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Abstract: Mathematics and computer programming have a major contribution to 

chemistry. Two directions can be identified: one that searches and tries (rich) to 

explain the structural binding and shape of the chemical compounds [1] with 

major applications in QSPR/QSAR studies [2], and applied sciences such as 

engineering of materials or agriculture [3]; the second direction is to models the 

kinetic processes that are involved in chemical reactions [4]. Many such models 

are available here. The present paper describes three variants of well the known 

kinetic models and presents the mathematical equations associated with them. 

The differential equations are numerically solved and fitted with MathCad 

program. 
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Introduction  

 

 The oscillating reactions are the most spectacular and essential for life [5]. All live 

processes are based on one or more oscillating reactions [6,7].  

 The possibility of periodically altering the concentrations of the reactants, the agents and the 

product, in space and time, is a result of the autocatalysis. Fig. 1 represents two temporary 

aspects of the space distribution (distribution in space) of the reaction products through the 

concentration wave front in the proximity of the electron participates in the reaction as a 

reactant. 
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 The oscillating reactions are more than a laboratory curiosity [8,9]. If in the industrial 

processes they appear in few cases, in biochemical systems there are numerous examples of 

oscillating reactions [10,11]. For instance, the oscillating reactions maintain the rhythm 

[12,13]. 

 

 
Fig. 1. Concentration gradient in an oscillating reaction at the t, and at the t + ∆t moments;  

Avi animation: http://lori.academicdirect.ro/free/RO.avi  

 
 A general characteristic of the oscillating reactions in that, under the same conditions, 

all the participants from the reaction chain oscillate with the same frequency but a different 

displacement (lagging) shift. 

 

 

1. Diffusion  

 

 In case of liquid phase, reactant particles must pass through solvent particles and 

collisions of reactants are not frequent such in gases, the mobility of them is much lower [14]. 

From this reason, the collision time is bigger and in this time interval of molecules contact 

appear the probability that the system of molecules to accumulate enough energy to react. The 

molecules of reactant are permanently surrounded by solvent molecules and must be 

considered the entire energy of local assembly. More, the molecules of solvent can active 

participate to reaction as intermediary catalyst of process [15, 16]. In conclusion, the global 
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reaction process in liquids is more complex then gases [17, 18]. Anyway, it can be 

decomposed in simple processes through establishing of a kinetic scheme [19,20].  

 Let a reaction through two reactants, R1 and R2 and let κd be the forming constant of 

R1R2 compound. The reaction process is expressed by: 

  , ν = κ1 2 1R R R R+ → 2 d·[R1]·[R2]     (1) 

 Forming of R1R2 is determined by diffusion characteristics of R1 and R2. Assuming 

that the reaction (1) has a spherical symmetry, the diffusion equation of property ℘ in space 

(r) and time (t) are expressed by: 

  
2

2

(r, t) (r, t) 2 (r, t)(
t r r

∂℘ ∂℘ ∂℘
= Κ ⋅ + ⋅

∂ ∂
)

r∂
    (2) 

 If R2 diffuses through R1, then R1 are in the center of coordinate reference and if 

diffusing property ℘ is R2 concentration [R2], then (2) become: 

  
2

2 2
2

[R ] [R ] [R ]2(
t r r

∂ ∂ ∂
= Κ ⋅ + ⋅

∂ ∂
2 )

r∂
     (3) 

 Reducing the diffusion process to the stationary case, (3) are annulling:  

  
2

2 2
2

[R ] [R ] [R ]20 (
t r r

∂ ∂
= = Κ ⋅ + ⋅

∂ ∂
2 )

r
∂
∂

     (4) 

 To solve and fit the concentration gradient of R2 a second order differential equation 

must be solved: 

  
2

2 2
2

d [R ] d[R ]2 0
dr r dr

+ ⋅ =       (5) 

 The equation (5) has two constants after integration, which it result from limit 

conditions. For simplifying, let us note: 

  2d[R ] r2
dr

=         (6) 

 With (6), the equation (5) becomes: 

  dr2 2 r2 0
dr r

+ ⋅ =        (7) 

 By multiplying of (7) with dr/r2, it becomes a simple differential equation: 

  1 2dr2 dr 0
r2 r
⋅ + ⋅ =        (8) 

 The equation (8) can be integrated member by member, when it results: 
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  2
2

aln(r2) 2 ln(r) a r2 r a r2
r

+ = ⇒ ⋅ = ⇒ =     (9) 

where a is a integration constant. Using again (6) the resulted equation (9) becomes:  

  2 2

ad[R ] dr
r

=         (10) 

 By integration of (10), it result expression of [R2] depending on radius r: 

  2
a[R ] b
r

= −         (11) 

 The value of a, and b parameters are determined from: 

  b = [R2](∞) = [R2]∞ and [R2](r0) = 0     (12)  

where first equality express the fact that at huge distance from R1 molecules, where R2 

concentration is observed one from mass of solution, [R2]0, and the second equality express 

the fact that there exist r0 coordinate from R1 molecules where concentration of R2 are null 

through reaction of R1 and R2. More, r0 is the coordinate at which molecules are close enough 

to react. The reaction is not instant, such as we can believe. This phenomenon is explained by 

fact that the relation (11) does not contain the temporal coordinate, t. 

 Expressing the relations (11) and (12) through the entire space (r>0) we obtain:  

  02

0 02

0, r r[R ]
1 r / r, r r[R ]∞

<⎧
= ⎨ −⎩ ≥

      (13) 

equation that are fitted in following graph: 

 

 
Fig. 2. Variation of R2 in vicinity of R1 molecules (diffusion and reaction phenomena) 
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  The radial flux of [R2] is: 

  
2 2

02
R R 2

2 0

0, r rd[R ]J D
[R ] r / r , r rdr ∞

<⎧
= − = ⎨

0⋅ ≥⎩
    (14) 

and at coordinate of reaction the radial flux is:  

  
2R 0 2 0J (r ) [R ] / r∞=        (15) 

 The mean value of concentration that crosses the surface 4·π·r0
2 in a one unit of time 

(the variation of concentration in time, rate of concentration variation through surface) is: 

  
22 0 0 R 2[R ](r ) 4 r D [R ]∞= − π       (16) 

 Reaction rate of R2 with molecules of R1, noted with u21 are obtained multiplying this 

quantity (expressed by 16) with number of R1 molecules from one unity of volume (with 

[R1]0·NA): 

  u21 = -4πr0
2RD [R2]∞[R1]∞NA      (17) 

 Repeating these calculations for hypothesis of R1 molecules diffusion through field of 

R2 molecules, it results:  

  u12 = -4πr0
1RD [R2]∞[R1]∞NA      (18) 

 Real rate of reaction u are a mean value of these theoretical results obtained through 

model simplifying in hypothesis that R2 diffuse to R1 and respectively R1 diffuse to R2. In 

reality, these phenomena are present simultaneously and competitive: 

  u = (u12 + u21)/2 = -4πr0D[R2]∞[R1]∞NA, D = ( )/2  (19) 
1RD +

2RD

 The minus sign in expression of rate u is because of reference system chousing, the 

diffusion is from big positive values of r to small positive values of them. The values [R2]∞ 

and [R1]∞ are concentrations recorded in mass of solution (more exactly [R1] and [R2]) it 

result the value of rate constant for a reaction controlled by diffusion in spherical symmetry:  

  κd = 4πr0DNA        (20) 

 The pair R1R2 can also to dissociate through a process without reaction, so: 

  , u = κ1 2 1 2R R R R→ + d'[R1R2], κd' = 4πr0'D'NA   (21) 

or can form reaction products (different from R1 and R2): 

  , u = κ1 2 j j jR R P→Σ β p[R1R2], κp = 4πr0''D''NA   (22) 
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 Let us come back to hypothesis of stationary (time independence). Mass of reaction is 

constant in most of time, such that the [R1R2] concentration of pairs is ready to consume and 

to form products or to become again reactants. Expressing this fact, we can write: 

     (23) 
1 2 1 2 1 2 1 2R R R R fromeq(1) R R fromeq(21) R R fromeq(22)u u u u= − − 0=

and, replacing the expressions of  
1 2R Ru :

  κd[R1][R2] = (κd'+κp)·[R1R2], d
1 2 1 2

d ' p

[R R ] [R ][R ]κ
=
κ + κ

  (24)  

 The equation (22) is only one that contains also the rate of products forming. Using 

(22) and (24), it results: 

  uj = βjκp[R1][R2] = p d
j 1

p d '

[R ][R ]2

κ κ
β
κ + κ

    (25) 

 The equation (25) has two limit cases. When κd' κp the equation (25) becomes:  

  uj = βjκp[R1][R2] = βjκd[R1][R2]     (26) 

and the reaction are controlled in exclusivity by diffusive capacity of reactants. When κp κd' 

the equation (25) becomes: 

  uj = βjκp[R1][R2] = βj(κdκp/κd')[R1][R2]    (27) 

where are easy to observe that κd/is equilibrium constant of the reaction: 

  , Κ = κ1 2 1R R R R+ 2 d/κd'      (28) 

and in this case the diffusive control disappear (see expressions of κd and κd') and the reaction 

are controlled kinetically and the transformation into products are make with energy 

consuming from environment (the energy are accumulate in collision pair from surrounding 

molecules of solvent).  

 

 

  2. Mass Balance in Controlled by Diffusion Reactions  

 
 The general equation of diffusion can be written in Cartesian coordinates: 

  ℘(x,y,z,t) = Κ∆℘(x,y,z,t) - ∇ ( i + j + k )℘(x,y,z,t)v(x,y,z,t) (29) 

where is assumed that diffusion are joined also by convection, which is transport of property 

makes through solvent movement. The equation (29) are established based on diffusion and 

convection phenomena in a space region ((x,y,z),(x+dx,y+dy,z+dz)) without considering a 
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possible reaction that can decrease or increase the value of ℘ property in considered space 

region. A reaction is possible and is generally independent of space coordinates. Expressing 

his dependence, we can write: 

  ℘(x,y,z,t) = κ ℘γ℘        (30) 

where γ℘ is reaction order. Completing the equation (29) with the term from (30), it results:  

  ℘(x,y,z,t) = Κ∆℘(x,y,z,t)-∇ ( i + j + k )℘(x,y,z,t)v(x,y,z,t)+κ ℘γ℘  (31) 

 The equation (31) named the equation of mass balance for the property ℘ and is 

applied in numerous chemical processes. Two such examples are the diffusion of oxygen in 

blood and the diffusion of a gas to the surface of a catalyst [21, 22]. The solutions of (31) 

equation are not easy to obtain. The equation is a inhomogeneous differential one. The 

analytical solving is possible only in few special cases. For projecting of chemical reactors 

and kinetic biochemistry analysis that use this equation, are makes through numerical 

methods based on a specific real model of reaction [23].  

 Expressing the equation (31) in one-dimensional case without convection and with a 

property consume of 1 reaction order (γ℘ = 1), it result:  

  ℘(x,t) = Κ x′′℘ (x,t) + κ℘(x,t)      (32) 

 If a function Q(x,t) is a solution of equation without reaction, then: 

  (x,t) = Κ (x,t)       (33) Q xQ′′

and ℘(x,t) are given by: 

  ℘(x,t) = Q(x,t)eκt       (34) 

is a solution of equation with reaction (equation 32). 

About the equation (33) and his solution, it is completely solved using distribution theory 

[24]. The general solution of (33) in nℜ  space (x = (x1, ..., xn)) is: 

  
2 2
1 n(x ... x )

4 t
1 n n

1Q(x ,..., x , t) e
( 4 t )

+ +
−

Κ=
Κπ

     (35) 

 For n = 1 ( ) we obtain the solution of equation (33). Replacing in (34) this solution, 

it results: 

1ℜ

  
2x

t4 t1Q(x, t) e e
4 t

− −κΚ=
Κπ

      (36) 

 Particular solutions of these equations are plotted in figs. 3-5. 
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Fig. 3. Space and time dependence of property ℘ with diffusion:  

solution Q(x,t) of (33) for Κ = 2  

 

 
Fig. 4. Space and time dependence of property ℘ with diffusion and property forming  

(κ>0 in equation 32) solution ℘(x,t) of (32) for Κ = 2 and κ = 3  
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Fig. 5. Space and time dependence of property ℘ with diffusion and property consuming 

(κ<0 in equation 32) solution ℘(x,t) of (32) for  Κ = 2 and κ = -3 

 
 

  

  3. Monomolecular Reactions  

 

 In a monomolecular reaction a single molecule go through a structure rearrangement 

or decomposition [25]. Such process is rearrangement of cyclopropane to propene:  

 
 The general case of monomolecular reaction is governed by the equation: 

  R → ΣjβjPj, j = 1, …, J, R  = - κ[R]     (37) 

 The rate law for such a reaction is written directly based on chemical equation of 

reaction. Rearrangement of propene has, according to (37) a single product of reaction, so J = 

1 and βJ = 1. A monomolecular reaction is of order 1 because molecules number from reactant 

which are decomposing in a short time interval are directly proportional with number of 

molecules available to react, so with [R].  
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  4. Bimolecular Reactions  

 
 In such a reaction have collision and exchange energy two molecules, atoms or group 

of atoms. Note that the implied species can make also other exchanges (such as electrons). 

Bimolecular reaction is also the equations of following type, between methyl iodide and 

ethylic alcohol in alcohol medium: 

CH3I + CH3CH2O- → CH3CH2OCH3 + I-

 The mechanism of this reaction is bimolecular, proved by experimental rate law: 

ν = κ[CH3][CH3CH2O] 

Generally, 

  R1 + R2 → ΣjβjPj, j = 1, …, J,  = - κ[R1R 1][R2]   (38) 

 A bimolecular reaction is of order 2 because his rate is proportionally with speed of 

reactants in moment of collision, so with his concentrations.  

 Any assumption related to the mechanism of a reaction, including the reactions of 

order 2 mechanisms, must be followed by testing phase of assumed model.  

 Note that the correspondence between order of a reaction and reaction type is not a bi-

univocal one. Thus, if reaction is an elementary process of second order, then the order of 

reaction is two. Reverse, if order of reaction is two, reaction may be following a complex 

mechanism. The postulated mechanism can be augmented through investigation of secondary 

products and intermediaries. 

 

 

  5. Monomolecular Consecutive Reactions 

 
 Another elementary case is for monomolecular consecutive reactions [26,27], such as 

radioactive fission [28,29]: 
239U → 239Np → 239Pu, T1/2(239U, 239Np) = 23.5 minutes; T1/2(239U, 239Pu) = 2.35 days; 

 The general case is expressed by: 

R1 → R2 → … → Rn       (39) 
 Let κ1,2, ..., κn-1,n be the rate constants of monomolecular processes Ri → Ri+1. Then, 

the decomposition rate of R1 is given by: 

   = - κ1R 1,2[R1]        (40) 
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and global rates of R2, …, Rn-1 intermediaries forming are given by the differences between 

rate of his forming reaction and rate of his decomposing reaction [30]: 

   = - κjR j,j+1[Rj] + κj-1,j[Rj-1], j = 2, …, n-1    (41) 

 Forming rate of final product Rn is given by an expression similarly to (40):  

  = κnR n-1,n[Rn-1]       (42) 

 Integration of (40) lead to: 

  [R1] = [R1]0
1,2te−κ        (43) 

 If are assumed that initially only R1 are present ([Rj]0 = 0, j > 1), then the (41) 

equations solutions can be obtained successively and the first integration lead to: 

  1,2 2,3t t1,2
2

2,3 1,2

[R ] (e e )[R ]−κ −κκ
= −
κ − κ 1 0      (44) 

 Is complicate to go on with formal solving of differential equations system (41), 

replacing of (44) in (41) conduct us at inhomogeneous differential equation of order 1, but can 

be solved elegantly using a formal or numeric specialized software. The identifying of the 

integration constants that appear at solving steps is makes with respect to initial values of 

concentrations (in our case [Rj]0 = 0 for j > 0) and the equation of concentration balance: 

  [R1] + [R2] + … + [Rn] = [R1]0 + [R2]0 + … + [Rn]0   (45) 

 In particular case taken from literature [31] of n = 3 and [R2]0 = [R3]0 = 0, the 

expression of [R3] is: 

  
1,2 2,3t t

2,3 1,2
3

2,3 1,2

e e
[R ] (1 )[R ]

−κ −κκ − κ
= −

κ − κ 1 0      (46) 

and in figure 6, are depicted the dependencies in this particular case. 

 The point of maximum for R2 concentration is obtaining from annulling first order 

derivate of concentration: 

  

2,3 1,2

1,2 2,3

t t1,2
2 1 0 2,3 1,2

2,3 1,2

( )t 1,2 2,3
1,2 1,2 2,max

1,2 2,3

[R ] [R ] ( e e ) 0,

ln( ) ln( )
/ e , t

−κ −κ

κ −κ

κ
= κ − κ

κ − κ

κ − κ
κ κ = =

κ − κ

=

   (47) 
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Fig. 6. Concentrations variations for three consecutive monomolecular reactions  

with [R1]0 = 1 mol·l-1, [R2]0 = [R3]0 = 0 mol·l-1, κ1,2 = 3/40, κ2,3= 2/71 

 
The equations system: 

  
2,3 2,max 1,2 2,max

1,2 2,3
2,max

1,2 2,3

t t1,2
2 max 1 0 2,3 1,2

2,3 1,2

ln( ) ln( )
t

[R ] [R ] ( e e )−κ −κ

κ − κ⎧
=⎪ κ − κ⎪

⎨ κ⎪ = κ − κ⎪ κ − κ⎩

  (48) 

are very useful in practice, when are measured the time t2,max and the concentration [R2]max 

and after that are identified the values of rate constants κ1,2 and κ2,3.  

 If we start from (46) with substitution Κ = κ2,3/κ1,2 and proper grouping of terms it 

result: 

  
1,2 2,3 1,2

1,2

t t t ( 1)
t2,3 1,2

3 1 0
2,3 1,2

e e 1 e[R ]/[R ] 1 1 e (1 )
1

−κ −κ −κ Κ−
−κκ − κ −

= − = − +
κ − κ Κ −

 (49) 

 The equation (49) expresses a dependency of [R3]/[R1]0  by time and Κ for a choused 

decomposing reaction R1 > R2 and a 3D dependency was plotted in fig. 7. 

 For Κ < 1 (κ2,3 < κ1,2) the determining rate stage is first stage (R1 > R2) until the time 

rich the value of 104 s. In this time interval (0-104 s) with high priority are accumulating the 

R2 intermediary and after that, in short time, R2 are transformed to R3.  

 For Κ > 1 (κ2,3 > κ1,2) the determining rate stage is second stage (R2 > R3) it was in 

fact the responsible for surface shape for lg(κ2,3/κ1,2)+5 > 5. 
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 The figure 7 proves that in a process that evolve through consecutive reactions, for 

rate constant significant different there exist always a stage that determinate reaction rate, and 

these is the stage that evolve with lowest rate. 

 

 
Fig. 7. Surface of R3 forming depending on forming rate (expressed by κ2,3/κ1,2 value) and 

time (expressed by it value) for κ1,2 = ½ and t = ti / 2 110 − -1, it = 0, …, 20, Κ = κ2,3/κ1,2 = 10j-5, j 

= 0, …, 10 

 
 

 

  6. Pre-equilibrium  

 

 The case of chemical reactions that evolve governed by equation:  

  1 3

2
1 2 3R R R Rκ κ

κ
+ ⎯ → 4⎯       (50) 

will be discussed in this section.  

 The equation (50) implies a pre-equilibrium, the state in which a intermediary (R3) are 

in equilibrium with the reactants [32, 33]. Pre-equilibrium appear practically when the 
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forming rate of intermediary and decomposing rate of them into reactants are much higher 

then products forming rate [34]:  

  κ1, κ2  κ3        (51) 

 If (51) are true, it can be considered that R1, R2 and R3 are in equilibrium and: 

  [R3]/([R1][R2]) = κ1/κ2 = Κ      (52) 

 From following equation, the forming rate of R4 can be determined: 

   = κ4[R ] 3[R3] = κ3Κ[R1][R2]      (53) 

 The (53) equation type is a second order one with rate constant κ given by:  

  κ = κ3Κ = κ3κ1/κ2       (54) 

 If we don’t ignore the fact that R3 > R4 is a slow reaction, we can use the 

approximation of stationary phase on R3:  

   = κ3R 1[R1][R2] - κ2[R3] - κ3[R3] = 0     (55)  

and reaction rate will be:  

4R  = κ3·[R3] = κ[R1][R2], κ = 1 3

2 3

κ κ
κ + κ

     (56)  

 

 

  7. Michaelis – Menten Mechanism  

 
 Michaelis – Menten mechanism work with respect to the equation [35]: 

  1 3

2
1 2 1 2 1R R R R R Rκ κ

κ
+ ⎯⎯→ + 3      (57) 

and are frequently applied at enzymatic catalysis (where R1 are enzyme, R2 are substrate and 

R3 it cumulate the obtained products after enzyme action [36,37]. 

 The rate of enzymatic catalyzed reaction [38] depends on enzyme concentration [R1] 

even if the enzyme do not go through a net change (are achieve in reaction products, [39]). If 

we follow the same judgment of stationary phase (equation 55): 

  1 2d[R R ]
dt

 = κ1[R1][R2] – κ2[R1R2] – κ3[R1R2]    (58) 

 From (58) it result the expression of [R1R2]:  

  [R1][R2] = 1

2 3

κ
κ + κ

[R1][R2]      (59) 
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 Concentration balance is:  

  [R1]0 = [R1] + [R1R2]       (60)  

 If we substitute [R1] from (60) into (59), it results:  

  [R1R2] = 1

2 3

κ
κ + κ

[R2]([R1]0 – [R1R2])    (61) 

 From (61) [R1R2] can be extracted. Then result:  

  [R1R2] = 1

1 2 2 3[R ]
κ

κ + κ + κ
[R1]0[R2]     (62)  

 Forming rate of R3 (like equation 56) is:  

  = κ3[R ] 3[R1R2] = 3

2 3
2

1

[R ]

κ
κ + κ

+
κ

[R2][R1]0    (63)  

 The ΚM are named Michaelis constant and are given by:  

  ΚM = 2

1

κ + κ
κ

3         (64) 

 Using (63) and (64) the general expression of R3 forming rate (hardly used in 

enzymatic catalysis) is:  

   = κ[R3[R ] 1]0, κ = 3 2

M 2

[R ]
[R ]

κ
Κ +

     (65)  

 To express the dependency of κ constant by [R2] substrate concentration, the 

following equation is useful: 

  κ = 3

M 21 /[R
κ

+Κ ]
       (66)  

κ’s dependency of [R2]/ΚM value are fitted in fig. 8. 

 Usually, the enzyme quantity is much lower than substrate quantity, so we have: 

  [R2]  [R1R2], [R2] [R0]      (67)  

 The (67) equation it correspond to horizontal portion of dependency from fig. 8 and 

describe most of the enzymatic process evolution (until the vicinity of final point). If (67) are 

replaced in (65), it results:  

   = κ[R3[R ] 1]0, κ = 3 2 0

M 2

[R ]
[R ]

κ
Κ + 0

     (68)  
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Fig. 8. Rate constant (κ) in Michaelis – Menten mechanism (n are iteration number)  

 
 The Michaelis - Menten mechanism are also successfully applied to inorganic 

reactions [40].  

 

 

  8. Lindemann – Hinshelwood Mechanism  

 
 Chemical processes evolve in reality in a much complex mode than can be expressed 

through the mechanisms presented until now. These are only approximations, and have 

serious difficulties and limitations when we want a deeper study of reactions mechanism 

[41,42]. A prove of this fact are the studies initiated by Lindemann and completed by 

Hinshelwood for case of monomolecular reactions. Them proposed model, that assume that 

reactant molecule require activation to pass into products are depicted in fig. 9. 

 The mechanism consists in:  

1. collision of two fast molecules R: 

  R+ R →  R* + R,  2
1

d[R ] [R ]
dt

∗

= κ , * energetic excited molecule (69) 

2. collision of a energetic excited molecule R* with unexcited one:  

  R* + R→  R+ R,  2
d[R ] [R ][R]

dt

∗
∗= −κ     (70) 

3. transformation of energetic excited molecule into products: 

  R* →  P,   3
d[R ] [R ]

dt

∗
∗= −κ        (71) 
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Fig. 9. Energetic activation in Lindemann – Hinshelwood Mechanism  

 
 From experimental observations, which show that global reaction has a kinetic of 

order 1, such as we presented through (37) equation, it result that the main rate phase (slowest 

one) is third one (κ3 < κ1, κ2). At same result are done if stationary phase approximation for 

R* is applied:  

  
2

2 1
1 2 3

3 2

[R]d[R ] [R ] [R ][R] [R ] 0 [R ]
dt [R]

∗
∗ ∗ ∗ ∗ κ

= κ − κ − κ = ⇒ =
κ + κ

 (72)  

 

 
Fig. 10. Linearity approximation in monomolecular processes vs. L–H Mechanism 

 
  Rate equation is:  

  
2

3 1
3

3 2

[R]d[P] [R ] [R]
dt [R]

∗ κ κ
= κ = = κ

κ + κ
, where 3 1

3 1

[R]
[R]

κ κ
κ =

κ + κ
   (73) 

  At limit, when κ3 << κ2[R] and κ3 are ignored in relation to κ2[R], the (37) equation is 

obtained, according to the simplified model of monomolecular processes. Dependence of κ 

constant by reactant concentration is depicted in fig. 10. 

 The Lindemann – Hinshelwood model are capable to explain the changing of reaction 

order for monomolecular reactions when [R] concentration is lower [43], but does not provide 

a detailed explanation of real processes. κ’s dependence curvature is even more significant in 
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reality for very low concentrations of [R] then predicted curvature from second order kinetic 

reaction. An adjusting of this model was makes by Rice, Ramsperger and Kassel [44], which 

replace the third stage (R*  P) with:  →

          (74) †R R∗ → → P

where R* is the molecule with high energy and R† is activated molecule. They introduce a rate 

constant for every stage. This construction has explanation that the accumulated energy is 

distributed to all bonds from molecule. It result that exist a delay in transition of R* to 

products, provoked by previous forming of activated molecule R† (R*  R→ †). 

 Using the differential equation system: 

      (75) 

4
*

3 4
* 2 * *

1 2 3
* 2

2 1

d[P] [R ]dt
d[R ] ( [R ] [R ])dt
d[R ] ( [R] [R ] [R ])dt
d[R] ( [R][R ] [R] )dt

+

+ +

⎧ = κ
⎪ = κ − κ⎪
⎨

= κ − κ − κ⎪
⎪ = κ − κ⎩

obtained based on equations (69), (70) and (74) a graphical dependences of reactant [R], 

product [P] and intermediaries [R*], [R+] was plotted in fig. 11 and 12 for rate constants κ1 = 

0.2, κ2 = 0.1, κ3 = 0.9 and κ4 = 0.5 with initial concentration of R [R] = x0 = 1 and time 

interval tn = 0, …, 30. 

Fig. 11. Concentration – time dependence  

for reactant R (xn on graph)  

and R* (yn on graph), eq. 75 

Fig. 12. Concentration – time dependence  

for product P (pn on graph)  

and R+ (zn on graph), eq. 75 
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  9. Catalyzed Processes 

 
 If activation energy of a reaction is big, only a small ratio of molecular collisions 

produces reaction. The catalysts has role to decrease the activation energy of the reaction by 

providing another way to pass to products, that avoid the slow rate stage of reaction and lead 

to a increased rate of reaction, at same temperature [45,46].  

 Here an example of catalyzed reaction: activation energy for H2O2 decomposing in 

solution is 76kJ·mol-1 and the reaction is slow at room temperature. If we add iodine in small 

quantities, the activation energy decrease at 57 kJ·mol-1 and the reaction rate grows about 

2000 times [47].  

 Enzymes are biological catalyst. It is very specific and can have a spectacular effect on 

his controlled reactions. The activation energy for acid hydrolysis of sucrose is of 107 kJ·mol-

1. In presence of sucrase enzyme, the energy is decreased to 36 kJ·mol-1 and hydrolysis 

process is accelerated about 1012 times at body temperature (310 K).  

 A homogenous catalyst is in same phase with reaction mixture. Exist also 

heterogeneous catalysts (placed somewhere else than reaction mixture) such as a solid catalyst 

for a gas phase reaction [48,49].  

 

 
Fig. 13. Energetic tunneling with catalysts  

 
 The fig. 13 presents the corridor tunneling from reactants to products by using 

catalyst. The most important cases of homogenous catalysis are base catalysis and acid 

catalysis. They are implied frequently organic reactions, each one or both. The easiest action 
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mode of them is through Brönsted mechanism. Therefore, Brönsted acid catalysis consists in 

a proton transfer to the S substrate from a HA acid:  

 S + HA  HS→ + + A-, HS+ + R →  Products     (76) 

 This process is primary one in ester solvolysis [50,51] keto-enolic tautomery and 

sucrose inversion [52,53]. Brönsted base catalysis consists in a proton transfer from S 

substrate to B base:  

 SH + B  S→ - + BH+, S-+ R  Products    (77)  →

 This process is primary one in isomerisation and halogenation of organic compounds, 

and at Claisen and aldolyc reactions [54, 55].  

 Autocatalysis phenomena consists in acceleration of a reaction makes by his products 

[56, 57]. An example of autocatalysed reaction is:  

  R →  P, with rate law υ = κ[R][P]      (78)  

 In equation (78) the reaction rate is increased together with reaction products 

formation. Expressing the variation of product concentration, it results:  

 0 0
d[P] [R][P] ([R] [P] [P])[P]
dt

υ = = κ = κ + −     (79) 

 By integration of the (79) equation we obtain: 

 
0 0 0 0

1 [P]C ln
[R] [P] [R] [P] [P]

=
+ + −

t− κ      (80)  

where C is obtained from initial conditions. Resolving the initial conditions in (80):  

  0
0 0

0 0 0

[P] [P]ln ln ([R] [P] )t
[R] [R] [P] [P]

= − κ
+ −

+    (81)  

or:  

 0 0([R ] [P] )t0

0 0 0

[P][P] e
[R] [P] [P] [R]

κ +=
+ −

     (82) 

and:  

 ( )0 0 0 0([R] [P] )t ([R ] [P] )t0
0 0

0 0

[P] [P][P] 1 e [R] [P] e
[R] [R]

κ + κ +⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
0   (83) 

 The (83) equation allows us to express the [P] concentration depending only by time 

and initial conditions:  

 
0 0

0 0
0 ([R ] [P] ) t

0 0

[R] [P][P] [P]
[R] e [P]−κ +

+
=

+
     (84)  
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 The (84) equation are plotted in fig. 14, for [P]0  = 0.1, [R]0  = 0.99, κ = 4:  

 

 
Fig. 14. Variation of product concentration in an autocatalysed reaction  

 
 The reaction rate is obtained from (84) equation differentiating or through (84) 

substitution into (79).  

 It can be observed that the reaction rate is small at beginning and increase together 

with P product forming until his maximum value (for [P] = [R]). After that, it has decrease, 

such as can be observed in fig. 15.  

 

 
Fig. 15. Product’s concentration variation rate into a autocatalysed reaction  

 
 If we are interested to find the time moment when the reaction rate is maximum, the 

following equation are useful:  

  

0

0
max

0 0

[R ]ln
[P ]t

([R ] [P ])
=
κ +

       (85) 
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 The industrial importance of autocatalysis is significant [58]. Therefore, autocatalysis 

appears in oxidation reactions, when autocatalysis study allow to maximize the reaction rate 

through continue assuring of optimal concentrations of reactant and product. This is the field 

of automated industrial processes. 

 

 

  10. Explosions  

 
 Rapid increasing of rate constant by temperature provokes a thermo explosion [59,60]. 

If the reaction is exothermic one, and provoke increasing of reaction environment increasing 

then acceleration of reaction rate it has as result a much faster increasing of both temperature 

and reaction rate [61]. To exemplifying, let us assume that temperature is linear increased by 

products concentration (then decrease proportionally with reactant concentration) and rate 

constant is increased with temperature through Arrhenius law: 

      (86) T
0T T [R], 0, Ae , 0−β= −α α > κ = β >

 If we express the κ constant by [R]: 

      (87) 0 0(T [R]) T [R] [R ]
0Ae Ae e e−β −α −β αβ αβκ = = = κ

and assume that the reaction is first order one by concentration: 

  [R  = - κ[R]        (88) ]

we can replace the κ value from (87): 

  [R  = - κ] 0eαβ[R][R]       (89) 

Separating now the variables: 

  0 = κ0eαβ[R][R]-1d[R] + κ0dt      (90) 

By integration of (90) it results: 

  
0[R ] 1 x

[R ]

0

x e dx
t

− −αβ

=
κ

∫
       (91) 

which is a t = t([R]) dependency.  

 By fitting this dependency (fig. 16) and reversing it, the [R] = [R](t) dependency is 

obtained: 
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Fig. 16. Explosion phenomena, t = t([R]) diagram 

 

 
Fig. 17. Explosion phenomena, [R] = [R](t) diagram 

 

 
Fig. 18. Explosion phenomena, T = T(t) diagram 

  
 Using the (86) relation, we can also plot the T = T(t) dependency (fig. 18). The 

explosion phenomena are explained by fact that the slope of [R] = [R](t) and T = T(t) curves 

are vertically in t = 0 (17 and 18 figures). Consuming of most of [R] reactant quantity, such as 

we can observe on graphs, fitted for α = 1, β = 40, κ = 105, it correspond to a short time.  

 The final point of explosion has, of course, [R] = [R](t) and T = T(t) null curves slope.  
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 The experimental study of explosion that are produced when oxygen and hydrogen 

react:  

  2H2 + O2 → 2H2O       (92)  

allowing to establish the following mechanism: 

      (93) 

2

2

(ignition) H  + ·O-O·  ·OH + ·OH
H  + ·OH  ·H + H O

(propagation) ·O-O· + ·H  ·O + ·OH
·O· + H2  ·OH + ·H

→

→⎧
⎪ →⎨
⎪ →⎩

2

 

 
Fig. 19. H2 + O2 explosion 

 
 Other secondary reaction was identified, such as:  

  O=O + ·H → ·O–OH       (94)  

 Such as temperature, also the pressure plays an important role in explosions. The 19 

figure present the log(p) – temperature diagram for hydrogen + oxygen mixture. Marked area 

is the explosion area. The presence of (RS) region is explained by secondary reactions of type 

(94) facilitating.  

 

 

  11. Lotka – Volterra Autocatalytic Oscillator Model  

 
 For the first time Lotka [62] suggested a mechanism of a complex reaction, in 

homogeneous phase (stage), which shows damped oscillations. Ten years later, in his paper, 

[63] Lotka modified the mechanism suggested in 1910 in order to generate undamped 

oscillations.  
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 The mechanism is named Lotka-Volterra and it is further presented. The following 

pattern of reactions is considered:  

     (95)  

1

2

3

4

R + X  2X,  = ·[R]·[X] (a)
X + Y  2Y,  = ·[X]·[Y] (b)
Y  P,  = ·[Y] (c)
P  ,  = ·[P] (d)

→ υ κ⎧
⎪ → υ κ⎪
⎨ → υ κ⎪
⎪ → υ κ⎩

 The last equation (95d), represents an extraction process of the reaction product P, 

while the stages (95a) and (95b) are autocatalytic. In L-V model of the reaction mechanism, 

concentration of the reactant R is maintained constant, (for example either by an addition in 

the reaction vessel or by an equilibrium between two non-miscible phases when necessary). 

These restrictions cause the concentrations of X and Y intermediaries/agents to be variable / 

changeable / unsteady: 

  [X]  = υ(29a) – υ(29b) = κ1[R][X] – κ2[X][Y]    (96) 

  [Y]  = υ(29b) – υ(29c) = κ2[X][Y] – κ3[Y]    (97) 

 (96) and (97) equations form a system of differential equations with the functions [X] 

= [X](t) and [Y] = [Y](t). This system can be simply solved by a numerical method [64]. 

Thus, the equations (96) and (97) became:  

  xn+1 = xn+(tn+1-tn)xn(κ1[R]-κ2yn)     (98)  

  yn+1 = yn+(tn+1-tn)yn(κ2xn-κ3)      (99) 

 With numerical values: 

  x0 = [X0] = 1, y0 = [Y0] = 1, κ1 = 3, κ2 = 4, κ3 = 5, [R] = 2  (100)  

there can be produced/generated the numerical series/systems (xn)n≥0 and (yn)n≥0 

corresponding to the temporal series (tn)n≥0.  

 In order to obtain an as faithful representation of the mechanism as possible a very 

fine/careful division of the temporal coordinate in the numerical simulation is required.  

 Thus, considering the series tn = n/105 with n = 0,1,...5·105 there are obtained the 

representations from figs. 20 and 21 for the concentration of the intermediaries [X] = (xn)n≥0 

and [Y] = (yn)n≥0. In the fig. 22 the concentration of the reaction product [P] develops/grows 

in the time through Pn (the equations 95c and 95d, taking κ4 = 3). 
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Fig. 20. The oscillation of the intermediaries in L-V mechanism  

 

 
Fig. 21. The variation path ([X],[Y]) in L-V mechanism 

 

 
Fig. 22. The variation of the product concentration and storage in L-V mechanism 
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 Carrying out/performing the regression resulted from the equation (95c) and 

represented in fig. 23, by pn, according to the concentration [P] and depending on time, the 

regression slope gives the average rate of formation equal to 1.481. 

 

 
Fig. 23. The variation of the product concentration and storage in L-V mechanism 

 
 There are a few remarks to be made, namely: the sum of average concentrations of the 

agents is maintained in time as the regression equation xyn also is shows (the slope of the 

regression equation is null). This average sum M([X]) + M([Y]) = 1.365; hence it results that 

the average concentrations of the agents also remain constant in time; the values of the 

average concentrations are M([Y]) = 1.468 and M([Y]) = 1.263.  

 

 

  12. A Model of Damped Oscillations  

 
 Let it be a chemical process that takes place according to the following model of a 

reaction mechanism: 

      (101) 

1 1
2

2

2 1 3 2

2 4

R   X,  = ·[R ] (a)
2X + Y  3Y,  = ·[X] ·[Y] (b)
R  + X  Y + P ,  = ·[R ][X] (c)
Y  P ,  = ·[Y] (d)

→ υ κ⎧
⎪ → υ κ⎪
⎨ → υ κ⎪
⎪ → υ κ⎩

1

 As in Lotka – Volterra, model, the concentrations of the R1 and R2 reacting substances 

remain constant during the process. The solving of the model begins by writing the variation 

equation for the intermediaries: 

  [X]  = υ(34a) - 2υ(34b) - υ(34c)  = κ1[R1] - 2κ2[X]2[Y] - κ3[R2][X] (102) 
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  [Y]  = 2υ(34b) + υ(34c) - υ(34d)  = 2κ2[X]2[Y] + κ3[R2][X] - κ4[Y] (103)  

 The equations (102) and (103) form a system of differential equations having the 

functions [X] = [X](t) and [Y] = [Y](t). This system may also be easily solved by a numerical 

method. The equations (102, 103) are written thus: 

  xn+1 = xn + (tn+1 -tn)(κ1[R1] - xn(2κ2xnyn + κ3[R2]))   (104) 

  yn+1 = yn+(tn+1 – tn)(xn(2κ2xnyn + κ3[R2]) - κ4yn)   (105) 

 Having the numerical value:  

  x0 = 0, y0 = 1, κ1 = 3, κ2 = 4, κ3 = 5, κ4 = 7, [R1] = 2, [R2] = 2 (106) 

there can be generated the numerical series (xn)n≥0 and (yn)n≥0  corresponding to the temporal 

series (tn)n≥0.  

 Taking into account the series tn = n/100000 with n = 0,1..300000 there are obtained the 

representation from figs. 24 and 25 for the concentrations of the intermediaries [X] = (xn)n≥0 

and [Y] = (yn)n≥0. 

 

 
Fig. 24. The damped oscillations in chemical reactions: 

 the concentration of the intermediary X 

 
 Fig. 25 shows that the system tends towards a state of equilibrium state characterized a 

ratio of the concentrations of the two intermediaries. The system of the agents practically 

causes damped oscillations around of the equilibrium ratio for two intermediaries. The chart 

representing the agent concentration [Y] depending on the agent concentration [X] from fig. 

26 shows the same thing. 
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Fig. 25. The damped oscillations in chemical reactions:  

the concentration of the intermediary Y  

 

 
Fig. 26. The damped oscillation path ([X],[Y]) 

 

 
Fig. 27. The linear variation of the amount of products in damped oscillating reactions 
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Fig. 28. The linear variation of the amount of products in damped oscillating reactions 

 
 The values obtained for the equilibrium concentration are [X] = 2.315 and [Y] = 0.176 

and the equilibrium ratio are [X]/[Y] = 13.53.  

The dependence on time (tn)n≥0 of the accumulation of the reaction products [P1] = 

(p1n)n≥0 and [P2] = (p2n)n≥0 is given in figs. 27 and 28.  

 Figs. 27 and 28 shows that this time the concentration of the reaction products changes 

linearity even if the concentrations of the agents X and Y oscillate towards the equilibrium 

value.  

 

 

  13. The Brussel Model of Autocatalytic Oscillation  

 
 The brussel model was initiated by a group from Bruxelles directed by Ilya Prigogine 

it introduce for the first time, mechanism of a reaction whose scheme of evolution converged 

on an attractor [65].  

 More authors have changed this variant and have studied the systems running 

according to this mechanism [66, 67]. Further, a simplified variant is presented:  

  R → X,  υ = κ1[R]  (a)  

  X + 2Y → 3Y,  υ = κ2[X][Y]2  (b)   (107) 

  Y → P,  υ = κ3·[Y]  (c) 

 As in the previous situations, it is supposed that the concentration of the reacting 

substance R remains constant and the product P may be extracted from the system by a 

reaction of the type (101d).  
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 X and Y are the intermediaries again. Their rate equations written based on the 

mechanism (107) are:  

  [X]  = υ(39a) - υ(39b)  = κ1[R1] - κ2[X][Y]2    (108)  

  [Y]  = υ(39b) - υ(39c)  = κ2[X][Y]2 - κ3[Y]    (109) 

Though the equations (108) and (109) seem simpler, at first sight, they are even more 

difficult to be solved by integration than (96-97) or (102-103). Moreover, the literature has 

not recorded their integration into the general case described by (108-109).  

Besides, the equations (108-109) do not lead to an attractor model not matter by 

values of the constants of rate and of the concentrations [R], [X]0 and [Y]0. The attempt of 

solving (108-109) is full of surprises. For most of the values, a system that develops towards a 

position of equilibrium is obtained; there are values for which damped oscillations to 

equilibrium are found again; the un-damped periodical oscillations have also an important 

role, which is confirmed by the majority of the organisms in which the cellular biochemical 

processes are based on such oscillations.  

The processes taking place within the heart are a conclusive example; the periodical 

heart beats are due to processes of this type. The importance of these processes is great. This 

was the reason for which Ilya Prigogine was awarded the Nobel Prize for chemistry in 1977, 

namely for his theories on the dissipative systems.  

 The equations (108-109) are simplified [68] if [R] = 1, κ1 = 1 and κ3 = 1, are chosen 

and when the differential system of equations becomes: 

   = 1 – κx 2xy2;  = κy 2xy2 – y      (110) 

where the derivate related to the time of the x variable was. This system of the differential 

equation (110) does not offer more chances for an exact resolution either. However, the 

numerical simulation is made in the same way. Thus, the iteration equation of variation for 

(110) is written: 

  xn+1 = xn+(tn+1-tn)(1-κ2xnyn
2); yn+1 = yn + (tn+1 - tn)(κ2xnyn

2 -yn) (111)  

 Now let us chouse κ2 = 0.88. Taking into consideration two cases, the first one in 

which the initial concentrations of the agents are x10 = [X]1,0 = 1.5 and y10 = [Y]1,0 = 2 and 

second one with x20 = [X]2,0 = 2 and y20 = [Y]2,0 = 2.5. Using the series tn = n/100 with n = 0, 

1,…, 150 following representations for the concentrations of the agents [X] = (xn)n≥0 and [Y] 

= (yn)n≥0 are obtained (figures 29 and 30). 
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Fig. 29. The concentrations of the X 

intermediaries up to the attractor  

for two cases with different initial conditions 

Fig. 30. The concentrations of the Y 

intermediaries up to the attractor  

for two cases with different initial conditions 

 
 The variation diagram of [Y] depending on [X] and the variation in time of the storage 

of reaction product are depicted in figure 32.  

 

 
Fig. 31. The product-time dependence in two cases having different initial conditions  

 

 
Fig. 32. The ([Y], [X]) hodograph two for cases having different initial conditions 
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 An important observation is that the entrance of [Y] related to [X] on the same 

gravitational orbit for both cases. 

 If the figures 29 and 30 are not very conclusive and figure 31 seems to confirm this, 

fig. 32 shows that, though the two systems start from different values of the concentrations of 

the agents, in both cases the system comes to evolve rather early on the same trajectory. 

 Now, increasing the time interval by choosing another n = 0,1..3000 the following 

concentrations of the agents are obtained [X]1 = (x1n)n≥0, [X]2 = (x2n)n≥0, [Y]1 = (y1n)n≥0 and 

[Y]2 = (y2n)n≥0 for the two cases 1 and 2 of the chosen system (figures 33 and 34). It is noticed 

that, even if they do not evolve according the same values, same period and amplitude of the 

oscillations are recorded. 

 

 
Fig. 33. The periodical evolution having the same different initial conditions 

(oscillation period T = 0.226 of [X] and [Y])  

 

 
Fig. 34. The periodical evolution having the same different initial conditions 

(oscillation period T = 0.226 of [X] and [Y])  
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 Fig. 35 gives the dependence of [Y] under [X] for the cases as well as the 

accumulation of the product. 

 

 
Fig. 35. Convergence at atractor of brusselator system independent from initial conditions  

 
 The difference between the Lotka-Voltera model and Bruxelles model one is the 

following: The Lotka-Voltera model oscillates around the initial values of the concentrations 

of the agents, whereas the Bruxelles one converges, in time on the same variation equation 

irrespective of the initial values of the concentrations of the agents. In fact the attractor does 

not appear for any of their values; for a given k2 there are minimum y0,min and x0,min values 

from which the periodical oscillations arise and the system tends towards the curve given in 

fig. 36. 

 

 
Fig. 36. Different quantities of resulted product for brusselator system 

 
 The convergence on the attractor of the brusselator system (a) independent of the 

initial conditions and (b) different quantities of the product obtained.  
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Conclusions  

 
 There exist a many models of biochemical processes reactions, and every process has 

some characteristics, as we described below. The importance of every mechanism is given by 

his applications. It exist much more kinetic models, unexplained in this paper, such as 

oregonator model [7], one of them implying tens of substances and reactions [69].  

 As we mentioned before, most spectacular and also important because is most frequent 

in nature is the brusselator model, every alive organism has one.  

 The symbolic calculations of reaction rate for biochemical processes are, in most of 

cases, impossible. In opposite, the numerical modeling of biochemical kinetics proves that it 

is a very good instrument for mechanism understanding, comparative studies and model 

validation.  
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