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Abstract 
Likelihood Ratio medical key parameters calculated on categorical results from diagnostic tests 
are usually express accompanied with their confidence intervals, computed using the normal 
distribution approximation of binomial distribution. The approximation creates known anomalies, 
especially for limit cases. In order to improve the quality of estimation, four new methods (called 
here RPAC, RPAC0, RPAC1, and RPAC2) were developed and compared with the classical 
method (called here RPWald), using an exact probability calculation algorithm. 
Computer implementations of the methods use the PHP language. We defined and implemented 
the functions of the four new methods and the five criterions of confidence interval assessment. 
The experiments run for samples sizes which vary in 14 – 34 range, 90 – 100 range (0 < X < m, 0 
< Y < n), as well as for random numbers for samples sizes (4 ≤ m, n ≤ 1000) and binomial 
variables (1 ≤ X, Y < m, n). 
The experiment run shows that the new proposed RPAC2 method obtains the best overall 
performance of computing confidence interval for positive and negative likelihood ratios. 
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Introduction 
 

Confidence intervals defines as an estimated 
range of values that is likely to include an unknown 
population parameter, the estimated range being 
calculates from a given set of sample data is used 
nowadays as a criterion of assessment of the 
trustworthiness or robustness of the finding [1]. If 
independent sample are take repeatedly from same 
population, and the confidence interval is calculated 
for each sample, then a certain percentage (called 
confidence level) of the interval will include the 
unknown population parameter. Confidence interval 
is usually computed for the percentage of 95. 
However, it can be produced 90%, 99%, 99.9% 
confidence intervals. 

The main aim of a diagnostic study is to generate 
new knowledge which to be used in diagnostic 
decision process. The magnitude of the effect size of 
a diagnostic test can be measure in a variety of ways 
such as sensibility, specificity, overall accuracy, 
predictive values, and likelihood ratios [2,3]. Using 
confidence intervals associate to a diagnostic key 
parameter gives possibility to physicians to be more 
certain about the clinical value of the diagnostic test 

and to decide to what degree can rely on the results 
[4].  

Likelihood ratios are alternative statistics for 
summarizing diagnostic accuracy which can be 
computed based on categorical variable, organized in 
a 2 by 2 contingency table [5]. The likelihood ratios, 
incorporate both the sensitivity and specificity of the 
diagnostic test providing a direct estimator of how 
much a test result will change the odds of having a 
disease [6-8].  

The probability that a person with a disease to 
have a positive examination divided by the 
probability that a person without the disease to have a 
positive examination defines the Positive Likelihood 
Ratio (LR+). The probability that a person with a 
disease to have a negative examination divided by the 
probability that a person without the disease to have a 
negative examination defines Negative Likelihood 
Ratio (LR-). 

The point estimation of likelihood ratios come 
with its confidence intervals when are reported as 
study results. Until now, confidence intervals of 
likelihood ratios calculations use the asymptotic 
method (called here RPWald) which is well known 
that provide too short confidence intervals [9, 10]. 
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The aim of the paper is to introduce four new 
methods (called here RPAC, RPAC0, RPAC1, and 
RPAC2) for likelihood ratios confidence intervals 
estimation, and based on binomial distribution 
sample hypothesis to make a comprehensive study of 
the estimation results comparing them with also the 
asymptotic method (called here RPWald). 
 

 
Materials and Methods 
 

The normal distribution was first introduced by 
De Moivre in an unpublished memorandum, later 
published as part of [11] in the context of 
approximating certain binomial distribution for large 
sample sizes n. His result has extended by Laplace 
and is known as the Theorem of De Moivre-Laplace. 
The normal approximation of the binomial 
distribution is the most known method used to 
calculate binomial distribution based estimators. 

Confidence intervals estimations for proportions 
using normal approximation have been commonly 
uses for analysis of simulation for a simple fact: the 
normal approximation is easiest to use in practice 
comparing with other distributions [12]. 

Our approach started with constructing of an 
algorithm, which use the binomial distribution 
hypothesis in order to calculate the exact probabilities 
of wrong for the choused estimator: confidence 
interval. 

One module of the program calculates exact 
probabilities X for a sample of size m. The module 
serves for exact probabilities calculation of a two-
dimensional sample (X, Y) of volumes (m, n). 

Other set of algorithms implements the 
calculation of a set of confidence intervals formulas 
for Likelihood Ratio medical key parameters. 
 The Positive (LR+) and Negative (LR-) 
Likelihood Ratio medical key parameters calculations 
use the next formulas, where a = real positive (cases); 
b = false positive; c = false negative; and d = real 
negative: 
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where: 
• The proper substitutions for equation (1): X = a and 

Y = b independent binomial distribution variables; 
m = a + c and n = b + d are samples sizes; 

• The proper substitutions for equation (2): X = c and 
Y = d independent binomial distribution variables; 
m = a + c and n = b + d are samples sizes; 

Thus, from mathematic point of view, positive 
likelihood ratio, and negative likelihood ratio are of 
same function-type. Let us call RP the expression: 

RP = RP(X,m,Y,n) = 
X n

m Y
⋅      (3) 

The following formula was used to compute the 
classical Wald type confidence interval: 
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RP exp ±z +

X m Y n
= ⋅

⋅ ⋅

⎛
⎜ ⎟
⎝ ⎠

⎞     (4) 

 Two Agresti-Coull correction types were 
applied to (4): 
ACType2(X,m,Y,n,c1,c2) = 

RPWald(X+c1,m+2c1,Y+c2,n+2c2,z)  (5) 
ACType1(X,m,Y,n,c) = 

RPWald(X+c,m+2c,Y+c,n+2c,z)   (6) 
where ACType2 has two corrections (c1 and c2) and 
ACType1 has only one (c = c1 = c2). 
 Our proposed confidence interval estimators are 
(7-10): 
RPAC(X, m, Y, n)
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RPAC2(X, m, Y, n)
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Five criterions of confidence interval assessment 
methods were defined in order to be used for method 
comparisons: 
• The average of experimental errors, AE = Av(Err): 
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• The standard deviation of the experimental errors, 
SDE = StdDev(Err): 
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• The average of absolute difference between the 
experimental errors for m, n with all possible 
binomial variables (1 ≤ X, Y ≤ m-1, n-1), and the 
average of the experimental errors, AADE = 
AvAD(Err): 

m 1 n 1

X 1 Y 1

Err(X, Y, m, n) AE
AADE

(m 1)(n 1) 1

− −

= =

−
=

− − −

∑∑
  (13) 

• The average of absolute difference between the 
experimental error for m, n with all possible 
binomial variables (1 ≤ X, Y ≤ m-1, n-1) and the 
imposed value, equal here with 100·α, AADIE = 
AvADI(Err): 
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• The deviation of experimental errors relative to the 
imposed significance level α, DIE = DevI(Err): 
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 The Err function uses the binomial distribution 
hypothesis for both X and Y variables to collect all 
percentage probabilities that function values are 
outside of confidence interval. 
 For the X binomial variable, the appearance 
probability of the XX value from a sample of m is: 
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 Using (16) and supposing that the lower bound 
of confidence interval is given by ci8L = 
ci8L(X,m,Y,n) and the upper bound of confidence 
interval is given by ci8U = ci8U(X,m,Y,n) the Err 
function for the ci8 = (ci8L, ci8U) confidence 
interval calculation function (method) is: 
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In order to obtain a 100·(1-α) = 95% confidence 
interval, the experiments had run for a significance 
level of α equal with 5%. The performance of each 
method was assessed using the above-describe 
criterions (AE, SDE, AADE, AADIE, DIE) for 
samples sizes (m, n) which varies from specified 
ranges and different values of binomial variables (X, 
Y) and in 200 random sample sizes m, n (4 < m, n < 
1000) and random binomial variables X, Y (0 < X, Y 
< m, n). 

All described formulas (3-17) was modeled into 
separate algorithms and implemented in a PHP 
program. The output of the program produced the 
results. 
 
 

Results 
 

On 441 distinct pairs of samples with sizes in 
14-34 range (14 ≤ m, n ≤ 34, table 1), for 110 distinct 
pairs in 90-100 range (table 2), for all X and Y (0 < X 
< m, 0 < Y < n), and for 200 random values (4 < m, n 
< 1000, 0 < X, Y < m, n, see table 3) the statistical 
operators defined by equations (11-15) have been 
applied. Averages of the results are in tables (1 to 3). 
 

Table 1. Samples sizes varying in 14 - 34 range 
Average of  

Method AE SDE AADE AADIE DIE 
RPWald 4.195 1.411 0.882 1.192 1.634
RPAC 4.220 1.262 0.874 1.132 1.485
RPAC0 4.157 1.222 0.864 1.141 1.485
RPAC1 4.166 1.226 0.870 1.140 1.484
RPAC2 4.175 1.229 0.876 1.137 1.481
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Table 2. Samples sizes varying in 90 - 100 range 
Average of  

Method AE SDE AADE AADIE DIE 
RPWald 4.613 0.162 0.106 0.127 0.194
RPAC 4.641 0.148 0.096 0.119 0.178

RPAC0 4.633 0.144 0.096 0.118 0.176
RPAC1 4.635 0.144 0.095 0.117 0.176
RPAC2 4.638 0.145 0.095 0.118 0.176

 
Table 3. Random values 

Method AE SDE DIE AADIE AADE
RPWald 5.150 2.210 2.210 0.500 0.595 
RPAC 5.041 1.264 1.262 0.383 0.402 

RPAC0 5.038 1.226 1.223 0.395 0.414 
RPAC1 4.972 0.836 0.834 0.330 0.316 
RPAC2 4.949 0.786 0.786 0.312 0.292 

 
 
Discussions 
 

Looking at the results of the experiment for 
samples sizes which vary from 14 to 34 (table 1) it 
can be observed that the values of averages of 
experimental errors obtained with all methods are 
closed to each other, but RPAC method obtains the 
closest value to the expected value (100·α). It is 
observing that the RPWald method is the single one 
that obtains values greater than expected value. For 
SDE criterion the RPWald method obtain the greater 
value (1.411) showing us that the experimental errors 
are widely spread by each other compared with the 
values obtain with RPAC0, RPAC1, RPAC2, and 
RPAC methods (1.222, 1.226, 1.229, and 1.262). The 
RPAC0 method obtains the less average of AADE 
while the RPWald obtains the greater value (0.882). 
The RPAC method, closely followed by the RPAC2 
method obtains the lowest average of AADIE (1.132, 
respectively 1.137) showing us that the experimental 
errors obtained with specified methods are more 
close to the expected value comparing with RPAC1, 
RPAC0, and RPWald methods.  
 The deviation of experimental errors relative to 
the imposed significance level α criterion of 
assessment can be consider the best criterion because 
shows us the variability of the data relative to the 
imposed significance level. A larger deviation of 
experimental errors relative to the imposed 
significance level reveals that the values are widely 
spread out relative to the expected value. The lowest 
deviation of experimental errors relative to the 
imposed significance level α is obtaining by the 
RPAC2 method (1.481, table 1). The RPAC2 method 
has closely followed by the RPAC1 method (1.484), 
RPAC0 and RPAC methods (1.485). The deviation of 

experimental errors relative to the imposed 
significance level α decrease with the increasing of 
sample sizes m, and n for all implemented methods 
and the RPWald method present the widely spread 
out experimental errors. 
 When the samples sizes vary from 90 to 100 
(table 2), the results of the experiment are rather 
similar with the one for samples sizes varying from 
14 to 34: the RPAC method obtains the average of AE 
more close to the expected value (100·α). The RPAC0 
and RPAC1 methods obtain the lowest average of 
SDE while RPWald method obtains the greatest 
average of SDE showing a widely spread out of 
values comparing with other methods. For AADE 
criterion, the RPAC2 and RPAC1 obtain the same 
values of average, equal with 0.095 (table 2), closely 
followed by RPAC and RPAC0 methods (0.096). The 
RPAC1 method, closely followed by the RPAC2, 
RPAC0 and RPAC methods obtain the lowest average 
of AADIE (1.117, 1.118, 1.118, respectively 1.119) 
showing us that the experimental errors obtain with 
specified methods are more close to the expected 
value comparing RPWald method.  

The lowest deviation of experimental errors 
relative to the imposed significance level α has been 
obtained by the RPAC0, RPAC1, and RPAC2 
methods (0.176, table 2), closely followed by the 
RPAC method (0.178), showing us that the 
experimental errors obtain by the above describe 
methods are not spread out as the ones obtained with 
the RPWald method.  
 From the experimental results, when sample 
sizes vary fro 90 to 100 it can be observe that the 
average of AE increase with increasing of samples 
sizes but never exceed the expected value (table 2). 
Opposite, the average of SDE and respectively DIE 
decrease with increasing of samples sizes. This 
observation sustain that with increase of samples 
sizes the experimental values are closest by each 
other. 

Looking at the results obtained from the random 
experiment (200 random numbers for samples sizes 4 
≤ m, n ≤ 1000 and binomial variables 1 ≤ X ≤ m-1, 
and 1 ≤ Y ≤ n-1, table 3) it can be observe that 
RPAC1 method (4.972), closely followed by the 
RPAC2 method (4.949) obtain an average of AE more 
close to expected value. The RPWald, RPAC, and 
RPAC0 methods exceed the expected value of 
averages of AE. For all criterions, the RPAC2 method 
obtains systematically the best results, showing us 
that the RPAC2 method is the best method of 
computing confidence interval for RP function-type.  

The averages of statistical operators used in 
experiments obtained by the RPAC, RPAC0, RPAC1, 
and RPAC2 are close to each other even if we look at 
the sample sizes which vary in 14 - 34 range or which 
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vary in 90 - 100 range. This characteristic cannot be 
observe if we look at the results from random 
samples sizes (4 ≤ m, n ≤ 1000) and random binomial 
variables (1 ≤ X ≤ m-1, and 1 ≤ Y ≤ n-1). The best 
performances in computing confidence interval for 
RP function-type is the RPAC2 method. The RPAC2 
method systematical obtain the lowest deviation of 
the average of experimental errors relative to the 
imposed significance level even if the samples sizes 
vary from 14 to 34, from 90 to 100 or are random 
selected samples sizes (4 ≤ m, n ≤ 1000) and random 
binomial variables (1 ≤ X ≤ m-1, and 1 ≤ Y ≤ n-1). 
 

 
Conclusions 
 

All new methods of computing the confidence 
interval for RP function-type (RPAC, RPAC0, 
RPAC1, and RPAC2) are superior comparing with the 
asymptotic method (RPWald). 

The differences between the proposed methods 
of computing confidence interval for RP function-
type are situating on a scale of small to very small 
differences and there are situations in that one 
method is better than other methods. The RPAC 
method obtain almost systematic best average of AE 
for samples sizes which varying in 14 – 34 and 
respectively in 90 – 100 ranges. The RPAC0 method 
obtain the lowest average of SDE for samples sizes 
which vary in14 – 34 range, while the RPAC1 the 
best values for average of AADE and AADIE when 
samples sizes vary in 90 – 100 range. Systematic, the 
RPAC2 method obtain the best deviation of 
experimental errors relative to the imposed 
significance level even if we looked at samples sizes 
which vary in 14 – 34 and respectively in 90 – 100 
ranges or at random samples sizes and random 
binomial variables.  

The best criterion of comparing the confidence 
interval methods is deviation relative to the imposed 
significance level. 

Using deviation relative to the imposed 
significance level criterion, the RPAC2 method is the 
best method of computing confidence interval for RP 
function-type in random samples and random 
binomial variables (4 ≤ m, n ≤ 1000, and 1 ≤ X, Y < 
m, n) and overall for all 14 ≤ m, n ≤ 34, 90 ≤ m, n ≤ 
100 and 0 < X, Y < m, n. 

Based on above conclusions, we recommend the 
use of RPAC2 method for computing of the 
confidence interval of positive and negative 
likelihood ratio instead of use of RPWald method. 
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