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ABSTRACT 

This paper treats the problem of detection of data hazards in superscalar execution. The algorithm of 
independent instruction detection is represented. It can be used in out-of-order execution logic and code 
optimised algorithms. The algorithm uses the platform of Intel Pentium architecture and analyse the IA-32 
instruction set. The algorithm is implemented in a software simulator, which represents the way the Intel 
Pentium Processor works. It can be used in software module, which simulates out-of-order execution logic.  
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Application of Software Data Dependency Detection Algorithm in 

Superscalar Computer Architecture 
 

Elena Zaharieva-Stoyanova, Lorentz Jäntschi  
 

Abstract: This paper treats the problem of detection of data hazards in superscalar execution. 
The algorithm of independent instruction detection is represented. It can be used in out-of-order 
execution logic and code optimised algorithms. The algorithm uses the platform of Intel Pentium 
architecture and analyse the IA-32 instruction set. The algorithm is implemented in a software simulator, 
which represents the way the Intel Pentium Processor works. It can be used in software module, which 
simulates out-of-order execution logic.  

Key words: Simulators, RISC architecture, Intel Pentium processor, IA-32 architecture, Data 
hazards, Data-flow analysis. 
 

I. INTRODUCTION 
 
Instruction-level parallelism is a frequently used technique in up-do-date 

processors' architectures. It makes it possible to execute more than one instruction per 
cycle. Today’s processors use more than one pipeline, which means that they have 
superscalar architecture.  

Although the pipeline usage is a feature of RISC processors, this technique is 
used also in processors with mixed architecture - a mix of RISC and CISC. For 
example, developing IA-32 architecture, Intel Corporation introduced superscalar 
technique in the Pentium processor. The first Intel Pentium processor has two 5-stage 
pipelines. Next comes 3-ways supersclar P6 architecture with 10-stage pipelines [3]. 
The number of pipeline stages in NetBurst architecture is increased to 20 [1]. 

Because of the possibility to execute more than one instruction per cycle, the 
instruction-level parallelism increases the performance highly. On the other hand, an 
ideal sequence of uniform instructions is rare. The execution of one instruction often 
depends on the result of the previous instruction’s execution. This situation is called 
data hazard [2]. 

Data hazards make the performance lower. The situation when the next 
instruction depends on the results of the previous one is occurred very often. It means 
that these instructions cannot be executed together. 

To decrease the influence of data hazards, P6 processor architecture introduced 
the concept of dynamic execution. It makes it possible to get as far as out-of-order 
execution in a superscalar implementation. Dynamic execution incorporates the 
concepts dynamic data flow analysis and speculative execution [6][7]. 

This paper treats the problem of detection of data hazards in superscalar 
execution. The algorithms of independent instruction detection are represented. They 
can be used in out-of-order execution logic and code optimized algorithms. The 
algorithms use the platform of Intel Pentium architecture and analyze the IA-32 
instruction set. The algorithms are implemented in a software simulator, which 
represents the way the Intel Pentium Processor works. 

II. DATA HAZARDS IN SUPERSCALAR ARCHITECTURES 
The superscalar architecture makes it possible to execute more than one 

instruction per cycle. To execute several instructions simultaneously, the instructions 
have to be arranged in an ideal sequence, and that happens rarely. Every deviation 
from the ideal sequence of uniform instructions is called a hazard [2]. 
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The hazard is situation that prevents the next instruction in the instruction stream 
from executing during its designated clock cycle. Hazards in pipelines can make it 
necessary to stall pipelines. They reduce the performance from the ideal speedup 
gained by pipelining and superscalar execution.  

There are three types of hazards: structural, data and control hazards. 
Structural hazards arise from resource conflicts in the hardware. In these cases, the 
hardware cannot support some combination of instructions in simultaneous overlapped 
execution.  Data hazards appear when the execution of an instruction depends on the 
results of previous instruction. Control hazards arise from the pipelining of branches, 
calls and other instructions that change Program Counter. Control hazards reduce the 
performance when these types of instructions occur in a program very often. 

Structural hazards could be avoided by duplicating hardware resources. To avoid 
control hazards, the branch prediction technique is used. 

Data hazards are more common than the rest. As it was mentioned, they arise 
because of data interdependency in the instructions’ order. Depending on the order of 
read and writes access in the instruction data hazards may be classified as follows: 

• RAW (read after write); 
• WAR (write after read); 
• WAW (write after write). 

 
RAW data hazard is the most common type. It arises when the next instruction 

tries to read a source before the previous instruction writes to it. So, the next 
instruction gets the old value incorrectly (fig.1a). WAR hazard arises when the next 
instruction writes to a destination before the previous instruction reads it. In this case, 
the previous instruction gets a new value incorrectly (fig. 1b). WAW data hazard is 
situation when the next instruction tries to write to a destination before a previous 
instruction writes to it and it results in changes done in the wrong order (fig.1c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. The examples of data hazards 

 
It is difficult to find a solution to the problem with data hazards. One possible 

solution of this problem is a simple hardware technique called a forwarding or 
bypass. This technique works as follows: The ALU result is always fed back to the 
ALU input latches. If the hardware detects that the next instruction uses the results 

Instr.2 rd rs1 rs2 

Instr.1 rd rs1 rs2 

Instr.2 rd rs1 rs2 

Instr.1 rd rs1 rs2 

Instr.2 rd rs1 rs2 

Instr.1 rd rs1 rs2 

(a) RAW data hazard (b) WAR data hazard 

(c) WAW data hazard 
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from the previous instruction, the control logic selects the forwarded result as the ALU 
input rather than the value read from the register files. 

RAW data hazards result in performance, which is lower than that of one-pipeline 
architectures. The situation when the next instruction depends on the results of the 
previous one is encountered very often. It means that these instructions cannot be 
executed together. For example, the first Intel Pentium has two 5-stage pipelines. If 
two neighbor instructions are independent they could be decoupled and executed 
together in U and V pipeline. If there is data dependency in the instructions, the 
second instruction waits to be decoupled with a next one [8]. 
As it mentioned, to decrease the influence of data hazards, P6 processor architecture 
introduced the concept of dynamic execution. Dynamic execution incorporates the 
concepts dynamic data flow analysis and speculative execution [6][7]. 
 

 
III. SOFTWARE DATA DEPENDENCY DETECTION ALGORITHM 

 
To find data hazards in program execution order, it is necessary to observe 

neighbour instructions. If they use the same sources and a destination, it is possible to 
arise some type of data hazards. 

The number of the neighbour instruction observed by hazard detection algorithm 
depends on the pipelines' number. For example, two-way superscalar architecture in 
Intel Pentium P5 needs to find whether there is dependency between two neighbour 
instructions [8]. 

To determine software dependency between two neighbor instructions, it is 
necessary to detect whether they use the same data operands or not. Instructions use 
register, memory, or immediate values as data operands. In this paper the RISC 
architecture features are used.  

RISC processors have Load/Store architecture. It means that only two special 
instructions use a memory operand: Load and Store. Other instructions, like ALU type 
addition and subtraction, use registers and do not use memory. 

RISC instructions use three operands. In this case, the source operands are 
reusable. The common instruction format is: 

Instruction   Rd, Rs1, Rs2, 
where: Rd is destination; Rs1, Rs2 are sources. 
The algorithm keeps the result data in a buffer with size equal to the number of 

instructions. If there is data dependency between instructions, the corresponding value 
in the buffer is: 1 for RAW, 2 for WAR, 4 for WAW. Otherwise, the value is 0. The 
value at the start is 0 because the first instruction is independent.  

Each instruction could be described with following information: 
• code - instruction code; 
• Rd - destination; 
• Rs1 - first source; 
• Rs2 - second source. 

 
The algorithm for detection of software dependency is given on fig. 2. 
A real program would have to verify if there are any identical registers: EAX and 

AX, for example. This would depend on the particular algorithm implementation. No 
information about instruction code and addressing mode is needed in most cases. This 
information is used for full instruction description.  
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Step 1: Determining of first instruction as undependable. 
buffer[0]=0; 
for i = (first instruction) to (last instruction – 1) 
 {Step 2: Determine the information for the instruction i: code1, Rd1, Rs11, Rs12 
    Step 3: Determine the information for the instruction i+1: code2, Rd2, Rs21, 
Rs22 
    Step 4: Determine if there is RAW data hazard:   
    if ((Rs21==Rd1) or (Rs22==Rd1)) buffer[i]=1; 
    Step 5: Determine if there is WAR data hazard:  
    if ((Rs11==Rd2) or (Rs12==Rd2)) buffer[i]=2; 
    Step 6: Determine if there is WAW data hazard: 
    if ((Rs11==Rd2) or (Rs12==Rd2)) buffer[i]=4; 
 } 

Fig. 2. Algorithm for detection of software data dependency 
 

IV. APPLICATION OF SOFTWARE DATA DEPENDENCY DETECTION 
ALGORITHM 

The represented algorithm is implemented in software simulator of Intel Pentium 
architecture.  

Simulation is a frequently used technique in computer architecture development. 
The software simulators could be used as a tool for studying these architectures and 
optimisation processes. The existing demo programs show these principals just as an 
overall picture. The reason to create a new simulator is to show the base concepts of 
the Intel Pentium processors working by means of short assembly programs. This 
simulator could be used also for source code efficiency evaluation [4][5]. This type of 
simulator would be very useful in higher-school education to illustrate the pipelining in 
a superscalar architecture. Moreover, it shows a commonly used real processor as 
Intel Pentium. 

The base structure of Intel Pentium processor simulation model of is given in 
[5][6]. The Graphics User Interface (GUI) consists of the following forms: 

• Source code window - it shows the source code in the code segment (.code).  
• Data window – it shows the contents of the memory bytes, where the standard 

data segment (.data) is allocated. 
• Stack window – it shows the contents of the memory bytes, where the stack 

segment (.stack) is allocated. 
• Registers window -  it shows the contents of general-purpose registers and 

the flags.  
• Pipelines window - this is a graphics representation of the work of the two 

pipelines for the next 5 -10 cycles.  
Apart from the GUI, the program includes the following modules: 
• Load Source – it loads source code in the simulator. It also finds syntax errors 

in the source. 
• Cycles per Instruction  – it defines the number of the cycles needed for the 

execution of the current instruction; it also determines the type, the number of the 
operands, and the address mode. 

• Coupling of Instructions - it defines whether two instructions can be coupled 
and executed simultaneously avoiding data hazard. 
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• Branch Prediction - this program simulates the functioning of branch 
prediction. If there is a jump, a branch, or a call instruction, branch prediction proceeds 
to predict if the branch shall be taken or not.  

The simulator of IA-32 architecture consists of four base modules. One of them is 
Coupling of instructions. It determines whether two instructions can be coupled and 
executed together avoiding data hazards.  In this paper the algorithm of module 
Coupling of instructions is represented.  

Each program instruction gives itself the following information: 
• a source operand; 
• a destination operand; 
• is it a simple instruction or not; 
• is it an ALU instruction or not. 

The information about instruction code is useless in this case. 
According to the decoupling rules, only hardware-executed instructions can be 

decoupled and executed together. This kind of instructions are: MOV, LEA, PUSH, 
POP; ALU type instructions like ADD, ADC, SUB, SBB, AND, OR, XOR, NOT. 

ALU type instructions need two sources. Intel Pentium has mixed architecture - 
between RISC and CISC. IA-32 instructions use two data operands, so instructions 
like ADD use the same operand for destination and first source. That is why it is 
necessary to know if it is an ALU instruction or not. 

This information is described as follows: 
struct  instruction_info  
{  char destination[4]; 
   char source[4]; 
   unsigned char s_type:1; 
   unsigned  char  alu_type:1; 
 }; 
If the instruction is hardware-executed, s_type is 1; if the instruction is one of 

ADD, ADC, SUB, SBB, AND, OR, XOR, NOT, alu_type is 1. Destination and source 
are destination/source data or register.  

 
struct instruction_info prev, next;   
/* prev, next keep information about two neighbors instructions */ 
int i, n;  // n is number of instructions 
unsigned char *buffer; // the result buffer 
buffer = new char [n]; 
buffer[0] = 0; // first instruction is independent for (i=1; i<n; i++) 
 { /* determining the information for the  previous instruction i-1; prev stores this 
information */ 
    /* determining the information for next instruction i; next stores this information */ 
 if(strcmp(prev.destination,next.source))buffer[I]=1; 
   else *(buffer+i) = 0; 
 if((next.alu_type)&&strcmp(prev.destination, next.destination) buffer[I] = 1; 
} 
delete [] buffer; 

Fig. 3. The algorithm of module Coupling of Instructions 
 
The program verifies also if the source and destination registers are identical. For 

example, registers EAX and AX are identical but the registers AH and AL is not.  
This algorithm is realized by a function in the Coupling of instructions module, 

which searches for independent instructions to decouple. It is given on fig.3. 
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V. CONCLUSION 
Instruction-level parallelism makes it possible to execute more than one 

instruction per cycle. Today’s processors use more than one pipeline, which means 
that they have superscalar architecture.  

Instruction-level parallelism increases the performance but an ideal sequence of 
uniform instructions is rare. The execution of one instruction often depends on the 
result of the previous instruction’s execution. This situation is a data hazard. Data 
hazards reduce the architecture performance. 

This paper treats the problem of detection of data hazards in superscalar 
execution. The algorithm of independent instruction detection is represented.  

The algorithm is implemented in a software simulator, which represents the way 
the Intel Pentium Processor works. It simulates decoupling of instructions.  

Simulating and showing all processes related with Pentium processor working at 
real-time is too hard task and it is not necessary for the objective of this research. The 
objective is creation of a simulator, which is able to show the pipelining in a 
superscalar architecture using a real existing architecture as an example. 

To be created a software simulator of Intel Pentium processors' functionality, it is 
necessary to simulate data flow analysis. In this paper the algorithm of independent 
instruction detection is represented. The algorithm is implemented in a program 
module Coupling of instruction, which is a part of software simulator of IA-32 
architecture. 
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