
A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

INSTALLATION AND CONFIGURATION ISSUES ABOUT
FREEBSD OPERATING SYSTEM

Lorentz JÄNTSCHI and Sorana BOLBOACĂ

Technical University of Cluj-Napoca, Romania, http://lori.academicdirect.ro

and
“Iuliu Haţieganu” Medicine and Pharmacy University, Cluj-Napoca, Romania

Abstract
The paper is based on the experience of the authors with the FreeBSD
server operating system administration on three servers in use under
academicdirect.ro domain. The paper describes a set of installation,
preparation, and administration aspects of a FreeBSD server.

Keywords

Server operating systems, Operating system configuration, Server
services, Client-server applications, Dial-in server, System testing.

1. INTRODUCTION

UNIX is an interactive time-sharing operating system invented in 1969 by Ken
Thompson after Bell Labs left the Multics project, originally so he could play games on
his scavenged PDP-7. The time-sharing is an operating system feature allowing several
users to run several tasks concurrently on one processor, or in parallel on many
processors, usually providing each user with his own terminal for input and output;
time-sharing is multitasking for multiple users. By 1991, UNIX had become the most
widely used multi-user general-purpose operating system in the world. UNIX is now
offered by many manufacturers and is the subject of an international standardization
effort. Unix-like operating systems include Debian, Linux and LinwowsOS, AIX, GNU,
HP-UX, OSF and Solaris, BSD/OS, NetBSD, OpenBSD and FreeBSD (with
TrustedBSD and PicoBSD project variations) [1].

FreeBSD (FreeBSD is a registered trademark of Wind River Systems, Inc. and
this is expected to change soon) is an advanced operating system for x86 compatible,
AMD64, Alpha, IA-64, PC-98 and UltraSPARC architectures. The FreeBSD operating
system is developed and maintained by a large team of individuals. While you might
expect an operating system with these features to sell for a high price, FreeBSD is
available free of charge and comes with full source code.
The most important feature of a server system is system services. Most of the services in
a server system are provided through a program or process that sits idly in the
background until it is invoked to perform its task, called daemons [2]. The daemon word
come from the mythological meaning, later rationalized as the acronym “Disk And

1 of 6

http://lori.academicdirect.ro/

A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania
Execution MONitor” [3]. A daemon is program that is not invoked explicitly, but lays
dormant waiting for some condition(s) to occur. The idea is that the perpetrator of the
condition need not be aware that a daemon is lurking (though often a program will
commit an action only because it knows that it will implicitly invoke a daemon).
Daemons are usually spawned automatically by the system, and may either live forever
or be regenerated at intervals. The discussed services are Internet domain name server
(named, [4?query=named]), Internet super-server (inetd, [4?query=inetd]), OpenSSH
SSH daemon (sshd, [4?query=sshd]), Internet file transfer protocol server (ftpd,
[4?query=ftpd]), Apache hypertext transfer protocol server (httpd, [4?query=httpd]),
proxy caching server (squid, [4?query=squid), the MySQL server demon (mysqld,
[4?query=mysqld]) and PHP sub-service (post processed hypertext [5]).

2. OPERATING SYSTEM INSTALLING PROCEDURE

 First step in FreeBSD operating system installation is to create a boot disk set,
depending on machine type. If we are using a Personal Computer, based on i386
computer architecture, a disk boot set can be found at:

ftp://ftp.freebsd.org/pub/FreeBSD/releases/i386/5.2-RELEASE/floppies/
 For 1.44Mb floppies, all that we have to do is to download at least kern.flp and
mfsroot.flp files. If the planned computer to be a server has exotic or old components, is
possible to need also the drivers.flp file. If we use a DOS/Windows operating system
type, to create the boot disks is necessary to download and use an image file installation
program, which can be found at the address: ftp://ftp.freebsd.org/pub/FreeBSD/tools/. It can be
used any of fdimage.exe or rawrite.exe to create the disks. For fdimage.exe the
commands (DOS commands) are (assuming that we use a: drive): fdimage –f 1.44M kern.flp
a: (and similarly for mfsroot.flp and drivers.flp files).
 If we use a UNIX operating system type, we can use dd program for disks
creation: dd if=kern.flp of=/dev/floppy (and similarly for mfsroot.flp and drivers.flp files)
 After the boot disks creation, we must boot from “kern.flp” floppy and
“mfsroot.flp” floppy the FreeBSD operating system. Kernel and SysInstall utility are
automatically loaded and after that, we have two consoles (alt+F1 and alt+F2
respectively). The second console is for DEBUG messages. In the DEBUG console we
can watch how modules are loaded. In this moment, a good idea is to look at the
DEBUG console to assure that our network card is proper used. At this point, SysInstall
utility load FDISK partion editor and we must create a FreeBSD partition [6].

3. OPERATING SYSTEM CONFIGURATION

 After the system installation, we can configure it. Many configurations can be
done. We can start to download now all system sources. A utility called cvsup can be
used for this task. CVSup is a software package for distributing and updating source
trees from a master CVS repository on a remote server host. The FreeBSD sources are
maintained in a CVS repository on a central development machine in California. With
CVSup, FreeBSD users can easily keep their own source trees up to date. Using
SysInstall utility, we can fetch the cvsup program in the same way as we installed the
system, from internet via FTP protocol (sysinstall/Configure/Packages/…logging…
/devel/cvsup-without-gui-16.1h). After the cvsup installation, a configuration file (let us
call it configuration_file) must be created (or edited from /usr/share/examples/cvsup/)
and must contain the host (this specifies the server host which will supply the file

2 of 6

ftp://ftp.freebsd.org/pub/FreeBSD/releases/i386/5.2-RELEASE/floppies/
ftp://ftp.freebsd.org/pub/FreeBSD/tools/

A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania
updates), the base (this specifies the root where CVSup will store information about the
collections you have transferred to our system), the prefix (this specifies where to place
the requested files), and the desired release (version). Other options are also benefit:
*default host=cvsup.FreeBSD.org, *default base=/usr, *default prefix=/usr, *default release=cvs, *default

delete use-rel-suffix, *default compress, src-all tag=., ports-all tag=., doc-all tag=., cvsroot-all tag=.
 Sources can be fetched separately (such as src-base) or entirely (such as src-all).
Tag option is used to fetch one specific version of the sources (when “.” means
CURRENT versions). In addition, the date option can be used (as example: src-all
tag=RELENG_4 date=2000.08.27.10.00.00). Fetching procedure can be done now from
a text console, using a simple command: cvsup -g -L 2 configuration_file or from a graphical
console (X-based) using the command: cvsup configuration_file.

4. RECOMPILATION AND SYSTEM OPTIMIZATION

 The kernel is the core of the FreeBSD operating system. Building a custom
kernel is one of the most important rites of passage nearly every UNIX user must
endure. This process, while time consuming, will provide many benefits to your
FreeBSD system. Unlike the GENERIC kernel, preinstalled in our system, which must
support a wide range of hardware, a custom kernel only contains support for your PC's
hardware. This has a number of benefits, such as faster boot time, less memory usage, and
additional hardware support; a custom kernel allows you to add in support for devices such as
sound cards, which are not present in the GENERIC kernel.
 If we follow the acquiring procedure of the sources exactly, we can found for the
kernel configuration a set of predefined configuration files at the location:
/usr/src/sys/i386/conf/. If the sources version fit with our system then the GENERIC file
using must produce same kernel and modules with the existent ones. The idea is to
optimize the kernel at compilation time. The kernel can be configured in a configuration
file using the prescriptions that can be found in following files: GENERIC, Makefile,
NOTES (/usr/src/sys/i386/conf/), NOTES from /usr/src/sys/conf/ and README and
UPDATING from /usr/src/. Additionally, we can create the LINT file which contain
additional kernel configuration options from NOTES files with make utility (cd
/usr/src/sys/i386/conf/ && make LINT). In the optimizing process of the kernel, a good idea is
to look at the system characteristics detected by the GENERIC kernel using the dmesg
utility. Most of the essential options are well documented and we cannot miss. Anyway,
a large set of network devices can be excluded from the kernel. To find which device
driver is using in the system for network adapter management we can look again at the
boot messages (dmesg | grep Ethernet). Supposing that we have finished our kernel
configuration, the next step is to configure-it according with the new configuration file:

cd /usr/src/sys/i386/conf/ && config VL
 The next three steps can be emerged in one composed command:

cd ../compile/VL && make depend && make && make install

5. THE SYSTEM SERVICES

 The kernel configuration process allowed us to define console behavior (to
disable cltr+alt+del reboot sequence), to increase the amount of free memory available
for processes and increase the system speed. Now can begin to install and configure the
server services. The named service. Name servers usually come in two forms: an
authoritative name server, and a caching name server. An authoritative name server is

3 of 6

A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania
needed when one wants to serve DNS information to the world, replying authoritatively to
queries, a domain, such as academicdirect.ro, is registered (to RNC, [7]) and IP addresses
need to be assigned to hostnames under it; an IP address block requires reverse DNS entries (IP to
hostname) and/or a backup name server, called a slave, must reply to queries when the primary is
down or inaccessible. A named configuration file resides in /etc/namedb/ directory, and to
start automatically at boot, the /etc/rc.conf file must contain named_enable="YES".
 For a real name server, at least following lines (from /etc/namedb/named.conf
file) must fit with our system (academicdirect.ro):

zone "academicdirect.ro" {\r\n type master;\r\n file "academicdirect.ro";\r\n};
 Therefore, in academicdirect.ro file we must specify the zone. At least following
lines must fit (see also [7]):

$TTL 3600\r\n academicdirect.ro. IN SOA ns.academicdirect.ro. root.academicdirect.ro. (\r\n
2004020902;Serial\r\n 3600; Refresh\r\n 1800; Retry\r\n 604800; Expire\r\n 86400);Minimum TTL\r\n

@ IN NS ns.academicdirect.ro. ; DNS Server\r\n @ IN NS hercule.utcluj.ro. ; DNS Server\r\n
localhost IN A 127.0.0.1; Machine Name\r\n ns IN A 193.226.7.211; Machine Name\r\n

mail IN A 193.226.7.211; Machine Name\r\n @ IN A 193.226.7.211; Machine Name
 To properly create the local reverse DNS zone file, following command are
necessary: cd /etc/namedb && sh make-localhost.
 The inetd service manages (start, restart, and stop) a set of services (according
with Internet server configuration database /etc/inetd.conf), for both IPv4 and IPv6
protocols, such as:

ftp stream tcp46 nowait root /usr/libexec/ftpd ftpd –l # ftp IPv4 and IPV6 service
ssh stream tcp46 nowait root /usr/sbin/sshd sshd -i -46 # ssh IPv4 and IPV6 service
finger stream tcp46 nowait/3/10 nobody /usr/libexec/fingerd fingerd –s # finger IPv4

ntalk dgram udp wait tty:tty /usr/libexec/ntalkd ntalkd # talk
pop3 stream tcp46 nowait root /usr/local/libexec/popper popper # pop3 IPv4 and IPV6 service

In some cases, is possible that ined service do not start. A solution is manual
starting of a specific service (/usr/libexec/ftpd -46Dh) or creating of an executable shell
script and place-it in an rc.d directory:

-r-xr-xr-x 1 root wheel 60 Feb 12 12:34 /usr/local/etc/rc.d/ftpd.sh (ls –al)
/usr/libexec/ftpd -46Dh && echo -n ' ftpd' (ftpd.sh file content)

The Hypertext Transfer Protocol Server can be provided also by many
applications such as httpd (apache@apache.org), bozohttpd (Janos.Mohacsi@bsd.hu), dhttpd
(gslin@ccca.nctu.edu.tw), fhttpd (ports@FreeBSD.org), micro_httpd (user@unknown.nu),
mini_httpd (se@FreeBSD.org), tclhttpd (mi@aldan.algebra.com), thttpd (anders@FreeBSD.org),
w3c-httpd (ports@FreeBSD.org), but full featured and multiplatform capable remains httpd
from Apache [8]. The most important feature of Apache web server is PHP language
modules support, which transform our web server into a real client-server interactive
application. For httpd service (/usr/local/etc/apache2/httpd.conf): Listen 80 (httpd port), <IfModule
mod_php5.c>\r\n AddType application/x-httpd-php .php\r\n AddType application/x-httpd-php-source
.phps\r\n </IfModule> # not included by the default but required to work

For PHP module (/usr/local/etc/php.ini):
precision = 14 \r\n expose_php = On \r\n max_execution_time = 3000 \r\n max_input_time = 600 \r\n
memory_limit = 128M \r\n post_max_size = 8M \r\n file_uploads = On \r\n upload_max_filesize = 8M
\r\n display_errors = On (for production web sites, turn this feature Off).

For squid service (/usr/local/etc/squid/squid.conf) the most important section is for
proxyed IP’s: acl network src 172.27.211.1 172.27.211.2 193.226.7.200 192.168.211.2\r\n http_access
allow network\r\n acl ppp src 192.168.211.0/24

4 of 6

mailto:apache@apache.org
mailto:Janos.Mohacsi@bsd.hu
mailto:gslin@ccca.nctu.edu.tw
mailto:ports@FreeBSD.org
mailto:user@unknown.nu
mailto:se@FreeBSD.org
mailto:mi@aldan.algebra.com
mailto:anders@FreeBSD.org
mailto:ports@FreeBSD.org

A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania
6. PHP LANGUAGE CAPABILITIES

 The PHP language has a rich strong functions library, which can significantly
shorten the algorithm design and implementation. In the following, some of them
(already tested ones) are presented, using sequences of our first program for system
information: $b = preg_split("/[\n]/",$a,-1,PREG_SPLIT_NO_EMPTY); (split string into an array
using a perl-style regular expression as a delimiter), $c = explode(" ",$b[$i]); (splits a string
on string separator and return array of components), $a= ùptimè ; (PHP supports one
execution operator: backticks - ``). A set of shell execution applications can be used
with execution operator to collect information: $a= c̀at /etc/fstab | grep swap̀ ;

The output data download procedure to the client is achieved via a header
function: header("Content-type: application/octet-stream");\r\n header('Content-Disposition: attachment;
filename="'. l_max_cycle.'".txt"');

7. A PERFORMANCE COUNTER APPLICATION

 An application was used as performance counter. It has a web interface:

<form method='post' action='hin.php'
enctype='multipart/form-data'>
<input type='file' name='file'>
<input type='submit'>
</form>

Fig. 5. Submit form for the hin.php application

About application exploiting experience: there is a bug in Microsoft Internet
Explorer 4.01 that does not allow header incomings for downloading of the output file.
There is no paper devoted to this subject, in our best knowledge. There is also a bug in
Microsoft Internet Explorer 5.5 that interferes with this, which can be solved by
upgrading to Service Pack 2 or later. Anyway, this problem does not affect our program.

The output data of execution for all three servers is presented in table 1:

Table 1. Statistics of the hin.php Program Execution
ip name CPU RAM mics (start) s. (start) mics (stop) s. (stop) time (s)

140 j 2P166MMX 128 0.565873 1077348916 0.213418 1077349252 335.6475
211 ns P2/400 256 0.634248 1077349090 0.432039 1077349225 134.7978
200 vl P3/800 512 0.623252 1077305562 0.632815 1077305616 54.00956

 The data from table 1 allow us to put on a chart the compared results.

0
50

100
150
200
250
300
350

0 0 .00 1 0 .002 0 .003 0 .004 0 .005 0 .006 0 .007

1 /C P U fre q . (s)

166 MHz
400 MHz
800 MHz

Fig. 6. Execution time vs. 1/CPU frequency

 An observation is immediate: the time-time dependence from one generation to
another one of Pentiums is almost linear, considering only the usage of pointer, string,
and integer instructions (without any floating point instructions). In terms of
performance, it means just a speed meter.

5 of 6

A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

6 of 6

 Also note that: the usage of dual processor system is not different from the
single processor one. A possible explanation comes from the algorithm design, which is
classical, not a parallel one. About deviation from linear dependence (Fig. 6 - all lines
are draws from 0): it appears that the same real time for the processor is used more
efficiently for instructions processing in P II processors in comparison to the P
processors and the jump is more obviously at P III architectures.

7. CONCLUSIONS

 The feature of boot floppies allows us to install FreeBSD even if we do not have
a FreeBSD CD or CD-drive in the system. CVSup mechanism offers an efficient way to
maintain and update the system. The kernel recompilation allows us to improve the
performance of the system, in terms of speed and memory management.
 Looking at hardware characteristics and including corresponding options in
kernel are obtained a better exploiting of the hardware resources. More, some specific
hardware are then detected and configured for use. Creating a backup copy of the
kernel, we can undo any action of kernel reinstalling.
 If some service does not start automatically, from unknown reasons (such as ftpd
on j.academicdirect.ro server), we can try to start manually and after that we can create
a script for auto start. Another exemplified situation show that not always the
installation scripts puts all required data in configuration files (AddType application/x-
httpd-php .php) and if a module does not start, a good idea is to look carefully at service
configuration file.
 The PHP language offers a very good interface with system utilities and an
efficient way to develop client-server applications. The application which tests both
PHP capabilities and system performance, proves that, even if the constant controlling
the number of consecutive calls of a recursive function has big values (like 40 or 50),
the program does not crash. The comparative study on the three Intel-based systems
showed the qualitative difference among various Pentium processor architectures.
Surprisingly (or not), using a dual processor system within an interactive time-sharing
operating system does not mean that the system makes parallel processing.

 REFERENCES

1. UNIX-like operating system official http sites: debian.org (Debian), www.linux.org (Linux), lindows.com
(LinwowsOS), ibm.com/servers/aix/os (AIX), www.gnu.org (GNU), hp.com/products1/unix/operating (HP-
UX), opengroup.org (OSF), sun.com/software/solaris (Solaris), www.bsd.org (BSD/OS), netbsd.org
(NetBSD), openbsd.org (OpenBSD), freebsd.org (FreeBSD), www.trustedbsd.org (TrustedBSD),
picobsd.org (PicoBSD)
2. http://www.bartleby.com/61, The American Heritage Dictionary of the English Language, Fourth Edition
3. http://www.delorie.com/gnu/docs/vera, Virtual Entity of Relevant Acronyms, The Free Software Found.
4. www.freebsd.org/cgi/man.cgi, FreeBSD Hypertext Man Pages
5. www.php.net, The PHP Group (Arntzen T. C., Bakken S., Caraveo S., Gutmans A., Lerdorf R., Ruby S.,
Schumann S., Suraski Z., Winstead J., Zmievski A.)
6. http://lejpt.academicdirect.ro/data/03/01_40.pdf, Jäntschi L., (2003) Installing and Testing a FreeBSD Server
Operating System, Leonardo Electronic Journal of Practices and Technologies, 3, p. 1-30.
7. http://server.rotld.ro/cgi-bin/whois?whois=academicdirect.ro, Romanian National RD Computer Network
8. http://www.apache.org, The Apache Software Foundation

http://www.linux.org/
http://www.gnu.org/
http://www.bsd.org/
http://www.trustedbsd.org/
http://www.bartleby.com/61
http://www.delorie.com/gnu/docs/vera/
http://www.freebsd.org/cgi/man.cgi
http://www.php.net/
http://lejpt.academicdirect.ro/data/03/01_40.pdf
http://server.rotld.ro/cgi-bin/whois?whois=academicdirect.ro
http://www.apache.org/

