
Google, Inc.

 Subscribe (Full Service) Register (Limited Service, Free) Login

Search: The ACM Digital Library The Guide

nmlkj nmlkji

 Feedback Report a problem Satisfaction survey

Application of software data dependency detection algorithm in superscalar computer
architecture
Source International Conference Computer Systems and Technologies archive

Proceedings of the 4th international conference conference on Computer systems and technologies:
e-Learning table of contents
Rousse, Bulgaria
Pages: 107 - 112
Year of Publication: 2003
ISBN:954-9641-33-3

Authors Elena Zaharieva-Stoyanova Department of Computer Systems and Technologies, Technical University of Gabrovo
Lorentz Jäntschi Department of Chemistry, Technical University of Cluj-Napoca, Romania

Sponsors : Information and Communication Technologies Development Agency
ACM: Association for Computing Machinery

Publisher ACM Press New York, NY, USA

ABSTRACT

This paper treats the problem of detection of data hazards in superscalar execution. The algorithm of
independent instruction detection is represented. It can be used in out-of-order execution logic and code
optimised algorithms. The algorithm uses the platform of Intel Pentium architecture and analyse the IA-32
instruction set. The algorithm is implemented in a software simulator, which represents the way the Intel
Pentium Processor works. It can be used in software module, which simulates out-of-order execution logic.

REFERENCES

Note: OCR errors may be found in this Reference List extracted from the full text article. ACM has opted to
expose the complete List rather than only correct and linked references.

1 {1} Hinton G., D. Sager, M. Upton, D. Boggs, D.Carmean, A. Kyker and P. Roussel, The Micro architecture
of the Pentium 4 Processor, Intel Technology Journal Q1, 2001.

2 {2} Hlavicka J., Computer Architecture, CVUT Publishing house, 1999.

3 {3} Keshava J. and Vl. Pentkovski, Pentium III Processor Implementation Tradeoffs, Intel Corp., Intel
Technology Journal Q2, 1999.

4 {4} Zaharieva-Stoyanova, E., Simulation Models Of Pipelining in Intel Pentium Processors, IEEE-TTTC
International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 2002, pp. 373-
378.

5 {5} Zaharieva-Stoyanova, E., Simulation of Pipelined Data Processing in Intel Pentium Processor,
CompSysTech, 2002, Sofia, pp I.14-1 -I.14-5.

6 {6} A Detailed Look Inside the Intel NetBurst Micro-Architecture of the Intel Pentium 4 Processor, Intel
Corporation, 2000.

7 {7} IA-32 Intel Architecture Software Developer's Manual, Intel Corporation. 2001.

8 {8} Pentium, NiSoft Ltd, 1998.

INDEX TERMS

Primary Classification:
 C. Computer Systems Organization

 C.0 GENERAL

Additional Information: abstract references index terms collaborative colleagues

Tools and Actions: Find similar Articles Review this Article
Save this Article to a Binder Display Formats: BibTex EndNote ACM Ref

DOI Bookmark: Use this link to bookmark this Article: http://doi.acm.org/10.1145/973620.973638
What is a DOI?

Application of software data dependency detection algorithm in superscalar computer architecture1 Page 1 of 2

1/14/2007http://portal.acm.org/citation.cfm?doid=973620.973638

 Subjects: Instruction set design (e.g., RISC, CISC, VLIW)

Additional Classification:
 B. Hardware

 B.1 CONTROL STRUCTURES AND MICROPROGRAMMING

 B.1.5 Microcode Applications

 Subjects: Instruction set interpretation

 C. Computer Systems Organization

 C.1 PROCESSOR ARCHITECTURES

 C.1.1 Single Data Stream Architectures

 Subjects: RISC/CISC, VLIW architectures

 I. Computing Methodologies

 I.6 SIMULATION AND MODELING

 I.6.8 Types of Simulation

 Subjects: Parallel

General Terms:
Performance, Reliability

Keywords:
IA-32 architecture, RISC architecture, data hazards, data-flow analysis, intel pentium processor, simulators

Collaborative Colleagues:

The ACM Portal is published by the Association for Computing Machinery. Copyright © 2007 ACM, Inc.

Terms of Usage Privacy Policy Code of Ethics Contact Us

Useful downloads: Adobe Acrobat QuickTime Windows Media Player Real Player

Lorentz Jäntschi: Elena Zaharieva-Stoyanova

Elena Zaharieva-Stoyanova: Lorentz Jäntschi

Application of software data dependency detection algorithm in superscalar computer architecture2 Page 2 of 2

1/14/2007http://portal.acm.org/citation.cfm?doid=973620.973638

Proceedings of the 4th international conference conference on Computer systems and technologies:
e-Learning 107

- -

Application of Software Data Dependency Detection Algorithm in

Superscalar Computer Architecture

Elena Zaharieva-Stoyanova, Lorentz Jäntschi

Abstract: This paper treats the problem of detection of data hazards in superscalar execution.
The algorithm of independent instruction detection is represented. It can be used in out-of-order
execution logic and code optimised algorithms. The algorithm uses the platform of Intel Pentium
architecture and analyse the IA-32 instruction set. The algorithm is implemented in a software simulator,
which represents the way the Intel Pentium Processor works. It can be used in software module, which
simulates out-of-order execution logic.

Key words: Simulators, RISC architecture, Intel Pentium processor, IA-32 architecture, Data
hazards, Data-flow analysis.

I. INTRODUCTION

Instruction-level parallelism is a frequently used technique in up-do-date

processors' architectures. It makes it possible to execute more than one instruction per
cycle. Today’s processors use more than one pipeline, which means that they have
superscalar architecture.

Although the pipeline usage is a feature of RISC processors, this technique is
used also in processors with mixed architecture - a mix of RISC and CISC. For
example, developing IA-32 architecture, Intel Corporation introduced superscalar
technique in the Pentium processor. The first Intel Pentium processor has two 5-stage
pipelines. Next comes 3-ways supersclar P6 architecture with 10-stage pipelines [3].
The number of pipeline stages in NetBurst architecture is increased to 20 [1].

Because of the possibility to execute more than one instruction per cycle, the
instruction-level parallelism increases the performance highly. On the other hand, an
ideal sequence of uniform instructions is rare. The execution of one instruction often
depends on the result of the previous instruction’s execution. This situation is called
data hazard [2].

Data hazards make the performance lower. The situation when the next
instruction depends on the results of the previous one is occurred very often. It means
that these instructions cannot be executed together.

To decrease the influence of data hazards, P6 processor architecture introduced
the concept of dynamic execution. It makes it possible to get as far as out-of-order
execution in a superscalar implementation. Dynamic execution incorporates the
concepts dynamic data flow analysis and speculative execution [6][7].

This paper treats the problem of detection of data hazards in superscalar
execution. The algorithms of independent instruction detection are represented. They
can be used in out-of-order execution logic and code optimized algorithms. The
algorithms use the platform of Intel Pentium architecture and analyze the IA-32
instruction set. The algorithms are implemented in a software simulator, which
represents the way the Intel Pentium Processor works.

II. DATA HAZARDS IN SUPERSCALAR ARCHITECTURES
The superscalar architecture makes it possible to execute more than one

instruction per cycle. To execute several instructions simultaneously, the instructions
have to be arranged in an ideal sequence, and that happens rarely. Every deviation
from the ideal sequence of uniform instructions is called a hazard [2].

Proceedings of the 4th international conference conference on Computer systems and technologies:
e-Learning 108

- -

The hazard is situation that prevents the next instruction in the instruction stream
from executing during its designated clock cycle. Hazards in pipelines can make it
necessary to stall pipelines. They reduce the performance from the ideal speedup
gained by pipelining and superscalar execution.

There are three types of hazards: structural, data and control hazards.
Structural hazards arise from resource conflicts in the hardware. In these cases, the
hardware cannot support some combination of instructions in simultaneous overlapped
execution. Data hazards appear when the execution of an instruction depends on the
results of previous instruction. Control hazards arise from the pipelining of branches,
calls and other instructions that change Program Counter. Control hazards reduce the
performance when these types of instructions occur in a program very often.

Structural hazards could be avoided by duplicating hardware resources. To avoid
control hazards, the branch prediction technique is used.

Data hazards are more common than the rest. As it was mentioned, they arise
because of data interdependency in the instructions’ order. Depending on the order of
read and writes access in the instruction data hazards may be classified as follows:

• RAW (read after write);
• WAR (write after read);
• WAW (write after write).

RAW data hazard is the most common type. It arises when the next instruction

tries to read a source before the previous instruction writes to it. So, the next
instruction gets the old value incorrectly (fig.1a). WAR hazard arises when the next
instruction writes to a destination before the previous instruction reads it. In this case,
the previous instruction gets a new value incorrectly (fig. 1b). WAW data hazard is
situation when the next instruction tries to write to a destination before a previous
instruction writes to it and it results in changes done in the wrong order (fig.1c).

Fig. 1. The examples of data hazards

It is difficult to find a solution to the problem with data hazards. One possible

solution of this problem is a simple hardware technique called a forwarding or
bypass. This technique works as follows: The ALU result is always fed back to the
ALU input latches. If the hardware detects that the next instruction uses the results

Instr.2 rd rs1 rs2

Instr.1 rd rs1 rs2

Instr.2 rd rs1 rs2

Instr.1 rd rs1 rs2

Instr.2 rd rs1 rs2

Instr.1 rd rs1 rs2

(a) RAW data hazard (b) WAR data hazard

(c) WAW data hazard

Proceedings of the 4th international conference conference on Computer systems and technologies:
e-Learning 109

- -

from the previous instruction, the control logic selects the forwarded result as the ALU
input rather than the value read from the register files.

RAW data hazards result in performance, which is lower than that of one-pipeline
architectures. The situation when the next instruction depends on the results of the
previous one is encountered very often. It means that these instructions cannot be
executed together. For example, the first Intel Pentium has two 5-stage pipelines. If
two neighbor instructions are independent they could be decoupled and executed
together in U and V pipeline. If there is data dependency in the instructions, the
second instruction waits to be decoupled with a next one [8].
As it mentioned, to decrease the influence of data hazards, P6 processor architecture
introduced the concept of dynamic execution. Dynamic execution incorporates the
concepts dynamic data flow analysis and speculative execution [6][7].

III. SOFTWARE DATA DEPENDENCY DETECTION ALGORITHM

To find data hazards in program execution order, it is necessary to observe

neighbour instructions. If they use the same sources and a destination, it is possible to
arise some type of data hazards.

The number of the neighbour instruction observed by hazard detection algorithm
depends on the pipelines' number. For example, two-way superscalar architecture in
Intel Pentium P5 needs to find whether there is dependency between two neighbour
instructions [8].

To determine software dependency between two neighbor instructions, it is
necessary to detect whether they use the same data operands or not. Instructions use
register, memory, or immediate values as data operands. In this paper the RISC
architecture features are used.

RISC processors have Load/Store architecture. It means that only two special
instructions use a memory operand: Load and Store. Other instructions, like ALU type
addition and subtraction, use registers and do not use memory.

RISC instructions use three operands. In this case, the source operands are
reusable. The common instruction format is:

Instruction Rd, Rs1, Rs2,
where: Rd is destination; Rs1, Rs2 are sources.
The algorithm keeps the result data in a buffer with size equal to the number of

instructions. If there is data dependency between instructions, the corresponding value
in the buffer is: 1 for RAW, 2 for WAR, 4 for WAW. Otherwise, the value is 0. The
value at the start is 0 because the first instruction is independent.

Each instruction could be described with following information:
• code - instruction code;
• Rd - destination;
• Rs1 - first source;
• Rs2 - second source.

The algorithm for detection of software dependency is given on fig. 2.
A real program would have to verify if there are any identical registers: EAX and

AX, for example. This would depend on the particular algorithm implementation. No
information about instruction code and addressing mode is needed in most cases. This
information is used for full instruction description.

Proceedings of the 4th international conference conference on Computer systems and technologies:
e-Learning 110

- -

Step 1: Determining of first instruction as undependable.
buffer[0]=0;
for i = (first instruction) to (last instruction – 1)
 {Step 2: Determine the information for the instruction i: code1, Rd1, Rs11, Rs12
 Step 3: Determine the information for the instruction i+1: code2, Rd2, Rs21,
Rs22
 Step 4: Determine if there is RAW data hazard:
 if ((Rs21==Rd1) or (Rs22==Rd1)) buffer[i]=1;
 Step 5: Determine if there is WAR data hazard:
 if ((Rs11==Rd2) or (Rs12==Rd2)) buffer[i]=2;
 Step 6: Determine if there is WAW data hazard:
 if ((Rs11==Rd2) or (Rs12==Rd2)) buffer[i]=4;
 }

Fig. 2. Algorithm for detection of software data dependency

IV. APPLICATION OF SOFTWARE DATA DEPENDENCY DETECTION
ALGORITHM

The represented algorithm is implemented in software simulator of Intel Pentium
architecture.

Simulation is a frequently used technique in computer architecture development.
The software simulators could be used as a tool for studying these architectures and
optimisation processes. The existing demo programs show these principals just as an
overall picture. The reason to create a new simulator is to show the base concepts of
the Intel Pentium processors working by means of short assembly programs. This
simulator could be used also for source code efficiency evaluation [4][5]. This type of
simulator would be very useful in higher-school education to illustrate the pipelining in
a superscalar architecture. Moreover, it shows a commonly used real processor as
Intel Pentium.

The base structure of Intel Pentium processor simulation model of is given in
[5][6]. The Graphics User Interface (GUI) consists of the following forms:

• Source code window - it shows the source code in the code segment (.code).
• Data window – it shows the contents of the memory bytes, where the standard

data segment (.data) is allocated.
• Stack window – it shows the contents of the memory bytes, where the stack

segment (.stack) is allocated.
• Registers window - it shows the contents of general-purpose registers and

the flags.
• Pipelines window - this is a graphics representation of the work of the two

pipelines for the next 5 -10 cycles.
Apart from the GUI, the program includes the following modules:
• Load Source – it loads source code in the simulator. It also finds syntax errors

in the source.
• Cycles per Instruction – it defines the number of the cycles needed for the

execution of the current instruction; it also determines the type, the number of the
operands, and the address mode.

• Coupling of Instructions - it defines whether two instructions can be coupled
and executed simultaneously avoiding data hazard.

Proceedings of the 4th international conference conference on Computer systems and technologies:
e-Learning 111

- -

• Branch Prediction - this program simulates the functioning of branch
prediction. If there is a jump, a branch, or a call instruction, branch prediction proceeds
to predict if the branch shall be taken or not.

The simulator of IA-32 architecture consists of four base modules. One of them is
Coupling of instructions. It determines whether two instructions can be coupled and
executed together avoiding data hazards. In this paper the algorithm of module
Coupling of instructions is represented.

Each program instruction gives itself the following information:
• a source operand;
• a destination operand;
• is it a simple instruction or not;
• is it an ALU instruction or not.

The information about instruction code is useless in this case.
According to the decoupling rules, only hardware-executed instructions can be

decoupled and executed together. This kind of instructions are: MOV, LEA, PUSH,
POP; ALU type instructions like ADD, ADC, SUB, SBB, AND, OR, XOR, NOT.

ALU type instructions need two sources. Intel Pentium has mixed architecture -
between RISC and CISC. IA-32 instructions use two data operands, so instructions
like ADD use the same operand for destination and first source. That is why it is
necessary to know if it is an ALU instruction or not.

This information is described as follows:
struct instruction_info
{ char destination[4];
 char source[4];
 unsigned char s_type:1;
 unsigned char alu_type:1;
 };
If the instruction is hardware-executed, s_type is 1; if the instruction is one of

ADD, ADC, SUB, SBB, AND, OR, XOR, NOT, alu_type is 1. Destination and source
are destination/source data or register.

struct instruction_info prev, next;
/* prev, next keep information about two neighbors instructions */
int i, n; // n is number of instructions
unsigned char *buffer; // the result buffer
buffer = new char [n];
buffer[0] = 0; // first instruction is independent for (i=1; i<n; i++)
 { /* determining the information for the previous instruction i-1; prev stores this
information */
 /* determining the information for next instruction i; next stores this information */
 if(strcmp(prev.destination,next.source))buffer[I]=1;
 else *(buffer+i) = 0;
 if((next.alu_type)&&strcmp(prev.destination, next.destination) buffer[I] = 1;
}
delete [] buffer;

Fig. 3. The algorithm of module Coupling of Instructions

The program verifies also if the source and destination registers are identical. For

example, registers EAX and AX are identical but the registers AH and AL is not.
This algorithm is realized by a function in the Coupling of instructions module,

which searches for independent instructions to decouple. It is given on fig.3.

Proceedings of the 4th international conference conference on Computer systems and technologies:
e-Learning 112

- -

V. CONCLUSION
Instruction-level parallelism makes it possible to execute more than one

instruction per cycle. Today’s processors use more than one pipeline, which means
that they have superscalar architecture.

Instruction-level parallelism increases the performance but an ideal sequence of
uniform instructions is rare. The execution of one instruction often depends on the
result of the previous instruction’s execution. This situation is a data hazard. Data
hazards reduce the architecture performance.

This paper treats the problem of detection of data hazards in superscalar
execution. The algorithm of independent instruction detection is represented.

The algorithm is implemented in a software simulator, which represents the way
the Intel Pentium Processor works. It simulates decoupling of instructions.

Simulating and showing all processes related with Pentium processor working at
real-time is too hard task and it is not necessary for the objective of this research. The
objective is creation of a simulator, which is able to show the pipelining in a
superscalar architecture using a real existing architecture as an example.

To be created a software simulator of Intel Pentium processors' functionality, it is
necessary to simulate data flow analysis. In this paper the algorithm of independent
instruction detection is represented. The algorithm is implemented in a program
module Coupling of instruction, which is a part of software simulator of IA-32
architecture.

REFERENCES
[1] Hinton G., D. Sager, M. Upton, D. Boggs, D.Carmean , A. Kyker and P.

Roussel, The Micro architecture of the Pentium 4 Processor, Intel Technology Journal
Q1, 2001.

[2] Hlavicka J., Computer Architecture, CVUT Publishing house, 1999.
[3] Keshava J. and Vl. Pentkovski, Pentium III Processor Implementation

Tradeoffs, Intel Corp., Intel Technology Journal Q2, 1999.
[4] Zaharieva-Stoyanova, E., Simulation Models Of Pipelining in Intel Pentium

Processors, IEEE-TTTC International Conference on Automation, Quality and Testing,
Robotics, Cluj-Napoca, Romania, 2002, pp. 373-378.

[5] Zaharieva-Stoyanova, E., Simulation of Pipelined Data Processing in Intel
Pentium Processor, CompSysTech, 2002, Sofia, pp I.14-1 –I.14-5 .

[6] A Detailed Look Inside the Intel NetBurst Micro-Architecture of the Intel
Pentium 4 Processor, Intel Corporation, 2000.

[7] IA-32 Intel Architecture Software Developer's Manual, Intel Corporation. 2001.
[8] Pentium, NiSoft Ltd, 1998.

ABOUT THE AUTHORS
Assist. Prof. Elena Zaharieva-Stoyanova, PhD, Department of Computer Systems

and Technologies, Technical University of Gabrovo, Phone: +359 66 223 529, Е-mail:
Zaharieva@tugab.bg.

Assist. Prof. Lorentz Jäntschi, PhD, Department of Chemistry, Technical
University of Cluj-Napoca, Romania, Phone: + 40 766239997, E-mail:
lori@webmail.academicdirect.ro

