 6 
10 3 5 9 9 5 8 4 3 2  3 4 8 5 6 9 8 3 2 
11 3 5 11 10 11 8 0 0 0  3 6 11 13 7 8 0 0 0 
12 3 6 11 11 8 4 3 2 0  3 6 11 11 7 4 6 0 0 

X(L2W):    48.9915008066362410                                   48.9915008066421810 
 
   (b) Vertex  ordering:  

 

G8.23 X(L1W)i 3 5 2 4 6   7   8 12 11 (1,10) 9 

 X(L2W)i 3 4 5 2 6   7 12 8 11 (1,10) 9 
 X(L3W)i 3 5 2 4 6   7 12 8 11 (1,10) 9 
 X(L10W)i 3 4 5 2 6 12 11 7 (1,10) 8 9 
 X(L12W)i 3 4 2 5 6 12 11 7 (1,10) 8 9 
 X(L13W)i 3 5 4 2 6 12  7 (1,10) 11 8 9 
 X(L14W)i 3 4 2 5 6 12 11 (1,10)   7 8 9 
       eigenvector 3 4 5 2 6 12 11 (1,10)   7  8 9 

 
 

G8.24 X(L1W)i 5 6 2 4 3   7   8 11 12 (1 10) 9 

 X(L2W)i 5 6 4 3 7   2   8 11 12 (1 10) 9 
 X(L3W)i 5 6 4 2 3   7   8 11 12 (1 10) 9 
 X(L10W)i 5 6 4 7 3   2 12 11   8 (1 10) 9 
 X(L12W)i 5 6 4 7 3 12  2 11   8 (1 10) 9 
 X(L13W)i 6 5 4 7 3   2 11 12   8 (1 10) 9 
 X(L14W)i 5 6 4 7 3 12 11  2   8 (1 10) 9 
         eigenvector 5 6 4 7 3 11 12  2   8 (1 10) 9 

 

Figure 8.8. (a) Isospectral graphs, eWi  and eW sequences, matrices L2W;  
(b) Vertex ordering of G8.23 and G8.24 cf. normalized NX(LeW)i   

and normalized first eigenvector values. 
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 It is useful that local values X(LeW)i  be normalized by dividing to the 
corresponding global  values (actually  NX(LeW)i values - see Tables 8.7 and 8.8). At 
large values of e, the NX values are superposed over the vertex weights (i.e., eWi /2eW - 
see91) and also over the coefficients of normalized first eigenvector . Tables 8.7 and 8.8 
offer NX data only for even values of e (for which the ordering is closer to that induced 
by the normalized first eigenvector - see Figure 8.8(b)). This result is in agreement with 
the suggestion of Bonchev et.al.91 to rather consider the closed walks (i.e., eSRWi values ). 
However, our results indicate a better correlation (0.995) with  eWi  values (of even e 
values) than  with eSRWi  values ( 0.977).53 

 

           Table 8. 7. Normalized NX(LeW)i  Values and Their Correlation with the  
                             Coefficients of Normalized First Eigenvector, of G8.23. 

 eigenvector normalized 
eigenvector 

x102 

NX(LeW)i  x 102 

     (L10W)            (L12W)             (L14W)            (L12SRW) 
1 0.1847 5.9903 5.5734 5.6128 5.6477 3.5974 
2 0.3966 12.8628 12.5986 12.8050 12.9548 15.7588 
3 0.4823 15.6423 14.6547 14.7643 14.8401 21.3600 
4 0.4145 13.4434 13.8359 13.8774 13.9006 15.0778 
5 0.4078 13.2261 12.7587 12.7736 12.7670 16.1178 
6 0.2712 8.7958 9.6846 9.5313 9.4184 8.4983 
7 0.1747 5.6660 5.7881 5.6671 5.5935 4.6879 
8 0.1039 3.3698 4.0015 3.8479 3.7435 2.3098 
9 0.0484 1.5697 1.7165 1.6325 1.5862 0.6503 
10 0.1847 5.9903 5.5734 5.6128 5.6477 3.5974 
11 0.1899 6.1590 6.6061 6.5539 6.5110 3.6474 
12 0.2246 7.2844 7.2298 7.3235 7.3896 4.7207 
   r = 0.99351 0.99492 0.99566 0.97727 
   s = 0.08678 0.07389 0.19199 0.18375 

 

Table 8. 8. Normalized NX(LeW)i Values and Their  Correlation with the  
Coefficients of Normalized First Eigenvector, of G8.24. 

 eigenvector normalized 
eigenvector 

x102 

NX(LeW)i  x 102 

     (L10W)               (L12W)            (L14W)          (L12SRW) 
1 0.1039 3.3699 4.0015 3.8479 3.7435 2.1647 
2 0.2230 7.2327 7.3449  7.2302  7.1495  8.3657  
3 0.2712 8.7961 9.6846  9.5313  9.4184  8.4982  
4 0.3594 11.6567 11.2019 11.2105 11.2110  11.7223 
5 0.5005 16.2331 16.4405 16.5834 16.6681 22.0785 
6 0.4823 15.6423 14.6547 14.7643 14.8401  21.3601 
7 0.3106 10.0739 9.9940 10.0990 10.1873 9.4761 
8 0.1847 5.9903 5.5735 5.6128 5.6477 3.7423 
9 0.0860 2.7893 2.7642 2.7755 2.7977 0.9095 
10 0.1039 3.3699 4.0015 3.8479 3.7435 2.1645 
11 0.2331 7.5603 7.1302 7.1759 7.2038 4.8208 
12 0.2246 7.2844 7.2298 7.3235 7.3896 4.7207 
   r = 0.99351 0.99492 0.99566 0.97211 
   s = 0.07084 0.03612 0.11162 1.16896 
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8.5.2.2. eWM  Descriptors 

 Numbers eWM (i.e., descriptors Wiener of higher rank)63 have proved a highly 
discriminating capability. In this respect four graphs were selected: G8.15 : G8.16;52 and 
G8.25 : G8.26,92

 (Figure 8.9). These graphs show degenerate DDS. Moreover these graphs 
show identical sequences for several 1WM numbers. The immediate consequence is the 
degeneracy of the corresponding Wiener-type numbers. Results are listed in Table 8.9. 
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  Figure 8.9. Pairs of  graphs with degenerate DDS:   G8.25 and G8.26 :   11, 15, 16, 16, 5, 3 
            G8.15 and G8.16 :   17, 24, 29, 25, 26, 23, 9 

 

Table 8.9.  Numbers eWM  (of Rank 1 - 3) for the  Graphs G8.25 , G8.26 ,  G8.15 and G8.16  

                  e G8.25 G8.2 6 G8.15 G8.16 
eWDe                   1 

                     2 
                    3 

196 
6692 

227288 

196 
6692 

227252 

583 
39173 

2625203 

583 
39173 

2625299 
eWWe                   1 
                    2 
                    3 

196 
10686 

592184 

196 
10686 

592292 

583 
70137 

9051023 

583 
70097 

9066815 
eWHe             1 
                   2 
                   3 

29.33333 
149.82250 
762.56399 

29.35001 
150.01529 
764.13899 

55.23572 
353.43560 

2258.69928 

55.23572 
353.43560 

2258.66741 
eWDp                  1 
                   2 
                   3 

450 
38171 

3186855 

450 
38119 

3176484 

1638 
329089 

65720352 

1638 
329089 

65729760 
eWWp                 1 
                   2    

450 
45940 

450 
45946 

1638 
464101 

1638 
463865 

eWHp                  1 
                   2 
                   3 

20.74287 
79.35440 

300.62484 

20.76191 
79.53998 

301.76187 

35.48334 
154.70112 
671.90912 

35.48334 
154.70112 
671.89416 

eWW(A,De,De)  1 
                    2   

3780 
2979036 

3491 
2373482 

33851 
155875988 

33896 
155261932 

 



Symmetry and Similarity 265 

Pair G8.25 : G8.26  and G8.15 : G8.16  show degeneracy among the topological 
indices based on distances in graph (see Table 8.10. ). Numbers 1WM  are also degenerate 
(even for some walk numbers of rank 2 : 2WDe   and  

2WWe   but not for  
2WDp and  2WWp ). 

The walk numbers of rank 3, 3WM , succeeded in separating both of these pairs of isomers. 
 The walk  numbers eWM are constructed on any topological square matrix M. The 
Schultz-type indices, particularly those path-calculated on the matrix combination: De, A, 
M,  (e.g., entries 13 and 15 - Table 8.10) show good discriminating ability. 
 

Table 8.10. Distance-Based Indices of the Graphs G8.25, G 8.26, G 8.15 and G 8.16 

 Index G8.25 G8.26 G8.15 G8.16 
1 W 196 196 583 583 
2 HDe 29.33333 29.35 55.23571 55.23571 
      

3 IP(CJD) 450 450 1638 1638 
4 IE(CJD) 196 196 583 583 
5 IP(RCJD) 26.47508 26.47508 54.26032 54.26245 
6 IP(SZD) 1253 1310 7286 7264 
7 IE(SZD) 196 196 583 583 
8 IP(RSZD) 6.68064 6.48620 8.05156 7.74600 
      

9 IP(SCH(A,A,CJD)) 3833 3833 14438 14430 
10 IE(SCH(A,A,CJD)) 75 75 294 294 
11 IP(SCH(A,A,SZD)) 6369 6346 33499 33429 
12 IE(SCH(A,A,SZD)) 75 75 294 294 
13 IP(SCH(De,A,CJD)) 514937 514001 7292966 7293518 
14 IE(SCH(De,A,CJD)) 42928 42841 416098 416098 
15 IP(SCH(De,A,SZD)) 1714455 1824190 38021230 38048434 
16 IE(SCH(De,A,SZD)) 216629 212995 3206482 3208168 

 
 
 
 
8.5.3. Distance Measure by  C- and  X-Type   Descriptors  
 
 Diudea53 evaluated the Manhattan distance, DM, by using local descriptors of 
centrality and centrocomplexity (C- and X-type, respectively) derived on layer matrices 
LeM. The set of testing graphs (G8.27-G8.30) is that in  Figure 8.10 (see also51). It can be 
seen that these graphs are built from semi-hexes (denoted A and B) ranged in the 
following sequence : (a) ABAB, (b) ABBA and (c) BAAB. It was proved (by circular 
permutations53) that there are only four distinct combinations: a-a, b-a, b-c and b-b. 
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(a) 

ABAB:ABAB
a     a

ABBA:ABAB
b      a

ABBA:BAAB
b      c

ABBA:ABBA
b      b

 

 (b) 

e 1 2 3 4 5 6 7 8 9 
2DDS(G8.27  -G8.30) 88 152 200 216 248 224 168 136 96 

          
2 eWS(G8.27) 88 240 616 1648 4312 11440 30088 79592 209704 
2 eWS(G8.28) 88 240 616 1648 4312 11440 30088 79592 209712 

2 eWS(G8.29) 88 240 616 1648 4312 11440 30088 79592 209712 
2 eWS(G8.30) 88 240 616 1648 4312 11440 30088 79592 209720 

 
Figure 8.10. (a) Graphs with degenerate  LC and L1W matrices.  

(b) DDS  and eWS of G8.27 - G8.30 

 

Matrices LC and L1W (see Chap. Topological Matrices) degenerate in the set 
G8.27 - G8.30 which suggests that these graphs are very similar. Despite the fact that 
matrices LeW are not more degenerated at e > 2, they only differ in the entries 
corresponding to the remote vertices in graphs. Similar behavior shows the matrix LDS. 
The X-type indices show little differences, with respect to these graphs. Better results 
were obtained by using the C-type indices, when calculating the Manhattan distance, DM 
:53 
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The results are listed in Table 8.11. 

Table 8.11. Manhattan Distance DM  for  the Graphs G 8.27 - G8.30. 

(a) DM Calculated  with C(LDS)i  103 (dsp = 20) Values. 

graph G 8.27 G 8.28 G 8.29 G 8.30 
G 8.27 0 3.3760 5.5463 1.2138 
G 8.28  0 2.8633 3.4901 
G 8.29   0 5.8184 
G 8.30    0 

(b) DM Calculated with C(L eWS)i  102 (dsp = 20; e = 2-6)  
Mean Values. 

graph G 8.27 G 8.28 G 8.29 G 8.30 
G 8.27 0 11.8007 13.8506 11.0244 
G 8.28  0 6.6727 10.0055 
G 8.29   0 11.0654 
G 8.30    0 

 
 
 The correlating arrays (a) and (b) (Table 8.11) show that the structure G8.27 is 
closer to G8.30  and G8.28  to G8.29, the last pair being the closest among the whole set. 
This result is confirmed by the sequences eWS  (Table 8.11(b)): they differ only at 
elongation e = 9 thus demonstrating that all four structures are very similar. For the pair 
G8.28  : G8.29  the above sequences differ only for e = 13. 
 
 

8.6.   PATH,  TERMINAL  PATH  AND  CYCLE  COMPLEXITY 
 
In trees, path count superimposes on distance count: any two vertices in a 

connected graph are joined by a path which is the shortest one and unique. In cycle -
containing graphs, more than one path may exist between two vertices. As the number of 
paths increases as the complexity of structure increases. 

In the above section, the Distance Degree Sequence, DDS, was considered in 
comparing and ordering graphs. It was shown that graphs having degenerate (i.e., 
identical) DDS, provide degenerate topological indices based on distances in graph. It is 
conceivable that there exist graphs with degenerate All Path Sequence, APS. The idea 
may be extended to the detour degree sequence, ∆DS, all Shortest Path Sequence, SPS , all 
Longest Path Sequence, LPS, as well as to the Terminal Path Sequences, TPS, in graph.  

All these six sequences give information on the graph complexity. They could 
become criteria of similarity, in comparing rather than ordering structures within a set of 
molecules. None of them is unique for a certain structure, that is why they could not be 
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criteria of isomorphism. In the following several selected structures are characterized by 
the above sequences and similarity aspects are discussed. 
 
8.6.1. Graphs with Degenerate Sequences: APS, TPS, DDS and/or ∆DS 

The graphs in Figure 8.11 were published by Diudea et al.93 and Dobrynin et al.94  
The pair G8.31 : G8.32  shows degenerate  APS, DDS and ∆DS  but different TPS. Cluj 
indices calculated on it are degenerated excepting the corresponding reciprocal ones 
(proving the degeneracy came out only at the operational level). Szeged indices solve the 
degeneracy but only the path-calculated indices. Far more useful proved to be the 
Schultz-type indices, as it can be seen in the bottom of Table 8.12.  

The pair G8.33 : G8.34 is reported to have not only the same APS but even the same 
path sequence matrix.94 However, the two graphs show different DDS. This is reflected in 
the different values of Harary index, HDe, despite the degeneracy of the Wiener index 
(i.e., the sum of all distances in graph). This pair also shows degenerate ∆DS, TPS, Cluj 
indices and the classical Szeged index, Sz = IE(SZD). Among the simple indices, only the 
hyper-Szeged index, IP(SZD), solves this pair. The Schultz-type indices I(SCH(M1,A,M3)), 
are again more discriminating ones (boldface, in Table 8.12).  

 

G 8.31 G 8 .32  

 
 

 

Figure 8.11. Graphs with degenerate APS sequence. 

G8.33 G8.34 
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The sequences of the graphs of Figure 8.11 are as follows: 

 
G8.31: 

TPS: 5.14.18.22.22.8.0.0.0 
APS: 10.17.19.19.14.4.0.0.0 
DDS: 10.17.14.4.0.0.0.0.0 

∆DS: 5.2.5.15.14.4.0.0.0 

 
G8.32:  
 
TPS: 5.14.18.22.24.8.0.0.0 
APS: 10.17.19.19.14.4.0.0.0 
DDS: 10.17.14.4.0.0.0.0.0 

∆DS: 5.2.5.15.14.4.0.0.0 

 
G8.33 

TPS:    
0.0.0.48.208.424.176.352.704.1408.2784.4912.8016.11216.13504.12992.6272.0...0 
APS:   
93.186.348.576.848.1164.1680.2848.4672.3208.4080.4152.2544.3304.3200.2976.3136.0. 
DDS:  93.118.84.132.200.274.316.358.248.68.0...0 

∆DS:   13.18.20.24.44.140.48.96.96.192.192.0.0.144.0.288.576.0...0 

G8.34 
TPS:   
0.0.0.48.208.424.176.352.704.1408.2784.4912.8016.11216.13504.12992.6272.0...0 
APS:   
93.186.348.576.848.1164.1680.2848.4672.3208.4080.4152.2544.3304.3200.2976.3136.0. 
DDS:  93.118.84.132.200.274.316.354.260.56.4.0...0 

∆DS:   13.18.20.24.44.140.48.96.96.192.192.0.0.144.0.288.576.0...0 
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Table 8.12. Distance- and Path-Based Indices for the Graphs of Figure 8.11 

I G8.31 G8.32 G8.33 G8.34 

W 102 102 11741 11741 
HDe 24.1667 24.1667 422.9150 422.9120 
w 178 178 23681 23681 

H∆e 14.8833 14.8833 195.1464 195.1464 

     
IP(CFD) 333 333 124897 124897 

IP(RCFD) 14.5401 14.5813 60.91107 60.91107 
IE(CFD) 121 121 16917 16917 
IP(CF∆) 147 147 33491 33491 

IP(RCF∆) 24.3000 24.5000 1182.963 1182.963 
IE(CF∆) 64 64 7821 7821 
IP(CJD) 297 297 120901 120901 

IP(RCJD) 16.1472 16.1885 62.90328 62.90328 
IE(CJD) 121 121 16917 16917 
IP(CJ∆) 147 147 33491 33491 

IP(RCJ∆) 24.3000 24.5000 1182.963 1182.963 
IE(CJ∆) 64 64 7821 7821 

     
IP(SZD) 549 537 922067 929875 
IE(SZD) 121 121 16917 16917 
IP(SZ∆) 631 647 892955 892955 
IE(SZ∆) 121 121 9781 9781 

     
IP(SCH(A ,A ,CFD)) 3255 3279 1504350 1504350 

IP(SCH(A ,A ,CJD)) 2843 2847 1428474 1428474 

IP(SCH(De,A ,CFD)) 177969 178041 20548161320 20553577720 

IP(SCH(De,A ,CJD)) 133837 134529 19810608456 19812619992 

 
 
 
8.6.2. Cycle Complexity 

8.6.2.1. Cycles in  Graphs 

 By visiting the TP structure of a graph it is possible to count the cycles in that 
graph. The procedure works on a List of vertex neighborhood, (VN: Array[0..|V|,0..14]of 
Integer) according to the construction C8.1: 
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Searching for Cycles: 

 
For i:=1, |V| do 
    For each tp ∈ TPG (i) do {each terminal path of vertex i} 
      For j:=1, VN[tp[0],0] do {all neighbors of the last vertex} 
         If VN[tp[0],j]<> tp[tp[0]-1] then {vertex different from the last one} 
     For k:=1 to tp[0]-2 execute {at least 3 vertices in a cycle} 
       If tp[k]=VN[tp[0],j] then {there exist cycles} 
        The vertex sequence tp[k],...,tp[tp[0]] means a cycle  
       EndIf; 
    EndFor; 
         EndIf; 
      EndFor; 
   EndFor; 
EndFor; 

 
 
 
 
 
 

 

 
 
 The above algorithm searches for cycles at the end of TP of a graph. It counts all 
cycles, according to the observation that: “for any cycle there exists a terminal path that 
ends in that cycle”. 
 The list of cycles, provided by the algorithm, may be ordered cf. the cycle length 
and then only the distinct cycles are listed, in increasing ring size order. A sequence of 
cycle  matrix SCy associated with the graph is thus constructed: 

 
 [SCy]i,j  = No. of j-membered cycles traversing vertex  i       (8.45) 

 
A global cycle sequence, CyS, is finally provided: 

  

N3jjCyS
ijij ,...,;][)/1( == ∑ SCy        (8.46) 

 The procedure is exemplified on the graph representing 2 Azabicyclo [ 2, 2, 1 – hept-5-
en-3-one ] (Figure 8.12):  
 Cycle counting as given by the above algorithm is an exact solution of the ring 
perception problem, very similar (but not identical) to the algorithm proposed by 
Balducci and Pearlman.95  
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1

3

6

7

4

5

8
 

   
(1) Unsorted List of Cycles: 

4 5 3 6 7   4 2 1 3 6 7 
4 7 6 3 5   4 7 6 3 1 2 
1 3 6 7 4 2  3 6 7 4 2 1 
3 6 7 4 5   6 3 5 4 7  
1 3 5 4 2   3 5 4 2 1  
2 4 5 3 1   3 1 2 4 5  
4 5 3 6 7   6 3 1 2 4 7 
4 7 6 3 5   4 2 1 3 5  
2 4 7 6 3 1  4 5 3 1 2  
3 6 7 4 5   4 5 3 1 2  
3 1 2 4 5   4 2 1 3 5  
3 5 4 2 1   3 1 2 4 5  
3 6 7 4 5   3 5 4 2 1  
3 6 7 4 2 1  6 3 5 4 7  
4 7 6 3 1 2  3 5 4 2 1  
4 7 6 3 5   3 1 2 4 5  
4 5 3 6 7   6 3 1 2 4 7 
4 5 3 1 2   4 2 1 3 5  
4 2 1 3 5   4 5 3 1 2  
4 2 1 3 6 7        

 
(2) List of Cycles Ordered by Length: 

4 5 3 6 7   4 5 3 1 2  
4 7 6 3 5   4 2 1 3 5  
3 6 7 4 5   3 1 2 4 5  
1 3 5 4 2   3 5 4 2 1  
2 4 5 3 1   6 3 5 4 7  
4 5 3 6 7   3 5 4 2 1  
4 7 6 3 5   3 1 2 4 5  
3 6 7 4 5   4 2 1 3 5  
3 1 2 4 5   4 5 3 1 2  
3 5 4 2 1   1 3 6 7 4 2 
3 6 7 4 5   2 4 7 6 3 1 
4 7 6 3 5   3 6 7 4 2 1 
4 5 3 6 7   4 7 6 3 1 2 
4 5 3 1 2   4 2 1 3 6 7 
4 2 1 3 5   4 2 1 3 6 7 
6 3 5 4 7   4 7 6 3 1 2 
3 5 4 2 1   3 6 7 4 2 1 
3 1 2 4 5   6 3 1 2 4 7 
4 2 1 3 5   6 3 1 2 4 7 
4 5 3 1 2         

 
Figure 8.12.  Cycle counting of 2 Azabicyclo [ 2, 2, 1 – hept-5-en-3-one ], G8.35 

 

G8.35 
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(3) List of Distinct Cycles: 

4 5 3 6 7  
1 3 5 4 2  
1 3 6 7 4 2 

  

(4) Sequence of Cycle Matrix, SCy: 

0 0 0 0 1 1 0 0 
0 0 0 0 1 1 0 0 
0 0 0 0 2 1 0 0 
0 0 0 0 2 1 0 0 
0 0 0 0 2 0 0 0 
0 0 0 0 1 1 0 0 
0 0 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 

 
(5) Cycle Sequence, CyS:  0.0.0.0.2.1.0.0 

 Figure 8.12.  (Continued) 

 
 

Cycle counting can be used as a cycle complexity  criterion, CyC: the increasing 
lexicographic order of  CyS shows the graph with the larger number of smallest rings, 
which is the most complex and symmetrical among a set of isomeric graphs. A CyS can 
be used as a first fingerprint for a cycle -containing graph. 
  

8.6.2.2. Cubic Graphs with Degenerate Sequences SPS, LPS, DDS and/or ∆DS   
but Different Cycle -Count 
 

Figure 8.13. presents a collection of 14 regular cubic graphs (i.e., graphs having 
the degree 3 for all of their vertices) with N = 12 and degenerate sequences SPS , LPS, 
DDS and/or ∆DS  but different TPS,  APS and CyS.  All these graphs show different cycle 
sequences. The ordering of the graphs G8.mn , given by increasing lexicographic ordered 
CyS, is shown in the following array: 
 
CyS  Lexicographic Ordering for the 14 Graphs of Figure 8.13 

8.37.   0.0.0.1.6.12.10.11.22.20.8.1 
8.36.   0.0.0.1.8.6.12.21.12.18.12.1 
8.43.   0.0.0.3.0.20.0.24.0.24.0.1 
8.42.   0.0.0.3.4.8.12.12.20.14.8.1 
8.41.   0.0.0.3.4.8.12.13.22.14.12.1 
8.40.   0.0.0.3.5.5.13.18.15.19.7.1 
8.44.   0.0.0.4.0.16.0.29.0.36.0.1 
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8.47.   0.0.0.4.2.8.14.9.26.10.12.1 
8.48.   0.0.0.4.4.2.16.17.16.14.12.1 
8.49.   0.0.0.4.4.4.12.16.20.16.12.1 
8.45.   0.0.0.6.0.6.12.6.36.6.12.1 
8.46.   0.0.0.6.0.8.0.36.0.36.0.1 
8.39.   0.0.0.0.8.12.8.12.24.20.8.1 
8.38.   0.0.0.0.9.9.9.18.18.18.12.1 

 
All of them are Hamiltonian circuits: they can be drawn on a circle. Cycle 

sequence can be also used as a clustering criterion. Only three of the graphs in Figure 
8.13  show all even-membered cycles (G8.43; G8.44 and G8.46). Note also that G8.46 and 
G8.48 are polyhedra (see also96). 

Half of the graphs in Figure 8.13  are full Hamiltonian detour graphs, FH∆ - (see 
Chap. Cluj Indices) - property that could be another similarity criterion.  
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Figure 8.13. Graphs with degenerate sequences SPS, LPS, DDS and/or ∆DS 
                  but different TPS, APS, and CyS 
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A simple similarity view indicates some clustering of these graphs, as shown 
below: 

 

SPS:  (8.37; 8.49); (8.40; 8.48) 
LPS:  (8.47; 8.49) 
DDS:   (8.36; 8.37);(8.38; 8.39);(8.40; 8.41; 8.42; 8.43) 
∆DS:   (8.37; 8.42); (8.43; 8.44; 8.46) 
DDS&∆DS:      (8.47; 8.48; 8.49) 
FH∆:   (8.36; 8.39; 8.41; 8.45; 8.47; 8.48; 8.49) 

 The sequences and vertex orbits (identified according to the length of all terminal 
paths starting from the vertex i, L(TPG(i))) for the graphs of Figure 8.13 are as follows: 
 

G8.36:   FH∆ 

TPS:  0.0.0.0.0.16.88.184.384.736.464 
APS:  18.36.72.140.236.388.560.676.704.600.232 
SPS:  18.36.28.0.0.0.0.0.0.0.0 
LPS:  0.0.0.0.0.0.0.0.0.0.232 
DDS:  18.34.14.0.0.0.0.0.0.0.0 
∆DS:  0.0.0.0.0.0.0.0.0.0.66 
CyS:  0.0.0.1.8.6.12.21.12.18.12.1 
Vertex Orbits:  {1,2,3,4}; {5,6,7,8}; {9,10,11,12} 

G8.37:  

TPS:  0.0.0.0.0.8.56.216.468.648.488 
APS:  18.36.72.140.246.382.546.698.738.568.244 
SPS:  18.36.38.0.0.0.0.0.0.0.0 
LPS:  0.0.0.0.0.0.0.0.0.20.244 
DDS:  18.34.14.0.0.0.0.0.0.0.0 
∆DS:  0.0.0.0.0.0.0.0.0.2.64 
CyS:  0.0.0.1.6.12.10.11.22.20.8.1 
Vertex Orbits:  {1,2,3,4}; {5,6,7,8}; {9,11}; {10, 12} 

 

 
G8.38:  

 
TPS:  0.0.0.0.0.0.72.216.396.702.504 
APS:  18.36.72.144.243.387.567.693.711.603.252 
SPS:  18.36.27.0.0.0.0.0.0.0.0 
LPS:  0.0.0.0.0.0.0.0.0.45.252 
DDS:  18.36.12.0.0.0.0.0.0.0.0 
∆DS:  0.0.0.0.0.0.0.0.0.3.63 

  CyS:  0.0.0.0.9.9.9.18.18.18.12.1 
Vertex Orbits:  {1,2,3,5,6,8,9,10,11}; {4,7,12} 
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G8.39:    FH∆ 

TPS:  0.0.0.0.0.0.48.240.432.688.496 
APS:  18.36.72.144.248.384.560.704.728.592.248 
SPS:  18.36.32.0.0.0.0.0.0.0.0 
LPS:  0.0.0.0.0.0.0.0.0.0.248 
DDS:  18.36.12.0.0.0.0.0.0.0.0 
∆DS:  0.0.0.0.0.0.0.0.0.0.66 
CyS:  0.0.0.0.8.12.8.12.24.20.8.1 
Vertex Orbits:  {1,2,6,7,8,10,11,12}; {3,4,5,9} 

 
 

G8.40: 
  

TPS:  0.0.0.0.4.28.88.210.420.564.496 
APS:  18.36.72.132.227.375.543.673.690.530.248 
SPS:  18.36.36.0.0.0.0.0.0.0.0 
LPS:  0.0.0.0.0.0.0.0.0.42.248 
DDS:  18.30.18.0.0.0.0.0.0.0.0 
∆DS:  0.0.0.0.0.0.0.0.0.4.62 
CyS:  0.0.0.3.5.5.13.18.15.19.7.1 
Vertex Orbits:  {1,11}; {2,5,7,8}; {3,6,}; {4,9}; {10,12} 

 
G8.41:  FH∆ 

TPS:  0.0.0.0.4.20.80.228.420.580.492 
APS:  18.36.72.132.232.372.536.684.698.536.246 
SPS:  18.36.41.0.0.0.0.0.0.0.0 
LPS:  0.0.0.0.0.0.0.0.0.0.246 
DDS:  18.30.18.0.0.0.0.0.0.0.0 
∆DS:  0.0.0.0.0.0.0.0.0.0.66 
CyS:  0.0.0.3.4.8.12.13.22.14.12.1 
Vertex Orbits:  {1,2,3,5,7,8}; {4,9}; {6,11}; {10,12} 

G8.42:  

TPS:  0.0.0.0.0.16.64.232.400.544.544 
APS:  18.36.72.132.232.372.536.692.696.544.272 
SPS:  18.36.42.0.0.0.0.0.0.0.0 
LPS:  0.0.0.0.0.0.0.0.0.16.272 
DDS  18.30.18.0.0.0.0.0.0.0.0 
∆DS:  0.0.0.0.0.0.0.0.0.2.64 
CyS:  0.0.0.3.4.8.12.12.20.14.8.1 
Vertex Orbits:  {1,2,3,4,5,6,9,11}; {7,8,10,12} 
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G8.43:  H(12,5,-5)* = P(6,1,3)** 

 

TPS:  0.0.0.0.0.0.96.96.672.384.576 
APS:  18.36.72.132.252.360.552.648.816.480.288 
SPS:  18.36.60.0.0.0.0.0.0.0.0 
LPS:  0.0.0.0.0.0.0.0.0.480.288 
DDS:  18.30.18.0.0.0.0.0.0.0.0 
∆DS:  0.0.0.0.0.0.0.0.0.30.36 
CyS:  0.0.0.3.0.20.0.24.0.24.0.1 
Vertex Orbits:  {1,2,3,4,5,6,7,8,9,10,11,12} 

G8.44:  

TPS:  0.0.0.0.8.8.128.128.608.392.536 
APS:  18.36.72.128.240.352.556.632.768.464.268 
SPS:  18.36.56.16.0.0.0.0.0.0.0 
LPS:  0.0.0.0.0.0.0.0.0.464.268 
DDS:  18.28.18.2.0.0.0.0.0.0.0 
∆DS:  0.0.0.0.0.0.0.0.0.30.36 
CyS:  0.0.0.4.0.16.0.29.0.36.0.1 
Vertex Orbits:  {1,2,3,5,6,7,8,11}; {4,9,10,12} 

G8.45: FH∆ 

TPS:  0.0.0.0.24.24.96.288.408.480.456 
APS:  18.36.72.120.216.348.516.708.648.468.228 
SPS:  18.36.48.0.0.0.0.0.0.0.0 
LPS:  0.0.0.0.0.0.0.0.0.0.228 
DDS:  18.24.24.0.0.0.0.0.0.0.0 
∆DS:  0.0.0.0.0.0.0.0.0.0.66 
CyS:  0.0.0.6.0.6.12.6.36.6.12.1 
Vertex Orbits:  {1,2,3,4,5,6,7,8,9,10,11,12} 

 
G8.46:   H(12,3,-3)* 

TPS:  0.0.0.0.24.24.144.144.576.408.456 
APS:  18.36.72.120.216.336.564.624.720.432.228 
SPS:  18.36.48.48.0.0.0.0.0.0.0 
LPS:  0.0.0.0.0.0.0.0.0.432.228 
DDS:  18.24.18.6.0.0.0.0.0.0.0 
∆DS:  0.0.0.0.0.0.0.0.0.30.36 
CyS:  0.0.0.6.0.8.0.36.0.36.0.1 
Vertex Orbits:  {1,2,3,4,5,6,7,8,9,10,11,12} 
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G8.47:  FH∆ 

TPS:  0.0.0.0.8.32.80.252.428.492.504 
APS:  18.36.72.128.230.370.522.694.680.498.252 
SPS:  18.36.46.0.0.0.0.0.0.0.0 
LPS:  0.0.0.0.0.0.0.0.0.0.252 
DDS:  18.28.20.0.0.0.0.0.0.0.0 
∆DS:  0.0.0.0.0.0.0.0.0.0.66 
CyS:  0.0.0.4.2.8.14.9.26.10.12.1 
Vertex Orbits:  {1,3,6,11}; {2,5,7,8}, {4,9}, {10,12} 

 

G8.48:   FH∆;   H(12, 3,6,3)* 

TPS:  0.0.0.0.8.56.80.232.416.520.472 
APS:  18.36.72.128.220.376.536.672.664.496.236 
SPS:  18.36.36.0.0.0.0.0.0.0.0 
LPS:  0.0.0.0.0.0.0.0.0.0.236 
DDS:  18.28.20.0.0.0.0.0.0.0.0 
∆DS:  0.0.0.0.0.0.0.0.0.0.66 
CyS:  0.0.0.4.4.2.16.17.16.14.12.1 
Vertex Orbits:  {1,2,3,5,6,7,8,11}; {4,9,10,12} 

 

G8.49:   FH∆ 

TPS:  0.0.0.0.8.24.88.224.416.520.504 
APS:  18.36.72.128.220.364.540.676.680.512.252 
SPS:  18.36.38.0.0.0.0.0.0.0.0 
LPS:  0.0.0.0.0.0.0.0.0.0.252 
DDS:  18.28.20.0.0.0.0.0.0.0.0 
∆DS:  0.0.0.0.0.0.0.0.0.0.66 
CyS:  0.0.0.4.4.4.12.16.20.16.12.1 
Vertex Orbits:  {1,2,3,4,5,6,9,11}; {7,8,10,12} 

 

* Hamiltonian circuit symbol (see Sect.8.7) 

** Petersen generalized graph (see Sect.8.7) 
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Table 8.13. Distance-and Path-Based Indices for the Graphs of Figure 8.13 

I     G G8.36 G8.37 G8.38 G8.39 G8.40 G8.41 G8.42 G8.43 G8.44 G8.45 G8.46 G8.47 G8.48 G8.49 

W 128 128 126 126 132 132 132 132 136 138 144 134 134 134 
w 726 724 723 726 722 726 724 696 696 726 696 726 726 726 
               

IP(CFD) 1282 1332 1218 1286 1381 1385 1376 1476 1582 1434 1578 1396 1402 1410 
IE(CFD) 358 456 369 418 403 452 476 648 640 450 648 472 374 416 
IP(CF∆) 66 72 75 66 78 66 72 156 156 66 156 66 66 66 
IE(CF∆) 18 18 18 18 18 18 18 18 18 18 18 18 18 18 

               
 IP(CJD) 1152 1168 1134 1146 1202 1210 1242 1338 1360 1242 1452 1238 1222 1226 
IE(CJD) 358 456 369 418 403 452 476 648 640 450 648 472 374 416 
IP(CJ∆) 66 72 75 66 78 66 72 156 156 66 156 66 66 66 
IE(CJ∆) 18 18 18 18 18 18 18 18 18 18 18 18 18 18 

               
IP(SZD) 1258 1294 1218 1246 1358 1376 1408 1536 1572 1458 1696 1418 1394 1406 
IE(SZD) 358 456 369 418 403 452 476 648 640 450 648 472 374 416 
IP(SZ∆) 66 110 120 66 152 66 110 1326 1326 66 1326 66 66 66 
IE(SZ∆) 18 34 36 18 46 18 32 648 648 18 648 18 18 18 

 
From Figure 8.13 and Table 8.13 it can be seen that sequences SPS , LPS, and 

particularly DDS and ∆DS  induce a clustering among the set of these structures. The 
consequence is the degeneracy of indices based on distances and detours, respectively. 
The cluster of  full Hamiltonian detour graphs, FH∆, show a minimal value for the 

detour-based indices: IP(M∆); M = CJ, CF and SZ: 







=

2
)(min

N
?MIP . Also, the 

corresponding edge-computed indices show a minimal value:  

2/3)(min NE?MIE == in cubic graphs. The distance-based Cluj and Szeged 

hyper indices are all different: IP(CJD) ≠ IP(CFD) ≠ IP(SZD). 

 
8.6.3. Families of Graphs with Degenerate Sequences and Rearrangements  

 
8.6.3.1. Spiro-Graphs with Degenerate Sequences 

 
Figure 8.14 illustrates a set of spiro-graphs (i.e., graphs having two simple cycles 

incident in a single collapsed atom). These graphs represent the spiro-copy of the graphs 
G8.27-G8.30. The two families show degenerate sequences, TPS, APS, DDS, ∆DS, and CyS 
for the spiro-family being presented below. It is obvious that a calculation of some 
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chemical distance by using such sequences is impossible. Obviously, the four spiro-
structures are very similar. Moreover, a whole list of TI based on these sequences are 
degenerated (Table 8.14 includes only the distance- and detour-based indices which are 
degenerated). 
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 Figure 8.14. Spiro-graphs with degenerate TPS, APS, DDS , ∆DS, and CyS sequences 
  
The degenerate sequences for the spiro-graphs of Figure 8.14 are as follows: 

 
TPS: 16.40.80.136.200.244.416.496.536.912.1160.1200.1728.1328.448.0...0 
APS: 40.76.128.188.264.356.488.592.768.1056.1248.1360.1408.832.224.0...0 
DDS: 40.76.116.132.120.82.48.16.0...0 
∆DS: 16.4.0.0.0.2.0.0.4.32.72.104.176.164.56.0...0 
CyS:     0.0.0.0.0.4.0.0.0.0.0.15.0...0 
 

 
 

Table 8.14. Topological Indices for the Spiro-Graphs of Figure 8.14. 
 

 Index G8.50 G8.51 G8.52 G8.53 Similarity 
1 W 2624 2624 2624 2624 degenerated 
2 HDe 196.190476 196.190476 196.190476 196.190476 degenerated 
3 w 7856 7856 7856 7856 degenerated 
4 H∆e 66.175980 66.175980 66.175980 66.175980 degenerated 

       
5 IP(CFD) 56732 56736 56740 56732 G8.50 - G8.53 
6  IP(RCFD) 132.450543 132.441500 132.432463 132.450531 discriminated 
7  IP(CF∆) 6064 6064 6064 6064 degenerated  
8  IP(RCF∆) 259.478160 259.367049 259.478160 259.033715  G8.50 - G8.52 
9  IP(CJD) 45408 45408 45408 45408 degenerated  

10  IP(RCJD) 139.544074 139.544098 139.544095 139.544126 discriminated 
11  IP(CJ∆) 5752 5752 5752 5752 degenerated  
12  IP(RCJ∆) 259.858843 259.747732  259.858843 259.414398 G8.50 - G8.52 
 
 

G8.50 G8.51 G8.53 G8.52 
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Table 8.14 (Continued) 

13  IP(SCH(A,A,CFD) ) 717320 717516 717712 717320 G8.50 - G8.53 
14  IP(SCH(A,A,CF∆) ) 79984 79984 79984 79984 degenerated  

15 IP(SCH(A,A,CJD) ) 498708 498712 498712 498716 G8.51 - G8.52 
16 IP(SCH(A,A,CJ∆) ) 74216 74216 74216 74216 degenerated  

17 IP(SCH(A,A,SZD) ) 795024 795032 795032 795040 G8.51 - G8.52 
18 IP(SCH(A,A,SZ∆) ) 682600 682612 682600 682648 G8.50 - G8.52 

       
19 IP(SCH(De,A,CFD)) 1842206288 1843228300 1844250520 1842206400 discriminated 

20 IP(SCH(De,A,CF∆) ) 140244912 140244732 140244672 140244672 G8.52 - G8.53 

21 IP(SCH(De,A,CJD )) 1021397364 1021397421 1021396876 1021398568 discriminated 

22 IP(SCH(De,A,CJ∆) ) 135360880 135360700 135360640 135360640 G8.52 - G8.53 

23 IP(SCH(∆e,A,CFD)) 17815556248 17825108344 17834666560 17815549848 discriminated 

24 IP(SCH(∆e,A,CF∆) ) 1322993536 1322992844 1322993536 1322990768 G8.50 - G8.52 

25 IP(SCH(∆e,A,CJD)) 10099587348 10099580053 10099581748 10099569368 discriminated 

26 IP(SCH(∆e,A,CJ∆) ) 1271920544 1271919852 1271920544 1271917776 G8.50 - G8.52 

       
27 IP(SCH(De,A,SZD)) 3169720572 3169684668 3169689676 3169638748 discriminated 

28 IP(SCH(De,A,SZ∆ )) 2484822748 2484806956 2484852940 2484699196 discriminated 

29 IP(SCH(∆e,A,SZD)) 28437624492 28437008460 28437077836 28436253676 discriminated 

30 IP(SCH(∆e,A,SZ∆) ) 22416183548 22415626044 22416183548 22413953532 G8.50 - G8.52 

 
 
 
 

A very interesting behavior is shown the Cluj and Szeged indices, both as basic 
indices and as Schultz-type composite indices (Table 8.14). Indices induce different 
clustering  within this set (indicated in the last column of Table 8.14). Only the reciprocal 
Cluj-distance indices, among the basic indices, discriminated the whole set (boldface 
values). Among the composite indices, those constructed on distance were more 
discriminating than those based on detours or adjacency. Since different indices induce 
different clustering, the occurrence of one or another cluster may be used in drawing the 
similarity in a set of structures, anyhow, very related. 

Despite the degeneracy of TPS, the length of all terminal paths starting from the 
vertex i,  L(TPG(i)), (as LTP descriptor, in Table 8.15) succeeded in separating the orbits 
of equivalent vertices in all these structures. 
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    Table 8.15. Vertex Orbits VO's, of the Graphs of Figure 8.14 and Their LTP Values. 

 
G8.50 G8.51 G8.52 G8.53 

VO LTP VO LTP VO LTP VO LTP 
{1,4,9,14} 1817 {4} 

{14} 
{1} 
{9} 

1724 
1789 
1845 
1910 

{4} 
{1,9} 
{14} 

1752 
1817 
1882 

{4,14} 
{1,9} 

1696 
1938 

        
{2,7,12,17} 
{3,8,13,18} 
{5,10,15,20} 
{6,11,16,19} 

2598 
2701 
2914 
2932 

{2} 
{8} 
{17} 
{12} 
{3} 
{18} 
{7} 
{13} 
{5} 
{6} 
{20} 
{11} 
{10} 
{19} 
{15} 
{16} 

2578 
2590 
2598 
2610 
2689 
2701 
2709 
2721 
2902 
2912 
2914 
2922 
2924 
2932 
2934 
2944 

{2,8} 
{13,17} 

{3,7} 
{12,18} 
{5,11} 
{6,10} 

{16,20} 
{15,19} 

2578 
2610 
2689 
2721 
2902 
2912 
2934 
2944 

{2,8,12,18} 
{3,7,13,17} 
{5,11,15,19} 
{6,10,16,20} 

2590 
2709 
2922 
2924 

        
{21,22,25,26, 
29,30,33,34} 

 

{23,27,31,35} 
{24,28,32,36} 

2840 
2952 
3182 

{21,22} 
{26,27} 
{33,34} 
{29,30} 

{36} 
{23} 
{35} 
{25} 
{31} 
{24} 
{28} 
{32} 

2818 
2832 
2840 
2854 
2914 
2938 
2952 
2960 
2974 
3168 
3190 
3204 

{21,22,26,27} 
{30,31,33,34} 

{23,25} 
{29,35} 
{24,28} 
{32,36} 

2818 
2854 
2938 
2974 
3168 
3204 

{21,22,26,27, 
29,30,34,35} 

 

{23,25,31,33} 
{24,28,32,36} 

2832 
2960 
3190 

 
 
 
 

8.6.3.2. Spiro-Graphs with Degenerate Rearrangements 
 

 Again the terminal paths proved to be useful descriptors in separating the vertex 
orbits and again the spiro-graphs (Figure 8.15) show interesting properties. Thus, the 
graph G8.54-a may be viewed as a knot in 3D optimized geometry (G8.54-b). In a 3D 
configuration, G8.55_a  looks  like G8.55_d  (a true catenand). 
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 By crossing two edges, say G8.54-a {(2,5); (9,12)} results in G8.55(a) {(5,20); 
(2,19)}. This last graph, by a further crossing process: G8.55_a {(7,9); (16,15)} 
G8.55_b {(7,15); (9,16)} lead to the isomorphic graph G8.55_b. The renumbering of G8.55_b 
offers a labeling (as in G8.55_c) that preserves the connectivity in G8.55_a. Thus G8.55_c is 
automorphic with G8.55_a. In other words, the crossing process G8.55_a               G8.55_b 
represents a  degenerate rearrangement. 
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Figure 8.15. Spiro-graphs and a degenerate rearrangement 
G8.55_a {(7,9);(16,15)}              G8.55_b {(7,15);(9,16)} 

 
The sequences and vertex orbits (identified according to the length of all terminal 

paths starting from the vertex i, L(TPG(i))) for the spiro-graphs of Figure 8.15 are as 
follows: 
 
    G8.54 

TPS:   0.0.0.0.16.16.16.16.48.48.160.224.224.0.0.0.0.0.0 
APS:   24.40.56.72.120.144.160.240.320.336.480.448.224.0...0 
DDS:   24.40.44.32.32.18.0.0.0.0.0.0.0.0.0.0.0.0.0 
∆DS:   0.0.0.0.0.2.0.0.4.32.40.56.56.0.0.0.0.0.0 
CyS:   0.0.0.0.0.4.0.0.0.0.0.16.0.0.0.0.0.0.0.0 

Vertex Orbits:    {1,6,10,14}; (2,3,4,5,7,8,9,11,12,13,15,16,17,18,19,20} 
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G8.55 

TPS:   0.0.0.0.8.8.8.56.72.72.120.216.216.0.0.0.0.0.0 
APS:   24.40.56.72.120.156.188.300.340.324.420.432.216 
DDS:   24.40.50.52.24.0.0.0.0.0.0.0.0.0.0.0.0.0.0 
∆DS:   0.0.0.0.0.0.0.0.6.16.56.28.84.0.0.0.0.0.0 
CyS:   0.0.0.0.0.2.0.0.8.0.0.9.0.0.0.0.0.0.0.0 

Vertex Orbits: {1,6,10,14};{2,3,4,5,12,13,19,20}; {7,8,9,11,15,16,17,18} 

 

8.6.3.3. A Family of FH∆ Cubic Graphs  

 
 Figure 8.16 illustrates a collection of cubic graphs, (in projection, 8.16 (a) and as 
3D view, 8.16 (b)) whose point molecular symmetry is C3V (the first three) and C1 (the 
last two). Note that the structure G8.57, was published by Diudea et. al.97 in the G8.57-c  

representation (Figure 8.17). Also note that G8.56  is a polyhedron (see G8.56-b and also96). 
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Figure 8.16.a. A family of FH∆ cubic graphs ( projection ) 
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Figure 8.16.b. A family of FH∆ cubic graphs (3D view)  

 

The sequences and vertex orbits (identified according to the length of all terminal 
paths starting from the vertex i, L(TPG(i))) for the spiro-graphs of Figure 8.16 are as 
follows: 
 

G8.56  

TPS: 0.0.0.0.0.36.84.156.396.708.1332.2166.2364.2544.1212 
APS: 24.48.96.180.318.576.975.1569.277.973.1519.1573.844.1878.606 
SPS: 24.48.54.42.0.0.0.0.0.0.0.0.0.0.0 
LPS: 0.0.0.0.0.0.0.0.0.0.0.0.0.0.606 
DDS: 24.42.39.15.0.0.0.0.0.0.0.0.0.0.0 
∆DS: 0.0.0.0.0.0.0.0.0.0.0.0.0.0.120 
CyS: 0.0.0.3.6.1.9.18.31.48.39.46.54.30.16.1 
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G8.57  

TPS: 0.0.0.0.0.0.36.108.216.696.1560.2220.2820.3132.1308 
APS: 24.48.96.192.354.636.1086.1668.352.1288.1936.1784.1336.172.654 
SPS: 24.48.66.0.0.0.0.0.0.0.0.0.0.0.0 
LPS: 0.0.0.0.0.0.0.0.0.0.0.0.0.0.654 
DDS: 24.48.48.0.0.0.0.0.0.0.0.0.0.0.0 
∆DS: 0.0.0.0.0.0.0.0.0.0.0.0.0.0.120 
CyS: 0.0.0.0.6.7.12.27.28.24.54.76.54.36.16.1 

 

G8.58  

TPS: 0.0.0.0.0.12.36.108.384.654.1404.2370.2328.2808.1380 
APS: 24.48.96.180.333.621.1011.1557.280.1066.1780.1724.1018.430.690 
SPS: 24.48.69.0.0.0.0.0.0.0.0.0.0.0.0 
LPS: 0.0.0.0.0.0.0.0.0.0.0.0.0.0.690 
DDS: 24.42.54.0.0.0.0.0.0.0.0.0.0.0.0 
∆DS: 0.0.0.0.0.0.0.0.0.0.0.0.0.0.120 
CyS: 0.0.0.3.3.1.21.21.16.42.42.52.60.24.16.1 

 

G8.59  

 

TPS: 0.0.0.0.0.0.0.48.240.816.1572.2346.2796.2910.1548 
APS: 24.48.96.192.369.657.1071.1683.430.1354.817.1151.1387.181.774 
SPS: 24.48.81.0.0.0.0.0.0.0.0.0.0.0.0 
LPS: 0.0.0.0.0.0.0.0.0.0.0.0.0.0.774 
DDS: 24.48.48.0.0.0.0.0.0.0.0.0.0.0.0 
∆DS: 0.0.0.0.0.0.0.0.0.0.0.0.0.0.120 
CyS: 0.0.0.0.3.11.21.15.18.39.66.69.48.33.16.1 

 
G8.60  

 

TPS: 0.0.0.0.0.0.12.132.276.576.1344.2436.2928.2748.1512 
APS: 24.48.96.192.354.612.1056.1716.370.1168.1822.1258.1366.210.756 
SPS: 24.48.66.48.0.0.0.0.0.0.0.0.0.0.0 
LPS: 0.0.0.0.0.0.0.0.0.0.0.0.0.0.756 
DDS: 24.48.36.12.0.0.0.0.0.0.0.0.0.0.0 
∆DS: 0.0.0.0.0.0.0.0.0.0.0.0.0.0.120 
CyS: 0.0.0.0.6.11.6.15.48.33.30.69.72.36.16.1 

 
Vertex Orbits: {1}; {2,6,9}; {3,4,7,10,13,14}; {5,8,11,12,15,16} 
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All graphs shown in Figure 8.16 are well discriminated both by sequences (see 
above) and topological (2D) indices (Table 8.16): IP(CJD) ≠ IP(CFD) ≠ IP(SZD). All 
these graphs have the same vertex orbit structure (see above). The pair G8.57 : G8.59  shows 
degenerate DDS and, of course the corresponding Wiener and Harary degenerate indices. 
For this pair, the SPS is not degenerated. This family represents a cluster among the cubic 
cages with 16 vertices and girth 46 (i.e., the smallest circuit in a cage) ≥4: they all are FH∆ 
graphs, with degenerate ∆DS  and degenerate indices based on detours. The LPS fully 
discriminates among these structures. 

As shown above, the FH∆ graphs show a minimal value for the detour-based 

indices: IP(M∆); M = CJ, CF and SZ, 







=

2
)(min

N
?MIP  and the corresponding edge-

computed indices show a minimal value, in these cubic graphs,  
2/3)( NE?MIEmin == .  

 
 

Table 8.16. Topological Indices for the Graphs of Figure 8.16. 
 

I G8.56 G8.57 G8.58 G8.59 G8.60 

W 285 264 270 264 276 
HDe 61.7500 64.0000 63.0000 64.0000 63.0000 
w 1800 1800 1800 1800 1800 

H∆e 7.9999 7.9999 7.9999 7.9999 7.9999 
      

IP(CFD) 4692 4059 4035 4050 4476 
IE(CFD) 942 804 981 981 1149 
IP(CF∆) 120 120 120 120 120 
IE(CF∆) 24 24 24 24 24 

      
IP(CJD) 4194 3558 3408 3576 4146 
IE(CJD) 942 804 762 981 1149 
IP(CJ∆) 120 120 120 120 120 
IE(CJ∆) 24 24 24 24 24 

      
IP(SZD) 4848 4098 4002 4104 4734 
IE(SZD) 942 804 762 981 1149 
IP(SZ∆) 120 120 120 120 120 
IE(SZ∆) 24 24 24 24 24 

 

As they represent a family is supported by the structure of their edge orbits of 
automorphism (Table 8.17 - as given by MOLORD algorithm).  
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Table 8.17. Edge Orbits of Automorphism of the Graphs of Figure 8.16. 

G A B C D E F 
G8.56 (1,2),  

(1,6), 
 (1,9) 

(3,13), 
(4,14), 
(7,10) 

(5,8), 
(11,12), 
(15,16) 

(5,11), 
(8,16), 
(12,15) 

 

(2,3), 
(2,4), 
(6,7), 

(6,14), 
(9,10), 
(9,13) 

(3,11), 
 (4,5), 
 (7,16), 
(8,14), 
(10,15), 
(12,13) 

 
G8.57 (1,2), 

 (1,6),  
(1,9) 

(3,13), 
(4,14), 
(7,10) 

(5,8), 
(11,12), 
(15,16) 

(5,11), 
(8,16), 
(12,15) 

 

(2,3), 
(2,4), 
(6,7), 

(6,14), 
(9,10), 
(9,13) 

(3,5), 
(4,11), 
(7,8), 

(14,16), 
(10,12), 
(13,15), 

 
G8.58 (1,2),  

(1,6),  
(1,9) 

(3,13), 
(4,14), 
(7,10) 

(5,8), 
(11,12), 
(15,16) 

(5,11), 
(8,16), 
(12,15) 

 

(2,3), 
(2,4), 
(6,7), 

(6,14), 
(9,10), 
(9,13) 

(3,12), 
(11,13), 

(4,8), 
(5,14), 
(7,15), 
(10,16) 

 
G8.59 (1,2),  

(1,6),  
(1,9) 

 (5,8), 
(11,12), 
(15,16) 

(3,5), 
(4,11), 
(7,8), 

(14,16) 
(10,12), 
(13,15) 

(2,13), 
(3,9), 

(2,14), 
(4,6), 

(6,10), 
(7,9) 

(3,12), 
(11,13), 

(4,8), 
(5,14), 
(7,15), 
(10,16) 

 
G8.60 (1,2),  

(1,6),  
(1,9) 

 (5,8), 
(11,12), 
(15,16) 

 (2,3), 
(2,4), 
(6,7), 

(6,14), 
(9,10), 
(9,13) 

(3,12), 
(11,13), 

(4,8), 
(5,14), 
(7,15), 
(10,16) 
(3,5), 

(4,11), 
(7,8), 

(14,16), 
(10,12), 
(13,15) 

 

 
 
It can be seen that, for the first three graphs, G8.56 to G8.58, the orbits denoted by A 

to E are identical. Only the orbit F is different. These three graphs may be called basic 
members of the family. 
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The two remaining graphs   may be viewed as derivative members since G8.59  
shows a combination of the F orbits of  G8.57  and G8.58  with a new orbit E,  while G8.60 

represent a different combination of the same  F orbits but preserving the E orbit of the 
basic members of family.  The structure of edge orbits was confirmed by calculating the 
Wiener index of rank 3 on the distance matrix of their line graphs, 3WD(L1). Any other 
mixing of the edge orbits (i.e., changing in their connectivity) provides graphs no more 
belonging to the family of  FH∆ graphs with girth ≥ 4. 
 Another nice property is encountered in G8.57  : the degenerate rearrangements 
(Figure 8.17). Note that it is the unique member of this family showing such a property. 
The crossing process herein considered was monocrossing (i.e., a pair of edges 
interchange one of the two endpoints while the other one remain as an already existing 
edge belonging to a different orbit – see below) and triplecrossing (i.e., three pairs of 
edges are interchanged as above mentioned). The trivial full crossing (possible in all basic 
members of family) was not considered. 
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1
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8
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Figure 8.17. Degenerate rearrangements of G8.57  

 
 
The degenerate rearrangements of G8.57 are as follows: 
 

(1)  Monocrossing: G8.57 (D/C)           G8.57   

(the boldface pairs are edges belonging to the C orbit) 
 

(a) 
)16,()16,(
)11,()11,(

58
85

→
→

     (b) 
)15,()15,(

),5(),(
1112

1211
→
→5

    (c) 
),(),(
),(),12(

1516
1615

88
12

→
→

 

 
 
 
 
 

G8.57_c  G8.57_d  G8.57_e  
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(2) Triplecrossing:  
 
(a) G8.57 (F/B)             G8.57   

(the boldface pairs are edges belonging to the B orbit) 
 

      
)12,()12,()16,()()15,()15,(
),8()(),11()(),5()(

710414313
107144133

→→→
→→→

,16
,8,11,5

 

 
 
(b) G8.57 (E/B)            G8.57  

(the boldface pairs are edges belonging to the B orbit) 

)(),9()6,(),6()9,(),9(
),6(),6(),2(),2(),2(),2(

,9710414313
107144133

→→→
→→→

 

 

The graph G8.57-d (Figure 8.17) represents the monocrossing rearrangement (1, c) 
and G8.57-e denotes the triplecrossing rearrangement (2, b). 

When the Manhattan distance, DM, was evaluated by using the calculated 
sequences, the dissimilarity (increasing) ordering was as follows: 

 
 

Table 8.18. DM of Structures of Figure 8.16, by TPS 
 

 G8.57 G8.58 G8.59 G8.60 
G8.56 873 465 1023 867 

G8.57    0 708 432 678 

G8.58     0 672 582 

G8.59      0 510 
 

Increasing dissimilarity ordering is:   (G8.57  - G8.59), (G8.56 - G8.58),  

(G8.59  - G8.60), (G8.58 - G8.60), (G8.58 - G8.59), (G8.57   - G8.60), (G8.57  - G8.58),  

(G8.56  - G8.60), (G8.56 - G8.57), (G8.56  - G8.59).  
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   Table 8.19. DM of Structures of Figure 8.16, by APS 

 G8.57 G8.58 G8.59 G8.60 
G8.56 3582 2322 4420 3558 

G8.57      0 1356 2142 1050 

G8.58       0 2946 1580 

G8.59        0 1534 
 

Increasing dissimilarity ordering is: (G8.57  - G8.60), (G8.57  - G8.58),  

(G8.59  - G8.60), (G8.58 - G8.60), (G8.57  - G8.59), (G8.56 - G8.58), (G8.58  - G8.59),  

(G8.56  - G8.60), (G8.56 - G8.57), (G8.56  - G8.59).  
 

    Table 8.20 DM of Structures of Figure 8.16, by SPS 

 G8.57 G8.58 G8.59 G8.60 
G8.56 54 57 69 18 

G8.57  0  3 15 48 

G8.58   0 12 51 

G8.59    0 63 
 

Increasing dissimilarity ordering is: (G8.57  - G8.58), (G8.58  - G8.59),  

(G8.57  - G8.59), (G8.56 - G8.60), (G8.57  - G8.60), (G8.58 - G8.60), (G8.56  - G8.57), 

(G8.56  - G8.58), (G8.59  - G8.60), (G8.56  - G8.59).  
 

   Table 8.21. DM of Structures of Figure 8.16, by DDS 

 G8.57 G8.58 G8.59 G8.60 
G8.56 30 30 30 12 

G8.57  0 12 0 24 

G8.58   0 12 36 

G8.59    0 24 
 

Increasing dissimilarity ordering is: (G8.57  = G8.59), (G8.57  - G8.58),  
(G8.58  - G8.59), (G8.56 - G8.60), (G8.57  - G8.60), (G8.59 - G8.60), (G8.56  - G8.57),  
(G8.56  - G8.58), (G8.56 - G8.59), (G8.58  - G8.60).  
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                              Table 8.22. DM of Structures of Figure 8.16, by CyS 

 G8.57 G8.58 G8.59 G8.60 
G8.56 99   60 112 107 

G8.57  0 111   81 100 

G8.58     0   86 131 

G8.59      0 117 
 

Increasing dissimilarity ordering is:  (G8.56 - G8.58), (G8.57  - G8.59),  

(G8.58  - G8.59), (G8.56 - G8.57), (G8.57  - G8.60), (G8.56 - G8.60), (G8.57  - G8.58),  

(G8.56  - G8.59), (G8.59 - G8.60), (G8.58  - G8.60).  
 
By following the occurrence of graphs within the above pair ordering, the most 

dissimilar three graphs according to each sequence are:  TPS (G8.56 , G8.57, G8.60); APS 
(G8.56 , G8.58 , G8.59); SPS (G8.56 , G8.59 , G8.60); DDS (G8.56 , G8.58 , G8.60) and CyS (G8.58 , 
G8.59 , G8.60), with the most dissimilar three graphs cf. to all five criteria: G8.56 , G8.59 and 
G8.60 . Conversely, the most similar pair is G8.57 -G8.58. In a larger set of structures such 
an analysis would be, of course, more reliable. 

For other aspects about symmetry and similarity in molecular graphs, the reader 
can consult refs.1, 98-102  

 
 

8.7.  HIGHLY  SYMMETRIC  STRUCTURES 
 

 A molecular structure having all substructures of a given dimension (i.e., the 
number of its edges e) equivalent is called a structure Se transitive. Thus, a transitive 
structure shows a single orbit of the fragments of  dimension e.103 

 The present section refers to the topological symmetry of some geometrical 
structures, irrespectively they were already synthesized or are only paper molecules. 
 In the last two decades, the synthesists have made considerable efforts for 
building, at molecular level, highly symmetric geometric structures, in the hope that the 
Euclidean symmetry must induce unexpected molecular properties. Platonic polyhedra: 96, 

104 tetrahedron, cube, prism and dodecahedron have been synthesized. In the last years, 
the fullerenes (polyhedra having faces of five and six atoms) have opened a wide field of 
research. Many articles deal with the synthesis and  functionalization of fullerenes, but 
also with related theoretical aspects (quantum chemical or topological calculations).  
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Dendrimers, hyper-branched structures, with spherical shape and strictly tailored 
constitution represent another new field of interest for the scientists also referred to as 
supramolecules. They can be functionalized and used for simulating enzymatic reactions 
(i.e., host-guest  reactions105 ). 
 As a tool for the symmetry perception the MOLORD algorithm43, 53, 106 was 
chosen. The Layer matrices on which the indices are computed, are given (when needed) 
in line form. 
 
 
8.7.1. Cube Orbits of Automorphism 

 

 Cube is a polyhedron having 8 vertices and 12 edges all equivalent (i.e., 
characterized by the same graph-theoretical parameter). Moreover, subgraphs of two 
edges are topologically indistinguishable. Only the fragments of three edges (and larger) 
can be separated. Thus, the cube is a structure S0 , S1 and S2 transitive. Figure 8.18 shows 
the cube orbits of automorphism, with respect to three edge fragments: a{8}; b{24} and 
c{24} (the number of equivalent fragments given in brackets). Representative fragments 
are depicted by bold line. 
 Values of the indices C(LDS)i and X(LDS)i are written under the corresponding 
structures. The ordering is here less important. 

In opposition to the cube, the Möbius cube (Figure 8.18) is only S0 transitive. Its 
edges (n = 1) show two orbits : a{8} and b{4}. Fragments of two edges (n = 2) show two 
orbits: a{8} and b{4}. Fragments of three edge (n = 3) show 6 orbits: a{8}; b{8}; c{16}; 
d{8}; e{8} and f{8}. 
 The values of indices for the fragments of three edges were derived from the L4 
line graph, since the index X(LDS)i  does not discriminate between the fragments of type 
e and f. These fragments each represent only four distinct (i.e., real) fragments in L0. Of 
course, other layer matrices and other descriptors may be used for better discriminating of 
fragments. 
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Cube:   n = 3; m = 3. 

                                 
                a{8}                                   b{24}                                  c{24} 

    C(LDS)i    0.0913954                     0.0353079                       0.0942267 
                 X(LDS)i    0.1752666                     0.0605440                       0.1296610 

 

Möbius cube; 
    n = 1;  m = 1.    n = 2;  m = 2. 
 

              
 

     a{8}                b{4}        a{8}               b{16} 

            C(LDS)i    0.2394121     0.1535427                          0.0963721    0.0942267 
            X(LDS)i    0.2213018     0.2097303                          0.1325248    0.1296610 

 
 n = 3;  m = 4. 

a{8}                    b{8}                  c{16}

d{8}                 e{8}                   f{8}
 

  
 
 
 
 

Figure 8.18. Fragments of cube and Möbius cube and local values SIm(in) 
cf.  MOLORD algorithm (fragment occurrence in brackets).  

   C(LDS)i      0.1268254         0.0450731       0.0449867 
   X(LDS)i      0.2165225         0.0774384       0.0773797 

C(LDS)i     0.0403467          0.0394806        0.0394582 
X(LDS)i     0.0765613          0.0781188        0.0781098 
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8.7.2. Homeomorphic Transforms of Tetrahedron 

 
 An insertion of vertices of degree two on the edges of a graph is called a 
homeomorphic transform.46 In molecular graphs such a transformation can be achieved 
by various fragments: -CH2- (methylene), -CH2-CH2- (ethylene) etc. and it results in the 
lowering of the strain energy of small rings. Figure 8.19 illustrates some possible 
homeomorphic transforms of tetrahedron (another Platonic solid104), which, completed by 
additional connections, could lead to highly symmetric structures. Similar reactions are 
suggested in Figure 8.20, starting from the Schlegel projection of tetrahedron. 

Note that some of the intermediates appearing in Figures  8.19 and 8.20 are real 
chemical compounds. Among these, adamantane is considered the stabilomere in the 
series of C10 cyclic hydrocarbons.107 As a molecular graph, adamantane shows two vertex 
orbits: a{4} and b{6} but its edges are all equivalent (see its line graph  L1, in  Figure 
8.21), the graph being S1 transitive. On the other hand, adamantane is a bipartite graph, so 
it is not surprising that its edges are equivalent whereas its vertices are not. The 
equivalence of edges (i.e., covalent bonds) in six member rings (practically without 
tension), condensed by following the tetrahedron faces (see Figure 8.19) explains the 
exceptional stability of adamantane. 
 
 
 
        
 
  

        LDS:  12 [23,69,92,92] 
        L6SRW:   12 [93,279,372,372] 

    

Figure 8.21. Line graph L1 of adamantane and its matrices LDS and LeSRW. 
 
 
 
 
8. 7. 3. Other Routes for Some Highly Symmetric Structures 

 
 Successive transforms of the Möbius cube (Figure 8.22) could lead to the well 
known, symmetric, graphs: Petersen108 and Heawood,109 respectively. Their actual 
pictorial representation is Möbius cube patterned. 
 
 

 

G8.61 
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    Figure 8.19. Homeomorphic transforms of tetrahedron. 

 
 

3x1 vertices 1 vertex
3 edges

 

                            Tetrahedron              Cube 

3x2 vertices 3 edges

 

           Triciclo[5.2.1.04,10] decane    Petersen graph 
 

3x3 vertices 1 vertex
3 edges

 
                        Heawood graph 

 

Figure 8.20. Homeomorphic transforms of tetrahedron (Schlegel projections). 

 → vertices2

 → vertices4

 → vertices6

 → edge1

 → edges2

 → edges3

Möbius prisme 

Möbius cube 

Petersen graph Adamantane 
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Figure 8.22. Homeomorphic transforms of Möbius cube. 
 
 

Furthermore, the Heawood graph can be derived from the cube and the 
diamantane, a hydrocarbure obtained by condensing two adamantane units, 110  as shown 
in  Figure  8.23. 
 

 

 
 
 

 

Figure 8.23. Synthesis of Heawood graph. 
 
 
 

From Figures 8.19-8.23 it is obvious that the retrosynthesys of chemical 
structures eventually based on the Peterson and Heawood graphs could follow various 
ways and various intermediates. 
 

Möbius cube Petersen graph 

     Heawood graph 

  Heawood graph 

  Diamantane   Heawood graph 
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Finally, the célebre Desargues-Levi graph,111 used as a reaction graph,96 is 
presented. Diudea47 proposed its derivation from a tetramantane. Figure 8.24 shows this 
synthesis and the Desargues-Levi graph designed by Randic, as two interlocked 
adamantanes.  
 

 
 
 
 
 

           Desarues-Levi                 Desargues- 
              
     
    Tetramantane Desargues-Levi graph 
     Diudea  representation         Randic representation 

   
Figure 8.24.  Synthesis of Desargues-Levi graph from  tetramantane. 

 
Petersen and Heawood graphs, together with  two of  generalized Petersen graphs 

(see below) are illustrated in Figure 8.25.  Their characterization according to the 
sequences (see Sect. 8.6) and vertex orbits is further presented.  

  
 

  

7

6

1

2

3

45

8

9

10

1112

13

14

 

Petersen Graph 
P(5,2) = P(5,3) 

Heawood Graph 
H(14,5,-5) 

P( 7,2) = P( 7,5)  

= P( 7,3) = P( 7,4) 

 

   

(a) (b) (c) 

Desargues-Levi Graph (a - c)    =     P(10,3) 

 

Figure 8.25. Highly symmetric graphs. 

 
 

 

4 edges 
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 The sequences of the graphs shown in Figure 8.25 are as follows: 
 
Petersen Graph = P(5,2) = P(5,3) 

TPS:   0.0.0.0.0.0.120.360.240 
APS:   15.30.60.120.180.240.300.300.120 
DDS:   15.30.0.0.0.0.0.0.0 
∆DS:   0.0.0.0.0.0.0.15.30 
CyS:   0.0.0.0.12.10.0.15.10.0 
Vertex Orbits:  {all vertices} 

  

Heawood Graph = H(14,5,-5) 

TPS:   0.0.0.0.0.0.0.0.672.672.1680.1008.1008 
APS:   21.42.84.168.336.504.840.1176.1680.1680.56.1008.504 
DDS:   21.42.28.0.0.0.0.0.0.0.0.0.0 
∆DS:   0.0.0.0.0.0.0.0.0.0.0.42.49 
CyS:   0.0.0.0.0.28.0.21.0.84.0.28.0.1 
Vertex Orbits:  {all vertices} 
 

Generalized Petersen Graph, P(7,2) = P(7,5) = P(7,3) = P(7,4) 
       H(14,6,-4,5,7,-5,4,-6,-5,4,-4,-7,4,-4,5) 

 

TPS:   0.0.0.0.0.0.56.84.392.826.1120.1512.840 
APS:   21.42.84.168.301.525.826.1148.1582.868.1596.1176.420 
DDS:   21.42.28.0.0.0.0.0.0.0.0.0.0 
∆DS:   0.0.0.0.0.0.0.0.0.0.0.0.91 
CyS:   0.0.0.0.7.7.16.21.14.35.42.28.14.1 
Vertex Orbits:  {1,2,3,4,5,6,7}; {8,9,10,11,12,13,14} 
 

Desargues-Levi Graph = P(10,3) 

TPS:        
0.0.0.0.0.0.0.0.240.240.1440.1200.6240.6480.14160.10080.17760.7440.4560 
APS:        
30.60.120.240.480.840.1560.80.2000.1600.80.520.680.2000.1720.2160.2080.880.2280 
DDS:        30.60.60.30.10.0.0.0.0.0.0.0.0.0.0.0.0.0.0 
∆DS:       0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.90.100 
CyS:        0.0.0.0.0.20.0.30.0.132.0.150.0.420.0.300.0.100.0.1 
Vertex Orbits:     {all vertices} 
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A generalized Petersen graph,112, 113 denoted P(n,j), is a cyclic comb graph, 
composed of a cycle Cn and n branches of unit length. By joining all the terminal vertices 
of the comb graph with their (clockwise) jth neighbors one obtains the P(n,j) graph. In this 
notation, the original Petersen graph is P(5,2) = P(5,3). It is a S5 transitive graph, showing 
various geometric symmetries, function of its pictorial representation.114 For example, the 
representation in Figure 8.25 the apparent symmetry is D5h. It is neither a FH∆ graph, 
nor a Hamiltonian circuit graph (see below).  

A Hamiltonian wheel graph, denoted  H(n,j),113 is constructed by periodic joining 
of n points of a cycle graph, Cn, clockwise or anticlockwise. In this notation, the 
Heawood graph is H(14, 5,-5). Some Petersen generalized graphs, such as P(7,2) (= P(7,5) = 
P(7,3) = P(7,4) ), are at the same time Hamiltonian wheel graphs (possess N-membered 
circuits - see CyS, in Figure 8.25), such as they may be symbolized like the Heawood 
graph. However, in many cases, as in the case of P(7,2), such a symbol is cumbersome. 
This graph is the single FH∆ graph in Figure 8.25.  

The Desargues-Levi Graph111 (Figure 8.25, a - c) is another example of 
generalized Petersen graph, symbolized as  P(10,3). It is also an S5 transitive graph. Its 
cycles are all even-membered ones. 
 For these graphs, Table 8.23 includes the values of most important topological 
indices used in this book.  

 

Table 8.23. Topological Indices of Some Highly Symmetric Graphs 

I Petersen Heawood P(7,2) Desargues-Levi 

W 75 189 189 500 
HDe 30.0000 51.3334 51.3334 89.5000 
w 390 1141 1183 3520 

H∆e 5.2083 7.2692 7.0000 10.2632 
     

IP(CFD) 405 2415 2499 11740 
IE(CFD) 135 1029 602 3000 
IP(CF∆) 90 217 91 460 
IE(CF∆) 60 60 21 30 

     
IP(CJD) 405 2415 2177 11410 
IE(CJD) 135 1029 602 3000 
IP(CJ∆) 90 217 91 460 

IE(CJ∆) 60 60 21 30 
     

IP(SZD) 405 2779 2429 13240 
IE(SZD) 135 1029 602 3000 
IP(SZ∆) 405 2443 91 10090 
IE(SZ∆) 135 1029 21 3000 
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Chapter 9  
 
 
 

ELEMENTS  OF  STATISTICS 
 

 
 The design of molecular structures with desired physico-chemical or biological 
properties is the major target of the molecular topology. An insight of a set of molecules 
could reveal the crucial factors involved in the structure-property relationship. 
 This is performed by the aid of some molecular descriptors (e.g., topological 
indices) and/or the regression analysis, within various models (i.e., algorithms). The 
results of this analysis have a diagnostic meaning (e.g., the partitioning of a molecular 
property into fragmental contributions to a computed global property) and a prognostic 
one (e.g., the estimation of a molecular property from some fragmental mathematical or 
physico-chemical properties). The topological characterization of the chemical structures 
allows their classification according to some similarity criteria. The regression analysis is 
based on some basic statistics. 
 
 

9.1.  ELEMENTARY  CONCEPTS 
 
 Elementary statistical concepts providing the necessary foundations1 for more 
specific expertise in any area of statistical data analysis are briefly discussed.  
 Because of space limitations, the reader is invited to consult more detailed 
textbooks.2-5 

 

9.1.1 Mean values 

Let X be a string of n values X1, X2, …, Xn. The following main indicators are 
most used: 
Arithmetic mean AM (X) is the number calculated by: 
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Geometric mean GM(X) is obtained by: 
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Note that for n = 2k, k integer, the expression for GM can be indeterminate if the product 
ΠXi is negative.  
Harmonic mean HM(X ) is the number given by: 
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Eulerian Mean EM (X) is calculated as: 
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Median value m(X) is the number given by:  
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9.1.2. Indicators of Spreading 
 

Hereafter, M(X) denotes any mean value (9.1-9.5). 

Dispersion D is the number given by: 

 
 DM(X) = EM(X - M(X))            (9.6) 
 
and is a measure of spreading of X values around the mean value M(X). The subscript M 
is the label for the type of mean around the statistical indicator considered. If the label is 
missing, the arithmetic mean AM is assumed. 
 
Standard deviation s is the number calculated as: 

 sM(X) = )1( −nn DM(X)           (9.7) 
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Absolute mean deviation am is the quantity: 

 amM(X) = AM(abs(X - M(X)))           (9.8) 
 

It is called variance (s2, am2, D2) the square of any deviation (s, am, D).  
 

 
9.2.  CORRELATIONS 

 

 Correlation is a measure of the relation between two or more variables. The 
correlation coefficient is a measure of linear dependencies of two or more series of data 
and is not dependent on the measurement scales of series.6 Correlation coefficients range 
from -1.00 to +1.00. The value of -1.00 or +1.00 represents a perfect linear correlation 
while a value of 0.00 represents a lack of linear correlation. 
 The most widely used correlation coefficient is that of Pearson, r, also called 
linear or product-moment correlation.7 

 
9.2.1. Pearson Correlation, r  
 
 Let X and Y be two series of data.  
The quantity defined by:  

 )()()(),( YAMXAMXYAMYX −=µ          (9.9) 

is called the second degree moment or covariance or correlation of the two data through 
the numeric series before considered.  
 

The Pearson correlation coefficient, r is given by: 
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The quantity µ(X, X) provides the same values as the square dispersion of X: 

 D2(X) = ),( XXµ           (9.11) 

Among all these quantities, the correlation coefficient is more often used for the statistical 
characterization of the correlation between two series of data.  
 The higher is µ(X, Y) the greater is the functional dependence between X and Y, 
and r becomes higher too. When r = 1 the correlation reaches the maximum, and X and Y 
become directly proportional.  
 The smaller is µ(X, Y), the stronger is the functional dependence between X and 
Y, but this time Y decreases with increasing X. When r = -1, the correlation is at the 
minimum value, X and Y are changing in an inversely proportional manner. The above 
relations are true, of course, for a linear correlation. 
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9.2.2. Rank Correlation. Spearman ρ  and Kendall τ  
 
 The rank correlation is used especially when the series of inputs do not have 
rigorous values, being affected by systematic errors. In such a case, the only useful 
parameter is the position of measurement in the ordered string (file) of these ones. 

We now introduce the notion of rank: the rank is the position of a measured value 
in the string of  the measured values ordered in an increasing manner. Consider the series 
X1, X2, . . . ,Xn and the permutation 

 
 π:{1,...,n}→ {1,..., n}:  )1()( +≤ ii XX ππ ,   1 ≤ i ≤ n-1       (9.12) 

that put into increasing order the measurements, namely the rank of Xi is )(iXπ (see also 

the same π in eq 9.5). 
 Let be the series X1, X2, . . . , Xn and Y1, Y2, . . . , Yn and (according to 9.12) π1, π2 
permutations that put in order X and Y, respectively: 
 
 )1()( 11 +≤ ii XX ππ ,    )1()( 22 +≤ ii YY ππ ,    1 ≤ i ≤ n-1      (9.13) 

and let be   
)()( 21 kkd k ππ −= ,   1 ≤ k ≤ n, and  d = Σ | dk|.       (9.14) 

 If d = 0 then the considered series are on the same order and there is a perfect 
correspondence of ranks. 
Taking into account that:  
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the Spearman correlation coefficient ρ (correlation of rank ), is obtained by performing 
the Pearson r calculations for π1 and π2 variables: 
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Detailed discussions upon the Spearman ρ statistic can be found in refs.4,8-10 

 In order to define the Kendall correlation coefficient we need to introduce the 
functions K1 and K2 according to: 
 

 { }ikikikkiK <<<= ,)()(,)()(|)( 11221 ππππ       (9.17) 

that is the number of ranks in Y smaller than the rank i from Y and in the series of X the 
ranks from 1 to i ;            
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 { }ikikikkiK <<>= ,)()(,)()(|)( 11222 ππππ       (9.18) 

that is the number of ranks from Y larger than the rank i from Y and in the series of X, the 
ranks from 1 to i. The quantities: 
 

 Pi = 1-π2(i)+K1(i);   Qi = n - π2(i) -K2(i);   Si = Pi + Qi ;   ( ) niiSS ≤≤= 1     (9.19) 

once calculated, the Kendall correlation coefficient τ is obtained as: 

 )(
1

2
),( SAM

n
YX

−
=τ           (9.20) 

Note that: (i)  k = 1 when both series are in the same order π1 = π2; (ii) k = -1 when both 
series are in the opposite order N21 1=ππ o . The rank correlation is successfully used at 
Genetic Programming.11,12 

 Kendall τ and Spearman ρ statistics are comparable in terms of their statistical 
power.  However, the two statistics are usually not identical in magnitude because their 
underlying logic, as well as their computational formulas are very different. Siegel and 
Castellan13 express the relationship of the two measures in terms of the inequality: 
 

 -1 ≤ 3⋅τ - 2⋅ρ ≤ 1          (9.21) 

 More importantly, they imply different interpretations: While Spearman ρ can be 
thought as the regular Pearson product-moment correlation coefficient as computed from 
ranks, Kendall τ rather represents a probability. Specifically, it is the difference between 
the probability that the observed data are in the same order for the two variable vs the 
probability that the observed data are in different orders for the two variables. For details 
see the refs. 13-15 

 

9.2.3. Correlations in Non-Homogeneous Groups  
 
 A lack of homogeneity in the sample from which a correlation was calculated can 
be another factor that biases the value of the correlation.  Imagine a case where a 
correlation coefficient is calculated from data points coming from two different 
experimenta l groups but this fact is ignored when the correlation is calculated.  Let us 
assume that the experimental manipulation in one of the groups increased the values of 
both correlated variables and thus the data from each group form a distinctive cluster in 
the scatterplot. 
 In such cases, a high correlation may result that is entirely due to the arrangement 
of the two groups, but which does not represent the true relation between the two 
variables. If you suspect the influence of such a phenomenon on your correlations and 
know how to identify such subsets of data, try to run the correlations separately in each 
subset of observations. 
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9.3.  REGRESSION  MODELS 
 
          Regardless of their type, two or more variables are related if in a sample of 
observations the values of those variables are distributed in a consistent manner.  In other 
words, variables are related if their values systematically correspond to each other for 
these observations. 
         The general purpose of multiple regression (the term was first used by Pearson,16 
1908) is to learn more about the relationship between several independent (or predictor) 
variables and a dependent (or criterion) variable. 
         In general, multiple regression allows the researcher to ask (and hopefully answer) 
the general question what is the best predictor of .... 
         The most frequently used multiple regression is multiple linear regression because 
this type of regression offers maximum capability in prediction.17 First of all, it is 
assumed that the relationship between variables is linear. In practice this assumption can 
virtually never be confirmed; fortunately, multiple regression procedures are not greatly 
affected by minor deviations from the linearity. However, it is prudent to always look at 
bivariate scatterplot of the variables of interest. If curvature in the relationships is evident, 
one may consider either transforming the variables, or explicitly allowing for nonlinear 
components.  
        Once this so-called regression line has been determined, the analyst can now easily 
construct a graph of the expected (predicted) values and the actual values of dependent 
variable.  Thus, the researcher is able to determine which position is below the regression 
line, above the regression line, or at the regression line. 
 
9.3.1 Loss Function in Regression Models  
 
        The loss function (the term loss was first used by Wald18  in 1939) is the function 
that is minimized in the process of fitting a model, and it represents a selected measure of 
the discrepancy between the observed data and data predicted by the fitted function. 
        For example, in many traditional linear model techniques, the loss function 
(commonly known as least squares) is the sum of squared deviations from the fitted line.  
One of the properties of that common loss function is that it is very sensitive to outliers. 
A common alternative to the least squares loss function is to maximize the likelihood or 
log-likelihood function. 
        Let Y be a string of measured data and Y a string of predicted Y values. The loss 
function is of the form: 
 

        loss(Y,Y) = ∑ −
i

YYf )ˆ(            (9.22)  

where f  is a positive function (f : ℜ → ℜ+).  
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Model parameters are determined by minimizing the loss function 

 loss(Y, Y ) = min.          (9.23) 
 
Minimization of Risk. Least Squares Method 

 A well known estimation model for parameters is based19 on the minimization of 
risk  defined as mean of square loss function, (promoted by Kolmogorov20) best known as 
the least squares method. Expression of loss function is 
 

 f(z) = z2            (9.24) 

 Many papers21-23 have described different approaches of the estimation model 
based on the loss function. Most used are presented in the following: 
 
Fisher24 introduced the maximum likelihood method given by25  

 f(z) = 2/2
1 ze−−           (9.25) 

 

Newman and Waad proposed the minimax method given by a function  

 f(z) = |z|           (9.26) 
 

Bayes (1750), was first that introduced maximum aposteriory probability method by 

 f(z) = 




≥
<

2/)(,1
2/)(,0

ZDz
ZDz

         (9.27) 

where D is the dispersion (see eqs 9.6, 9.11). 
 In many variants of the least squares, weighted loss functions are used 

 f1(z) = w⋅f(z)           (9.28) 

where w is a weight dependent on values of dependent variable Y, independent variable(s) 
X or predicted variable Y. 
 

 A widely used weighted function is (see ref.26  p. 168) 

 loss = loss(Y, Y, X) = 
( )∑ −

i i

ii

X

YY
2

2ˆ
        (9.29) 

 This method will yield more stable estimates of the regression parameters (for 
more details, see26). 
 An interesting model is obtained if expression of regression model is written in 
implicit form 
 

 g(Y, Y) = ε           (9.30) 

when the loss function becomes 
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 loss(Y, Y) = ))ˆ,((∑
i

YYgf          (9.31) 

This kind of model is useful when both the predicted variable and the predictor variable 
are affected by measurement errors.27 

 

9.3.2. Simple Linear Model 
 
 Let X be an independent variable and Y a dependent variable (Y = Y(X)). The 
linear model assumes that X and Y are linked in a dependence of the form 
 

 Y = b0 + b1X;    Y = Y + ε         (9.32) 

where ε is the residue of the estimate of Y.  
 The loss function for the model is defined as in eq 9.24-9.28. The parameters b1 
and b0 are determined by eq 9.23.  
 For the most of the cases, the loss function is the minimization of risk and the 
values for parameters are: 
 

 b1 = 
)()(

)()()(
22 XAMXAM

YAMXAMXYAM
−

−
;     b0 = AM(Y) – b1AM(X)     (9.33) 

 

 
9.3.3. Multiple Linear Model 
 
 Let Y be a dependent variable, and independent variables X1, …, Xp where p < n, 
n being the number of experiments (Y1, Y2, …, Yn). The model for multiple linear 
regression is 
 

 Y = b0 + b1 X 1 + b2 X 2 + … + bp X p ;    Y = Y + ε      (9.34) 

The coefficients can be obtained by applying eqs 9.22- 9.24   (for other cases, see eqs 
9.25-9.28) when results a system of linear equations  
 

 
( )( )

B
YBXAM

∂
−∂ 2)(

 = 0,     where BT = [b0, b1, …, bp]      (9.35) 

with solution (if exists): 
 B = CZ-1;    C T = [AM(X kY )]0 ≤ k ≤ p  and Z = [AM(X k+i )] 0 ≤ k,i ≤ p    (9.36)  

As a regression power measure the Pearson rp is used: 
 

 rp(X1, X2, …,Xp, Y) = r(Y,Y)         (9.37) 
 

or multiple r, namely rM : 
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rM(X 1, X 2, …, X p, Y ) = ( )
( )2

2

))((

))(ˆ(

YAMYAM

YAMYAM

−

−        (9.38) 

 

9.3.4. Other Regression Models  
 
 In pharmacology, the following model is often used to describe the effects of 
different dose levels of a drug 

 
1)/(1

1

2
00 bbX

bbY
+

−=          (9.39) 

 In this model, X is the dose level (X ≥ 1) and Y is the responsiveness, in terms of 
the percent of maximum possible responsiveness. 
 The parameter b0 denotes the expected response at the level of dose saturation 
while b2 is the concentration that produces a half-maximal response; the parameter b1 
determines the slope of the function. 
 For specific problems, non-linear regression models are used.28-32 

 

9.4.  REDUCTION  TO  LINEAR  MODELS 
 
 According to the concept of linear dependence, a regression equation is linear if 
the functional dependence between the considered variables can be linearized. 
Transforming the independent variables can be achieved following the procedures 
described in ref.33 p. 560. The estimation of the u parameters for this procedure is not 
iterative in nature, but is accomplished by expanding the terms of the regression model 
for the transformed predictor variables in a first-order Taylor series. For example, the 
following regression equations 
 

            Y = a log(X ) + b;  Y = a (1/X ) + b;  Y = a ( eX )+ b;   log(1/Y) = a X + b    (9.40) 

can be linearized and the dependence can be associated with the linear model 

 Y = a Z + b           (9.41) 

where the new independent variable  z is obtained by substitutions27,28 

 Z = log(X);   Z = 1/X;   Z = eX  or  Z = eY       (9.42) 

We can minimize the residual sums of squares for the regression model, after 
transforming the dependent variable via Z = Y u ( u ≠ 0), or, best known Z = log(Y ) (see 
log P calculations and correlating studies).33,34 Note that this kind of substitutions require 
that all values of Y be greater than zero.  For details see refs.33,35-37  
 Another extension of linear regression model can be obtained when the error 
factor influences both variables involved in the regression. In this case, the formulas for 
the validation of regression parameters have different form.27  
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 9.5.  FACTOR  ANALYSIS  AND  PCA 
 
 Thurstone first introduced the term factor analysis.38 The factor analysis is 
applied in connection with a variant of mult iple linear regression, which applies 
successively the simple linear model to the non-explicated data39 

 

 Step 1.    Y 1 = a1 + b1 X 1;       Y 1 = Y - Y 1       

  Step 2.    Y 2 = a2 + b2 X 2;        Y 2 = Y 1 - Y 2      
 … 

 Step p.   Y p = ap + bpX p;     Y p = Y p-1 – Y p;  ε = Y p       (9.43) 

which, in terms of multiple linear regression is: 

 StepΣ.   Y p = (a1 + a2 + … + ap) + b1X 1 + b2X 2 + … + bpX p + ε ;  
Y p = Y – Y p           (9.44) 

Note that this technique of multiple linear regression leaves unchanged the values bi (1 ≤ i 
<  p). The values bi are invariants at the application of any additional step k  = p of 
regression. This technique is referred to as the Principal Component Analysis PCA.40,41 

 The main applications of factor analysis techniques is to reduce the number of 
variables p and to detect structure in the relationships between variables, that to classify 
variables.42,43 Therefore, factor analysis is applied as a data reduction or structure 
detection method.44,45 Many excellent books on factor analysis already exist.46-49 The 
interpretation of secondary factors in hierarchical factor analysis, as an alternative to 
traditional oblique rotational strategies, is explained in detail in ref.50 At the heart of 
factor analysis is the problem of regression coefficients bp, evaluated usually via LS (least 
squares) procedures. In most of the cases, this problem is solved via the Householder 
method.51-53  
 

9.6.  DOMINANT  COMPONENT  ANALYSIS,  DCA 
 
 It is a variant of linear multiple regression and/or PCA. The method starts with 
the observation that in regression equations (9.34) and (9.44) the descriptors X1, X2,…, Xp 
are intercorrelated. 
 DCA approach proposes a method of orthogonalization of independent variables 
involved in the regression equation. In this way, a new set of non-correlated descriptors is 
created. Note that in this type of multi-linear regression the best correlation score makes 
the selection of the next descriptor from the set of descriptors. The algorithm of DCA is: 
 
Step 1. Make linear regressions:     Y i = ai X i + bi ;   Y i = Y – Y i ;   i = 1, …, p; 

 Let k1:       r(Y, X k1) = max {r(Y, X i ), i = 1, …, p}; 
 Make 1-variate regressions:     W i = ai X k1 + bi;    W i = X i – W i;   i ≠  k1. 



Elements of Statistics 319 

Step 2. Make linear regressions :    Y i = Ai  W i + Bi ;    Y i = Y k1 – Y i;   i ≠  k1 ; 
             Let k2:       r(Y k1, W k2) = max {r(Y k1,W i ), i ≠  k1}; 

 Make 2-variate regressions: W i = ai X k1 + bi X k2 + ci;    W i = X i – W i ;    
    i ≠  k1, k2. 

Step 3. Make linear regressions:  Y i = Ai W i + Bi ;    Y i = Y k2 – Y i ;   i ≠  k1, k2 ; 
             Let k3:       r(Y k2,W k3 ) = max {r(Y k2,W i ), i ≠  k1, k2 }; 
             Make 3-variate regressions:      W i = ai X k1 + bi X k2 + ci X k3 ;   

                       W i = X i – W i ;  i ≠  k1, k2. 
 ... 
             (9.45) 
 

  The orthogonal descriptors are X k1 (Step 1), W k2 (Step 2), W k3 (Step 3), etc. 
Coefficients in the regression equation 
 
 Y = α1 X k1 + α2 W k2 + α3 W k3 + …        (9.46) 

are obtained through substitutions in the algorithm equations (Step 1, …) or making 
multiple linear regression (eq  9.46).  
 The method was first reported by Randic 54 and further in refs.55-57 

 

* *  * 

 In more general terms, there are three types of multiple regression: standard 
regression, forward stepwise regression and backward stepwise regression.58,59 

 In standard regression all variables will be entered into the regression equation in 
one single step. This is the most frequently used case, which is also described in (9.34-
9.36). 
 In forward stepwise regression the independent variables will be individually 
added or deleted from the model at each step of the regression, depending on the choice 
based on the statistical significance of the regression equation, until the best model is 
obtained. This is the case both in PCA and DCA, also described in eqs 9.43, 9.44 and 
9.45, 9.46.  
 In backward stepwise regression the independent variables will be removed from 
the regression equation one at a time, depending on the researcher choice, until the best 
regression model is obtained. This last procedure is more flexible, it could be made at an 
equation of the form (9.34-9.36), (9.43, 9.44) and (9.45, 9.46).  
 For the cases when the independent variables are highly intercorrelated, and 
stable estimates for the regression coefficients cannot be obtained via ordinary least 
squares methods, the ridge regression analysis25,60,61 is used. 
 
 
 



M. V. Diudea, I. Gutman and L. Jantschi 320 

9.7.  TESTS  FOR  VALIDATION 
 
 We can test differences between groups (independent samples), differences 
between variables (dependent samples), and relationships between variables. For 
regression equations, tests are called significance tests. 
 
 

9.7.1. Differences Between Independent Groups  
 
 Usually, when we have two samples that we want to compare concerning their 
mean value for some variable of interest, we would use the t-test for independent 
samples; alternatives for this test are the Wald-Wolfowitz runs test, the Mann-Whitney U 
test, and the Kolmogorov-Smirnov two-sample test.  

 
9.7.1.1. The t-Test for Independent Samples 

 The t-test is the most commonly used method to evaluate the differences in mean 
values between two groups. Theoretically, the t-test can be used even if the sample size is 
very small (< 10). 
 The normality assumption can be evaluated by looking at the distribution of the 
data or by performing a normality test.  The equality of variances assumption can be 
verified by the F test, or by using the Levene test. If these conditions are not met, then the 
differences in means between two groups can be evaluated by using one of the 
alternatives to the t-test. 
 The p-level included in t-test represents the probability of error involved in 
accepting the research hypothesis about the existence of a difference. Technically 
speaking, this is the probability of error associated with the rejecting of the hypothesis of 
no difference between the two group populations when, in fact, the hypothesis is true. 
 Some researchers suggest that if the difference is in the predicted direction, you 
can consider only one half (one tail) of the probability distribution and thus divide the 
standard p-level reported with a t-test by two (a two-tailed probability). 
 
9.7.1.2. Wald-Wolfowitz Runs Test 

 This test assumes that the variable under consideration is continuous, and that it 
was measured on at least an ordinal scale (i.e., rank order). 
 The Wald-Wolfowitz runs test assesses the hypothesis that two independent 
samples were drawn from two populations that differ in some respect, i.e., not just with 
respect to the mean, but also with respect to the general shape of the distribution. The 
null hypothesis is that the two samples were drawn from the same population.  In this 
respect, this test is different from the parametric t-test, which strictly tests for differences 
in locations (means) of two samples.   
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9.7.1.3.  Mann-Whitney U Test 

 The Mann-Whitney U test is a nonparametric alternative to the t-test for 
independent samples.  The procedure expects the data to be arranged in the same way as 
for the t-test for independent samples.  
 Specifically, the data file should contain a coding variable (independent variable) 
with at least two distinct codes that uniquely identify the group membership of each case 
in the data. 
 The Mann-Whitney U test assumes that the variable under consideration was 
measured on at least an ordinal (rank order) scale.  The interpretation of the test is 
essentially identical to the interpretation of the result of a t-test for independent samples, 
except that the U test is computed based on rank sums rather than means (it is a measure 
of differences in average ranks). The U test is the most powerful (or sensitive) alternative 
to the t-test; in fact, in some instances it may offer even a greater power to reject the null 
hypothesis than the t-test.   
 With samples larger than 20, the sampling distribution of the U statistics rapidly 
approaches the normal distribution.62 Hence, the U statistics (adjusted for ties) will be 
accompanied by a z value (normal distribution variate value), and the respective p value.   
 
9.7.1.4. Kolmogorov-Smirnov Test 

 The Kolmogorov-Smirnov test assesses the hypothesis that two samples were 
drawn from different populations.  Unlike the parametric t-test for independent samples 
or the Mann-Whitney U test, which test for differences in the location of two samples 
(differences in means, differences in average ranks, respectively), the Kolmogorov-
Smirnov test is also sensitive to differences in the general shapes of the distributions in 
the two samples, i.e., to differences in dispersion, skewness, etc. 
 
 
9.7.2. Differences Between Dependent Groups  
 
 If we want to compare two variables measured in the same sample we would use 
the t-test for dependent samples. Alternatives to this test are the Sign test and Wilcoxon's 
matched pairs test. If the variables of interest are dichotomous in nature (i.e., pass vs. no 
pass) then McNemar's Chi-square test is appropriate. 
 
9.7.2.1. The t-test for Dependent Samples  

 The t-test for dependent samples helps us to take advantage of one specific type 
of design in which an important source of within-group variation (or so-called, error) can 
be easily identified and excluded from the analysis. 
 Specifically, if two groups of observations (that are to be compared) are based on 
the same sample which was tested twice (e.g., before and after a treatment), then a 
considerable part of the within-group variation in both groups of scores can be attributed 
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to the initial individual differences between samples. Note that, in a sense, this fact is not 
much different than in cases when the two groups are entirely independent (see the t-test 
for independent samples), where individual differences also contribute to the error 
variance. Note that in the case of independent samples, we cannot do anything about it 
because we cannot identify (or subtract) the variation due to individual differences in 
subjects. However, if the same sample was tested twice, then we can easily identify (or 
subtract) this variation. 
 Specifically, instead of treating each group separately, and analyzing raw scores, 
we can look only at the differences between the two measures (e.g., pre-test and post test) 
in each sample. 
 By subtracting the first score from the second one for each sample and then 
analyzing only those pure (paired) differences, we will exclude the entire part of the 
variation in our data set that results from unequal base levels of individual subjects. This 
is precisely what is being done in the t-test for dependent samples, and, as compared to 
the t-test for independent samples, it always produces better results (i.e., it is always more 
sensitive). 
 

Paired differences 

 Let Y 1 and Y 2 be two variables, which estimate the same measured property. 
Then, let be 
  D = Y 1 – Y 2           (9.47) 

Variable D (paired differences) provides the mean AM(D) and next the standard deviation 
is obtained as 

 s(D) = ( ))()(
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        (9.48) 

 

 In this case, the associate (calculated from experimental data) t-value will be 
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9.7.2.2. Sign Test 

  
The sign test is an alternative to the t-test for dependent samples.  The test is 

applicable in situations when the researcher has two measures (under two conditions) for 
each subject and wants to establish that the two measurements (or conditions) are 
different. Each variable in the first list will be compared to each variable in the second 
list. 
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 The only assumption required by this test is that the underlying distribution of the 
variable of interest is continuous; no assumptions about the nature or shape of the 
underlying distribution are required. The test simply computes the number of times 
(across subjects) that the value of the first variable (Y 1) is larger than that of the second 
variable (Y 2). Under the null hypothesis (stating that the two variables are not different 
from each other) we expect this to be the case about 50% of the time. Based on the 
binomial distribution we can compute a z value for the observed number of cases where  
Y 1 > Y 2, and compute the associated tail probability for that  z value. 
 
9.7.2.3. Wilcoxon Matched Pairs Test 

 This procedure assumes that the variables under consideration were measured on 
a scale that allows the rank ordering of observations based on each variable and that 
allows rank ordering of the differences between variables (this type of scale is sometimes 
referred to as an ordered metric scale.63 Thus, the required assumptions for this test are 
more stringent than those for the Sign test. 
 However, if they are met, that is, if the magnitudes of differences (e.g., different 
ratings by the same individual) contain meaningful information, then this test is more 
powerful than the Sign test. 
 In fact, if the assumptions for the parametric t-test for dependent samples 
(interval scale) are met, then this test is almost as powerful as the t-test. 
 
9.7.2.4.  McNemar Chi-square 

 This test is applicable in situations where the frequencies in the table in form 

  







DC
BA

          (9.50) 

represent dependent samples. Two Chi-square values can be computed: A/D and 
B/C.  The Chi-square A/D tests the hypothesis that the frequencies in cells A and 
D are identical.  The Chi-square B/C tests the hypothesis that the frequencies in 
cells B and C are identical.  
 
9.7.3. Relationships between variables 

To express a relationship between two variables one usually computes the 
correlation coefficient r. Equivalents to the standard correlation coefficient are 
Spearman ρ and Kendall τ. If the two variables of interest are categorical in nature, 
appropriate statistics for testing the relationship between the two variables are the Chi-
square test, the Phi square coefficient, and the Fisher exact test. 
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9.7.3.1.  Variance of the Error, se 

 Let p be the number of independent variables in equation of regression (see eq 
9.34). Variance of error ε is estimated by se in formula 
 

 ( )22 )ˆ(
1

YYAM
pn
n
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−−

=          (9.52) 

 
9.7.3.2.  F-Value Associated with the Multiple rM 

 Let Y be a string of values and Y an estimation for Y. F-value is given by 
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9.7.3.3.  The t-Value for the Slope 

 The estimator 2
kbs of error in calculus of bk coefficient is calculated by using eq 

9.52 and further 
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The t-value for bk is 
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9.7.3.4.  Confidence Interval 

 Let α be the probability of error involved in accepting our research hypothesis 
that bk is coefficient of X k.  
 Theoretical value for t, t* is of the form t*(α,  n-p-1) that is obtained through 
inversion of the function 

 α = St(x,d) = 
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when is obtained: 

 t* (α, d) = x which obeys St -1(x,d) = α.        (9.57) 

with d being the degrees of freedom (n-p-1), x is a real number and α a probability. 
 The hypothesis that bk is the coefficient of X k is accepted if  
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kbt > t* (α, n-p-1)          (9.58) 

With the value for t*(α/2, n-p-1) and 
kbs we can calculate confidence interval for bk 

 bk ± t* (α /2, n-p-1)⋅
kbs           (9.59) 

and the confidence interval for Y values (see eq 9.34) 
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