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Abstract: A number of optimal order multiple root techniques that require derivative evaluations
in the formulas have been proposed in literature. However, derivative-free optimal techniques
for multiple roots are seldom obtained. By considering this factor as motivational, here we
present a class of optimal fourth order methods for computing multiple roots without using
derivatives in the iteration. The iterative formula consists of two steps in which the first step is
a well-known Traub–Steffensen scheme whereas second step is a Traub–Steffensen-like scheme.
The Methodology is based on two steps of which the first is Traub–Steffensen iteration and the second
is Traub–Steffensen-like iteration. Effectiveness is validated on different problems that shows the
robust convergent behavior of the proposed methods. It has been proven that the new derivative-free
methods are good competitors to their existing counterparts that need derivative information.

Keywords: multiple root solvers; composite method; weight-function; derivative-free method;
optimal convergence

MSC: 65H05; 41A25; 49M15

1. Introduction

Finding root of a nonlinear equation ψ(u) = 0 is a very important and interesting problem
in many branches of science and engineering. In this work, we examine derivative-free numerical
methods to find a multiple root (say, α) with multiplicity µ of the equation ψ(u) = 0 that means
ψ(j)(α) = 0, j = 0, 1, 2, ..., µ− 1 and ψ(µ)(α) 6= 0. Newton’s method [1] is the most widely used basic
method for finding multiple roots, which is given by

uk+1 = uk − µ
ψ(uk)

ψ′(uk)
, k = 0, 1, 2, . . . , µ = 2, 3, 4, . . . . (1)

A number of modified methods, with or without the base of Newton’s method, have been
elaborated and analyzed in literature, see [2–14]. These methods use derivatives of either first order or
both first and second order in the iterative scheme. Contrary to this, higher order methods without
derivatives to calculate multiple roots are yet to be examined. These methods are very useful in the
problems where the derivative ψ′ is cumbersome to evaluate or is costly to compute. The derivative-free
counterpart of classical Newton method (1) is the Traub–Steffensen method [15]. The method uses
the approximation

ψ′(uk) '
ψ(uk + βψ(uk))− ψ(uk)

βψ(uk)
, β ∈ R− {0},
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or
ψ′(uk) ' ψ[vk, uk],

for the derivative ψ′ in the Newton method (1). Here, vk = uk + βψ(uk) and ψ[vk, uk] =
ψ(vk)−ψ(uk)

vk−uk
is

a first order divided difference. Thereby, the method (1) takes the form of the Traub–Steffensen scheme
defined as

uk+1 = uk − µ
ψ(uk)

ψ[vk, uk]
. (2)

The Traub–Steffensen method (2) is a prominent improvement of the Newton method because it
maintains the quadratic convergence without adding any derivative.

Unlike Newton-like methods, the Traub–Steffensen-like methods are difficult to construct.
Recently, a family of two-step Traub–Steffensen-like methods with fourth order convergence has been
proposed in [16]. In terms of computational cost, the methods of [16] use three function evaluations
per iteration and thus possess optimal fourth order convergence according to Kung–Traub conjecture
(see [17]). This hypothesis states that multi-point methods without memory requiring m functional
evaluations can attain the convergence order 2m−1 called optimal order. Such methods are usually
known as optimal methods. Our aim in this work is to develop derivative-free multiple root methods
of good computational efficiency, which is to say, the methods of higher convergence order with
the amount of computational work as small as we please. Consequently, we introduce a class of
Traub–Steffensen-like derivative-free fourth order methods that require three new pieces of information
of the function ψ and therefore have optimal fourth order convergence according to Kung–Traub
conjecture. The iterative formula consists of two steps with Traub–Steffensen iteration (2) in the
first step, whereas there is Traub–Steffensen-like iteration in the second step. Performance is tested
numerically on many problems of different kinds. Moreover, comparison of performance with existing
modified Newton-like methods verifies the robust and efficient nature of the proposed methods.

We summarize the contents of paper. In Section 2, the scheme of fourth order iteration
is formulated and convergence order is studied separately for different cases. The main result,
showing the unification of different cases, is studied in Section 3. Section 4 contains the basins
of attractors drawn to assess the convergence domains of new methods. In Section 5, numerical
experiments are performed on different problems to demonstrate accuracy and efficiency of the
methods. Concluding remarks about the work are reported in Section 6.

2. Development of a Novel Scheme

Researchers have used different approaches to develop higher order iterative methods for solving
nonlinear equations. Some of them are: Interpolation approach, Sampling approach, Composition
approach, Geometrical approach, Adomian approach, and Weight-function approach. Of these, the
Weight-function approach has been most popular in recent times; see, for example, Refs. [10,13,14,18,19]
and references therein. Using this approach, we consider the following two-step iterative scheme for
finding multiple root with multiplicity µ ≥ 2:

zk = uk − µ
ψ(uk)

ψ[vk, uk]
,

uk+1 = zk − G(h)
(

1 +
1
yk

) ψ(uk)

ψ[vk, uk]
,

(3)

where h = xk
1+xk

, xk = µ

√
ψ(zk)
ψ(uk)

, yk = µ

√
ψ(vk)
ψ(uk)

and G : C → C is analytic in the neighborhood of zero.

This iterative scheme is weighted by the factors G(h) and
(

1 + 1
yk

)
, hence the name weight-factor or

weight-function technique.
Note that xk and yk are one-to-µ multi-valued functions, so we consider their principal analytic

branches [18]. Hence, it is convenient to treat them as the principal root. For example, let us consider
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the case of xk. The principal root is given by xk = exp
[ 1

µ Log
( ψ(zk)

ψ(uk)

)]
, with Log

( ψ(zk)
ψ(uk)

)
= Log

∣∣ ψ(zk)
ψ(uk)

∣∣+
i Arg

( ψ(zk)
ψ(uk)

)
for −π < Arg

( ψ(zk)
ψ(uk)

)
≤ π; this convention of Arg(p) for p ∈ C agrees with that of Log[p]

command of Mathematica [20] to be employed later in the sections of basins of attraction and numerical
experiments. Similarly, we treat for yk.

In the sequel, we prove fourth order of convergence of the proposed iterative scheme (3).
For simplicity, the results are obtained separately for the cases depending upon the multiplicity
µ. Firstly, we consider the case µ = 2.

Theorem 1. Assume that u = α is a zero with multiplicity µ = 2 of the function ψ(u), where ψ : C → C
is sufficiently differentiable in a domain containing α. Suppose that the initial point u0 is closer to α; then,
the order of convergence of the scheme (3) is at least four, provided that the weight-function G(h) satisfies the
conditions G(0) = 0, G′(0) = 1, G′′(0) = 6 and |G′′′(0)| < ∞.

Proof. Assume that εk = uk − α is the error at the k-th stage. Expanding ψ(uk) about α using the
Taylor series keeping in mind that ψ(α) = 0, ψ′(α) = 0 and ψ(2)(α) 6= 0,, we have that

ψ(uk) =
ψ(2)(α)

2!
ε2

k
(
1 + A1εk + A2ε2

k + A3ε3
k + A4ε4

k + · · ·
)
, (4)

where Am = 2!
(2+m)!

ψ(2+m)(α)

ψ(2)(α)
for m ∈ N.

Similarly, Taylor series expansion of ψ(vk) is

ψ(vk) =
ψ(2)(α)

2!
ε2

vk

(
1 + A1εvk + A2ε2

vk
+ A3ε3

vk
+ A4ε4

vk
+ · · ·

)
, (5)

where εvk = vk − α = εk +
βψ(2)(α)

2! ε2
k
(
1 + A1εk + A2ε2

k + A3ε3
k + A4ε4

k + · · ·
)
.

By using (4) and (5) in the first step of (3), we obtain

εzk = zk − α

=
1
2

( βψ(2)(α)

2
+ A1

)
ε2

k −
1
16
(
(βψ(2)(α))2 − 8βψ(2)(α)A1 + 12A2

1 − 16A2
)
ε3

k +
1
64
(
(βψ(2)(α))3

− 20βψ(2)(α)A2
1 + 72A3

1 + 64βψ(2)(α)A2 − 10A1
(
(βψ(2)(α))2 + 16A2

)
+ 96A3

)
ε4

k + O(ε5
k).

(6)

In addition, we have that

ψ(zk) =
ψ(2)(α)

2!
ε2

zk

(
1 + A1εzk + A2ε2

zk
+ · · ·

)
. (7)

Using (4), (5) and (7), we further obtain

xk =
1
2

( βψ(2)(α)

2
+ A1

)
εk −

1
16
(
(βψ(2)(α))2 − 6βψ(2)(α)A1 + 16(A2

1 − A2)
)
ε2

k +
1

64
(
(βψ(2)(α))3

− 22βψ(2)(α)A2
1 + 4

(
29A3

1 + 14βψ(2)(α)A2
)
− 2A1

(
3(βψ(2)(α))2 + 104A2

)
+ 96A3

)
ε3

k

+
1

256
(
212βψ(2)(α)A3

1 − 800A4
1 + 2A2

1(−7(βψ(2)(α))2 + 1040A2) + 2A1(3(βψ(2)(α))3 − 232βψ(2)(α)A2

− 576A3)− ((βψ(2)(α))4 + 8βψ(2)(α)A2 + 640A2
2 − 416βψ(2)(α)A3 − 512A4)

)
ε4

k + O(ε5
k)

(8)

and

yk = 1 +
βψ(2)(α)

2
εk

(
1 +

3
2

A1εk +
1
4
(

βψ(2)(α)A1 + 8A2
)
ε2

k +
1

16
(
3βψ(2)(α)A2

1 + 12βψ(2)(α)A2 + 40A3
)
ε3

k

+ O(ε4
k)
)

.
(9)
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Using (8), we have

h =
1
2

( βψ(2)(α)

2
+ A1

)
εk −

1
8
(
(βψ(2)(α))2 − βψ(2)(α)A1 − 2(4A2 − 5A2

1)
)
ε2

k +
1

32
(
− βψ(2)(α)A2

1 + 94A3
1

− 4A1((βψ(2)(α))2 + 34A2) + 2((βψ(2)(α))3 + 6βψ(2)(α)A2 + 24A3)
)
ε3

k +
1

128
(
54βψ(2)(α)A3

1 − 864A4
1

+ A2
1(1808A2 − 13(βψ(2)(α))2) + 2A1(6(βψ(2)(α))3 − 68βψ(2)(α)A2 − 384A3)− 4((βψ(2)(α))4

+ 5(βψ(2)(α))2 A2 + 112A2
2 − 28βψ(2)(α)A3 − 64A4)

)
ε4

k + O(ε5
k).

(10)

Taylor expansion of the weight function G(h) in the neighborhood of origin up to third-order
terms is given by

G(h) ≈ G(0) + hG′(0) +
1
2

h2G′′(0) +
1
6

h2G′′′(0). (11)

Using (4)–(11) in the last step of (3), we have

εk+1 = − G(0)εk +
1
4
(

βψ(2)(α)(1 + 2G(0)− G′(0)) + 2(1 + G(0)− G′(0))A1
)
ε2

k +
2

∑
n=1

φnεn+2
k + O(ε5

k), (12)

where φn = φn(β, A1, A2, A3, G(0), G′(0), G′′(0), G′′′(0)), n = 1, 2. The expressions of φ1 and φ2 being
very lengthy have not been produced explicitly.

We can obtain at least fourth order convergence if we set coefficients of εk, ε2
k and ε3

k simultaneously
equal to zero. Then, some simple calculations yield

G(0) = 0, G′(0) = 1, G′′(0) = 6. (13)

Using (13) in (12), we will obtain final error equation

εk+1 = − 1
192

( βψ(2)(α)

2
+ A1

)(
(G′′′(0)− 42)(βψ(2)(α))2 + 4(G′′′(0)− 45)βψ(2)(α)A1 + 4(G′′′(0)− 63)A2

1

+ 48A2
)
ε4

k + O(ε5
k).

(14)

Thus, the theorem is proved.

Next, we prove the following theorem for case µ = 3.

Theorem 2. Using assumptions of Theorem 1, the convergence order of scheme (3) for the case µ = 3 is at
least 4, if G(0) = 0, G′(0) = 3

2 , G′′(0) = 9 and |G′′′(0)| < ∞.

Proof. Taking into account that ψ(α) = 0, ψ′(α) = 0, ψ
′′
(α) = 0 and ψ(3)(α) 6= 0, the Taylor series

development of ψ(uk) about α gives

ψ(uk) =
ψ(3)(α)

3!
ε3

k
(
1 + B1εk + B2ε2

k + B3ε3
k + B4ε4

k + · · ·
)
, (15)

where Bm = 3!
(3+m)!

ψ(3+m)(α)

ψ(3)(α)
for m ∈ N.

Expanding ψ(vk) about α

ψ(vk) =
ψ(3)(α)

3!
ε3

vk

(
1 + B1εvk + B2ε2

vk
+ B3ε3

vk
+ B4ε4

vk
+ · · ·

)
, (16)

where εvk = vk − α = εk +
βψ(3)(α)

3! ε3
k
(
1 + B1εk + B2ε2

k + B3ε3
k + B4ε4

k + · · ·
)
.
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Then, using (15) and (16) in the first step of (3), we obtain

εzk = zk − α

=
B1
3

ε2
k +

1
18
(
3βψ(3)(α)− 8B2

1 + 12B2
)
ε3

k +
1
27
(
16B3

1 + 3B1
(
2βψ(3)(α)− 13B2

)
+ 27B3

)
ε4

k + O(ε5
k).

(17)

Expansion of ψ(zk) about α yields

ψ(zk) =
ψ(3)(α)

3!
ε3

zk

(
1 + B1εzk + B2ε2

zk
+ B3ε3

zk
+ B4ε4

zk
+ · · ·

)
. (18)

Then, from (15), (16), and (18), it follows that

xk =
B1

3
εk +

1
18
(
3βψ(3)(α)− 10B2

1 + 12B2
)
ε2

k +
1

54

(
46B3

1 + 3B1
(
3ψ(3)(α)β− 32B2

)
+ 54B3

)
ε3

k −
1

486
(
610B4

1

− B2
1(1818B2 − 27βψ(3)(α)) + 1188B1B3 + 9

(
(βψ(3)(α))2 − 15βψ(3)(α)B2 + 72B2

2 − 72B4
))

ε4
k + O(ε5

k)

(19)

and

yk = 1 +
βψ(3)(α)

3!
ε2

k

(
1 +

4
3

B1εk +
5
3

B2ε2
k +

1
18

(βψ(3)(α)B1 + 36B3)ε
3
k + O(ε4

k)
)

. (20)

Using (19), we have

h =
B1

3
εk +

1
6
(

βψ(3)(α)− 4B2
1 + 4B2

)
ε2

k +
1
54

(
68B3

1 + 3B1
(

βψ(3)(α)− 40B2
)
+ 54B3

)
ε3

k −
1

2916
(
6792B4

1

− 108B2
1(159B2 + 2βψ(3)(α)) + 9072B1B3 − 27

(
− 5(βψ(3)(α))2 + 6βψ(3)(α)B2 − 192B2

2 + 144B4
))

ε4
k

+ O(ε5
k).

(21)

Developing weight function G(h) about origin by the Taylor series expansion,

G(h) ≈ G(0) + hG′(0) +
1
2

h2G′′(0) +
1
6

h3G′′′(0). (22)

By using (15)–(22) in the last step of (3), we have

εk+1 = −2G(0)
3

εk +
1
9
(3 + 2G(0)− 2G′(0))B1ε2

k +
2

∑
n=1

ϕnεn+2
k + O(ε5

k), (23)

where ϕn = ϕn(β, B1, B2, B3, G(0), G′(0), G′′(0), G′′′(0)), n = 1, 2.
To obtain fourth order convergence, it is sufficient to set coefficients of εk, ε2

k, and ε3
k simultaneously

equal to zero. This process will yield

G(0) = 0, G′(0) =
3
2

, G′′(0) = 9. (24)

Then, error equation (23) is given by

εk+1 = − B1

972
(
27βψ(3)(α) + 4(G′′′(0)− 99)B2

1 + 108B2
)
ε4

k + O(ε5
k). (25)

Hence, the result is proved.

Remark 1. We can observe from the above results that the number of conditions on G(h) is 3 corresponding to
the cases µ = 2, 3 to attain the fourth order convergence of the method (3). These cases also satisfy common
conditions: G(0) = 0, G′(0) = µ

2 , G′′(0) = 3µ. Their error equations also contain the term involving the
parameter β. However, for the cases µ ≥ 4, it has been seen that the error equation in each such case does not
contain β term. We shall prove this fact in the next section.
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3. Main Result

We shall prove the convergence order of scheme (3) for the multiplicity µ ≥ 4 by the following theorem:

Theorem 3. Using assumptions of Theorem 1, the convergence order of scheme (3) for µ ≥ 4 is at least four,
provided that G(0) = 0, G′(0) = µ

2 , G′′(0) = 3µ and |G′′′(0)| < ∞. Moreover, error in the scheme is given by

εk+1 =
1

6µ4

(
(3µ(19 + µ)− 2G′′′(0))F3

1 − 6µ2F1F2
)
ε4

k + O(ε5
k),

where Fm = µ!
(µ+m)!

ψ(µ+m)(α)

ψ(µ)(α)
for m ∈ N.

Proof. Taking into account that ψ(i)(α) = 0, i = 0, 1, 2, ..., µ− 1 and ψ(µ)(α) 6= 0, then Taylor series
expansion of ψ(uk) about α is

ψ(uk) =
ψ(µ)(α)

µ!
ε

µ
k
(
1 + F1εk + F2ε2

k + F3ε3
k + F4ε4

k + · · ·
)
. (26)

Taylor expansion of ψ(vk) about α yields

ψ(vk) =
ψ(µ)(α)

µ!
ε

µ
vk

(
1 + F1εvk + F2ε2

vk
+ F3ε3

vk
+ F4ε4

vk
+ · · ·

)
, (27)

where εvk = vk − α = εk +
βψ(µ)(α)

µ! ε
µ
k
(
1 + F1εk + F2ε2

k + F3ε3
k + F4ε4

k + · · ·
)
.

Using (26) and (27) in the first step of (3), we obtain

εzk =


F1
4 ε2

k +
1
16
(
8F2 − 5F2

1
)
ε3

k +
1
64
(
4βψ(4)(α) + 25F3

1 − 64F1F2 + 48F3
)
ε4

k + O(ε5
k), if µ = 4,

F1
µ ε2

k +
1

µ2

(
2µF2 − (1 + µ)F2

1
)
ε3

k +
1

µ3

(
(1 + µ)2F3

1 − µ(4 + 3µ)F1F2 + 3µ2F3
)
ε4

k + O(ε5
k), if µ ≥ 5,

(28)

where εzk = zk − α.

Expansion of ψ(zk) around α yields

ψ(zk) =
ψ(µ)(α)

µ!
ε

µ
zk

(
1 + F1εzk + F2ε2

zk
+ F3ε3

zk
+ F4ε4

zk
+ · · ·

)
. (29)

Using (26), (27) and (29), we have that

xk =



F1
4 εk +

1
8
(
4F2 − 3F2

1
)
ε2

k +
1

128
(
8βψ(4)(α) + 67F3

1 − 152F1F2 + 96F3
)
ε3

k +
1

768
(
− 543F4

1 + 1740F2
1 F2

+4F1(11βψ(4)(α)− 312F3) + 96(−7F2
2 + 8F4)

)
ε4

k + O(ε5
k), if µ = 4,

F1
5 εk +

1
25
(
10F2 − 7F2

1
)
ε2

k +
1

125
(
46F3

1 − 110F1F2 + 75F3
)
ε3

k +
( βψ(5)(α)

60 − 294
625 F4

1 + 197
125 F2

1 F2 − 16
25 F2

2

− 6
5 F1F3 +

4
5 F4
)
ε4

k + O(ε5
k), if µ = 5,

F1
µ εk +

1
µ2

(
2µF2 − (2 + µ)F2

1
)
ε2

k +
1

2µ3

(
(7 + 7µ + 2µ2)F3

1 − 2µ(7 + 3µ)F1F2 + 6µ2F3
)
ε3

k

− 1
6µ4

(
(34 + 51µ + 29µ2 + 6µ3)F4

1 − 6µ(17 + 16µ + 4µ2)F2
1 F2 + 12µ2(3 + µ)F2

2

+12µ2(5 + 2µ)F1F3
)
ε4

k + O(ε5
k), if µ ≥ 6

(30)

and

yk = 1 +
βψ(µ)(α)

µ!
ε

µ−1
k

(
1 +

(µ + 1)F1
µ

εk +
(µ + 2)F2

µ
ε2

k +
(µ + 3)F3

µ
ε3

k +
(µ + 4)F4

µ
ε4

k + O(ε5
k)
)

. (31)



Mathematics 2020, 8, 1091 7 of 15

Using (30), we obtain that

h =



F1
4 εk +

1
16
(
8µF2 − 7F2

1
)
ε2

k +
1

128
(
8βψ(4)(α) + 93F3

1 − 184F1F2 + 96F3
)
ε3

k

+
(
− 303

256 F4
1 + 213

64 F2
1 F2 − 9

8 F2
2 + F1(

5
192 βψ(4)(α)− 2F3) + F4

)
ε4

k + O(ε5
k), if µ = 4,

F1
5 εk +

1
25
(
10F2 − 8F2

1
)
ε2

k +
1

125
(
61F3

1 − 130F1F2 + 75F3
)
ε3

k

+
(
− 457

625 F4
1 + 11

5 F2
1 F2 − 36

25 F1F3 +
1
60 (βψ(5)(α)− 48F2

2 + 48F4)
)
ε4

k + O(ε5
k), if µ = 5,

F1
µ εk +

1
µ2

(
2µF2 − (3 + µ)F2

1
)
ε2

k +
1

2µ3

(
(17 + 11µ + 2µ2)F3

1 − 2µ(11 + 3µ)F1F2 + 6µ2F3
)
ε3

k

− 1
6µ4

(
(142 + 135µ + 47µ2 + 6µ3)F4

1 − 6µ(45 + 26µ + 4µ2)F2
1 F2 + 12µ2(5 + µ)F2

2

+24µ2(4 + µ)F1F3
)
ε4

k + O(ε5
k), if µ ≥ 6.

(32)

Developing weight function G(h) about origin by the Taylor series expansion,

G(h) ≈ G(0) + hG′(0) +
1
2

h2G′′(0) +
1
6

h3G′′′(0). (33)

Using (26)–(33) in the last step of (3), we get

εk+1 = − 2G(0)
µ

εk +
1

µ2

(
(2G(0)− 2G′(0) + µ)F1

)
ε2

k +
2

∑
n=1

χnεn+2
k + O(ε5

k), (34)

where χn = χn(β, F1, F2, F3, G(0), G′(0), G′′(0), G′′′(0)) when µ = 4, 5 and χn =

χn(F1, F2, F3, G(0), G′(0), G′′(0), G′′′(0)) when µ ≥ 6 for n = 1, 2.
The fourth order convergence can be attained if we put coefficients of εk, ε2

k and ε3
k simultaneously

equal to zero. Then, the resulting equations yield

G(0) = 0, G′(0) =
µ

2
, G′′(0) = 3µ. (35)

As a result, the error equation is given by

εk+1 =
1

6µ4

(
(3µ(19 + µ)− 2G′′′(0))F3

1 − 6µ2F1F2
)
ε4

k + O(ε5
k). (36)

This proves the result.

Remark 2. The proposed scheme (3) achieves fourth-order convergence with the conditions of weight-function
G(h) as shown in Theorems 1–3. This convergence rate is attained by using only three functional evaluations viz.
ψ(uk), ψ(vk) and ψ(zk) per iteration. Therefore, the iterative scheme (3) is optimal according to Kung–Traub
conjecture [17].

Remark 3. Note that the parameter β, which is used in vk, appears only in the error equations of the cases
µ = 2, 3 but not for µ ≥ 4 (see Equation (36)). However, for µ ≥ 4, we have observed that this parameter
appears in the terms of ε5

k and higher order. Such terms are difficult to compute in general. However, we do not
need these in order to show the required fourth order of convergence. Note also that Theorems 1–3 are presented to
show the difference in error expressions. Nevertheless, the weight function G(h) satisfies the common conditions
G(0) = 0, G′(0) = µ

2 , G′′(0) = 3µ for every µ ≥ 2.

Some Special Cases

Based on various forms of function G(h) that satisfy the conditions of Theorem 3, numerous
special cases of the family (3) can be explored. The following are some simple forms:
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(1) G(h) =
µ h(1 + 3 h)

2
, (2) G(h) =

µ h
2− 6h

, (3) G(h) =
µ h(µ− 2h)

2(µ− (2 + 3µ)h + 2µh2)
,

(4) G(h) =
µ h(3− h)

6− 20h
.

The corresponding method to each of the above forms can be expressed as follows:

Method 1 (M1) :

uk+1 = zk −
µ h(1 + 3 h)

2

(
1 +

1
yk

) ψ(uk)

ψ[vk, uk]
.

Method 2 (M2) :

uk+1 = zk −
µ h

2− 6h

(
1 +

1
yk

) ψ(uk)

ψ[vk, uk]
.

Method 3 (M3) :

uk+1 = zk −
µ h(µ− 2h)

2(µ− (2 + 3µ)h + 2µh2)

(
1 +

1
yk

) ψ(uk)

ψ[vk, uk]
.

Method 4 (M4) :

uk+1 = zk −
µ h(3− h)

6− 20h

(
1 +

1
yk

) ψ(uk)

ψ[vk, uk]
.

Note that, in all the above cases, zk has the following form:

zk = uk − µ
ψ(uk)

ψ[vk, uk]
.

4. Basins of Attraction

In this section, we present complex geometry of the above considered method with a tool,
namely basin of attraction, by applying the method to some complex polynomials ψ(z). Basin of
attraction of the root is an important geometrical tool for comparing convergence regions of the iterative
methods [21–23]. To start with, let us recall some basic ideas concerned with this graphical tool.

Let R : C→ C be a rational mapping on the Riemann sphere. We define orbit of a point z0 ∈ C
as the set {z0, R(z0), R2(z0), . . . , Rn(z0), . . .}. A point z0 ∈ C is a fixed point of the rational function
R if it satisfies the equation R(z0) = z0. A point z0 is said to be periodic with period m > 1 if
Rm(z0) = z0, where m is the smallest such integer. A point z0 is called attracting if |R′(z0)| < 1,
repelling if |R′(z0)| > 1, neutral if |R′(z0)| = 1 and super attracting if |R′(z0)| = 0. Assume that z∗ψ is
an attracting fixed point of the rational map R. Then, the basin of attraction of z∗ψ is defined as

A(z∗ψ) = {z0 ∈ C : Rn(z0)→ z∗ψ, n→ ∞}.

The set of points whose orbits tend to an attracting fixed point z∗ψ is called the Fatou set.
The complementary set, called the Julia set, is the closure of the set of repelling fixed points, which
establishes the boundaries between the basins of the roots. Attraction basins allow us to assess those
starting points which converge to the concerned root of a polynomial when we apply an iterative
method, so we can visualize which points are good options as starting points and which are not.

We select z0 as the initial point belonging to D, where D is a rectangular region in C containing
all the roots of the equation ψ(z) = 0. An iterative method starting with a point z0 ∈ D may converge
to the zero of the function ψ(z) or may diverge. To assess the basins, we consider 10−3 as the stopping
criterion for convergence restricted to 25 iterations. If this tolerance is not achieved in the required
iterations, the procedure is dismissed with the result showing the divergence of the iteration function
started from z0. While drawing the basins, the following criterion is adopted: A color is allotted to
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every initial guess z0 in the attraction basin of a zero. If the iterative formula that begins at point z0

converges, then it forms the basins of attraction with that assigned color and, if the formula fails to
converge in the required number of iterations, then it is painted black.

To view the complex dynamics, the proposed methods are applied on the following three problems:

Test problem 1. Consider the polynomial ψ1(z) = (z2 + z + 1)2 having two zeros {−0.5 −
0.866025i,−0.5 + 0.866025i} with multiplicity µ = 2. The attraction basins for this polynomial are
shown in Figures 1–3 corresponding to the choices 0.01, 10−4, 10−6 of parameter β. A color is assigned
to each basin of attraction of a zero. In particular, red and green colors have been allocated to the
basins of attraction of the zeros −0.5− 0.866025i and −0.5 + 0.866025i, respectively.
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Figure 1. Basins of attraction by M-1–M-4 (β = 0.01) for polynomial ψ1(z).
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Figure 2. Basins of attraction by M-1–M-4 (β = 10−4) for polynomial ψ1(z).
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Figure 3. Basins of attraction by M-1–M-4 (β = 10−6) for polynomial ψ1(z).

Test problem 2. Consider the polynomial ψ2(z) =
(
z3 + 1

4 z
)3 which has three zeros {− i

2 , i
2 , 0} with

multiplicities µ = 3. Basins of attractors assessed by methods for this polynomial are drawn in
Figures 4–6 corresponding to choices β = 0.01, 10−4, 10−6. The corresponding basin of a zero is
identified by a color assigned to it. For example, green, red, and blue colors have been assigned
corresponding to − i

2 , i
2 , and 0.
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Test problem 3. Next, let us consider the polynomial ψ3(z) =
(
z3 + 1

z
)4 that has four zeros

{−0.707107 + 0.707107i,−0.707107 − 0.707107i, 0.707107 + 0.707107i, 0.707107 − 0.707107i} with
multiplicity µ = 4. The basins of attractors of zeros are shown in Figures 7–9, for choices of the
parameter β = 0.01, 10−4, 10−6. A color is assigned to each basin of attraction of a zero. In particular,
we assign yellow, blue, red, and green colors to −0.707107 + 0.707107i, −0.707107 − 0.707107i,
0.707107 + 0.707107i and 0.707107− 0.707107i, respectively.
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Figure 7. Basins of attraction by M-1–M-4 (β = 0.01) for polynomial ψ3(z).
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Estimation of β values plays an important role in the selection of those members of family (3)
which possess good convergence behavior. This is also the reason why different values of β have been
chosen to assess the basins. The above graphics clearly indicate that basins are becoming wider with
the smaller values of parameter β. Moreover, the black zones (used to indicate divergence zones) are
also diminishing as β assumes small values. Thus, we conclude this section with a remark that the
convergence of proposed methods is better for smaller values of parameter β.

5. Numerical Results

In order to validate of theoretical results that have been shown in previous sections,
the new methods M1, M2, M3, and M4 are tested numerically by implementing them on
some nonlinear equations. Moreover, these are compared with some existing optimal fourth
order Newton-like methods. For example, we consider the methods by Li–Liao–Cheng [7],
Li–Cheng–Neta [8], Sharma–Sharma [9], Zhou–Chen–Song [10], Soleymani–Babajee–Lotfi [12], and
Kansal–Kanwar–Bhatia [14]. The methods are expressed as follows:

Li–Liao–Cheng method (LLCM):

zk = uk −
2µ

µ + 2
ψ(uk)

ψ′(uk)
,

uk+1 = uk −
µ(µ− 2)

( µ
µ+2

)−µ
ψ′(zk)− µ2ψ′(uk)

ψ′(uk)−
( µ

µ+2
)−µ

ψ′(zk)

ψ(uk)

2ψ′(uk)
.

Li–Cheng–Neta method (LCNM):

zk = uk −
2µ

µ + 2
ψ(uk)

ψ′(uk)
,

uk+1 = uk − α1
ψ(uk)

ψ′(zk)
− ψ(uk)

α2ψ′(uk) + α3ψ′(zk)
,

where

α1 = − 1
2

( µ
µ+2

)µ
µ(µ4 + 4µ3 − 16µ− 16)

µ3 − 4µ + 8
,

α2 = − (µ3 − 4µ + 8)2

µ(µ4 + 4µ3 − 4µ2 − 16µ + 16)(µ2 + 2µ− 4)
,

α3 =
µ2(µ3 − 4µ + 8)( µ

µ+2
)µ
(µ4 + 4µ3 − 4µ2 − 16µ + 16)(µ2 + 2µ− 4)

.

Sharma–Sharma method (SSM):

zk = uk −
2µ

µ + 2
ψ(uk)

ψ′(uk)
,

uk+1 = uk −
µ

8

[
(µ3 − 4µ + 8)− (µ + 2)2

( µ

µ + 2

)µ ψ′(uk)

ψ′(zk)

×
(

2(µ− 1)− (µ + 2)
( µ

µ + 2

)µ ψ′(uk)

ψ′(zk)

)] ψ(uk)

ψ′(uk)
.
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Zhou–Chen–Song method (ZCSM):

zk = uk −
2µ

µ + 2
ψ(uk)

ψ′(uk)
,

uk+1 = uk −
µ

8

[
µ3
(µ + 2

µ

)2µ( ψ′(zk)

ψ′(uk)

)2
− 2µ2(µ + 3)

(µ + 2
µ

)µ ψ′(zk)

ψ′(uk)

+ (µ3 + 6µ2 + 8µ + 8)
] ψ(uk)

ψ′(uk)
.

Soleymani–Babajee–Lotfi method (SBLM):

zk = uk −
2µ

µ + 2
ψ(uk)

ψ′(uk)
,

uk+1 = uk −
ψ′(zk)ψ(uk)

q1(ψ′(zk))2 + q2ψ′(zk)ψ′(uk) + q3(ψ′(uk))2 ,

where q1 = 1
16 µ3−µ(µ + 2)µ, q2 = 8−µ(µ+2)(µ2−2)

8µ , q3 = 1
16 (µ− 2)µµ−1(µ + 2)3−µ.

Kansal–Kanwar–Bhatia method (KKBM):

zk = uk −
2µ

µ + 2
ψ(uk)

ψ′(uk)
,

uk+1 = uk −
µ

4
ψ(uk)

(
1 +

µ4 p−2µ
(

pµ−1 − ψ′(zk)
ψ′(uk)

)2
(pµ − 1)

8(2pµ + n(pµ − 1))

)

×
(4− 2µ + µ2(p−µ − 1)

ψ′(uk)
− p−µ(2pµ + µ(pµ − 1))2

ψ′(uk)− ψ′(zk)

)
,

where p = µ
µ+2 .

Computations are performed in the programming package of Mathematica software [20] in a PC
with specifications: Intel(R) Pentium(R) CPU B960 @ 2.20 GHz, 2.20 GHz (32-bit Operating System)
Microsoft Windows 7 Professional and 4 GB RAM. Numerical tests are performed by choosing the
value −0.01 for parameter β in new methods. The tabulated results of the methods displayed in
Table 1 include: (i) iteration number (k) required to obtain the desired solution satisfying the condition
|uk+1 − uk|+ |ψ(uk)| < 10−100, (ii) estimated error |uk+1 − uk| in the consecutive first three iterations,
(iii) calculated convergence order (CCO), and (iv) time consumed (CPU time in seconds) in execution
of a program, which is measured by the command “TimeUsed[ ]”. The calculated convergence order
(CCO) is computed by the well-known formula (see [24])

CCO =
log |(uk+2 − α)/(uk+1 − α)|

log |(uk+1 − α)/(uk − α)| , for each k = 1, 2, . . . (37)
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Table 1. Comparison of numerical results.

Methods k |u2− u1| |u3− u2| |u4− u3| CCO CPU-Time

ψ1(u)

LLCM 6 7.84× 10−2 6.31× 10−3 1.06× 10−5 4.000 0.0784
LCNM 6 7.84× 10−2 6.31× 10−3 1.06× 10−5 4.000 0.0822

SSM 6 7.99× 10−2 6.78× 10−3 1.44× 10−5 4.000 0.0943
ZCSM 6 8.31× 10−2 7.83× 10−3 2.76× 10−5 4.000 0.0956
SBLM 6 7.84× 10−2 6.31× 10−3 1.06× 10−5 4.000 0.0874
KKBM 6 7.74× 10−2 5.97× 10−3 7.31× 10−6 4.000 0.0945

M1 6 9.20× 10−2 1.16× 10−2 1.16× 10−4 4.000 0.0774
M2 6 6.90× 10−2 3.84× 10−3 1.03× 10−6 4.000 0.0794
M3 6 6.21× 10−2 2.39× 10−3 7.06× 10−8 4.000 0.0626
M4 6 6.29× 10−2 2.54× 10−3 9.28× 10−8 4.000 0.0785

ψ2(u)

LLCM 4 2.02× 10−4 2.11× 10−17 2.51× 10−69 4.000 0.7334
LCNM 4 2.02× 10−4 2.12× 10−17 2.54× 10−69 4.000 1.0774

SSM 4 2.02× 10−4 2.12× 10−17 2.60× 10−69 4.000 1.0765
ZCSM 4 2.02× 10−4 2.15× 10−17 2.75× 10−69 4.000 1.1082
SBLM 4 2.02× 10−4 2.13× 10−17 2.62× 10−69 4.000 1.2950
KKBM 4 2.02× 10−4 2.08× 10−17 2.31× 10−69 4.000 1.1548

M1 4 1.01× 10−4 1.08× 10−18 1.43× 10−74 4.000 0.5612
M2 4 9.85× 10−5 4.94× 10−19 3.13× 10−76 4.000 0.5154
M3 4 9.85× 10−5 4.94× 10−19 3.13× 10−76 4.000 0.5311
M4 4 9.82× 10−5 4.35× 10−19 1.67× 10−76 4.000 0.5003

ψ3(u)

LLCM 4 4.91× 10−5 5.70× 10−21 1.03× 10−84 4.000 0.6704
LCNM 4 4.91× 10−5 5.70× 10−21 1.03× 10−84 4.000 0.9832

SSM 4 4.92× 10−5 5.71× 10−21 1.04× 10−84 4.000 1.0303
ZCSM 4 4.92× 10−5 5.72× 10−21 1.05× 10−84 4.000 1.0617
SBLM 4 4.92× 10−5 5.73× 10−21 1.06× 10−84 4.000 1.2644
KKBM 4 4.91× 10−5 5.66× 10−21 1.00× 10−84 4.000 1.0768

M1 3 6.35× 10−6 2.73× 10−25 0 4.000 0.3433
M2 3 4.94× 10−6 6.81× 10−26 0 4.000 0.2965
M3 3 5.02× 10−6 7.46× 10−26 0 4.000 0.3598
M4 3 4.77× 10−6 5.66× 10−26 0 4.000 0.3446

ψ4(u)

LLCM 4 1.15× 10−4 5.69× 10−17 3.39× 10−66 4.000 1.4824
LCNM 4 1.15× 10−4 5.70× 10−17 3.40× 10−66 4.000 2.5745

SSM 4 1.15× 10−4 5.71× 10−17 3.44× 10−66 4.000 2.5126
ZCSM 4 1.15× 10−4 5.72× 10−17 3.47× 10−66 4.000 2.5587
SBLM 4 1.15× 10−4 5.83× 10−17 3.79× 10−66 4.000 3.1824
KKBM 4 1.15× 10−4 5.63× 10−17 3.21× 10−66 4.000 2.4965

M1 4 4.18× 10−4 6.03× 10−19 2.60× 10−74 4.000 0.4993
M2 4 3.88× 10−5 2.24× 10−19 2.45× 10−76 4.000 0.5151
M3 4 3.92× 10−5 2.57× 10−19 4.80× 10−76 4.000 0.4996
M4 4 3.85× 10−5 1.92× 10−19 1.18× 10−76 4.000 0.4686

ψ5(u)

LLCM 4 2.16× 10−4 3.17× 10−17 1.48× 10−68 4.000 1.9042
LCNM 4 2.16× 10−4 3.17× 10−17 1.47× 10−68 4.000 2.0594

SSM 4 2.16× 10−4 3.16× 10−17 1.45× 10−68 4.000 2.0125
ZCSM 4 2.16× 10−4 3.15× 10−17 1.43× 10−68 4.000 2.1530
SBLM 4 2.16× 10−4 3.01× 10−17 1.15× 10−68 4.000 2.4185
KKBM 4 2.16× 10−4 3.24× 10−17 1.63× 10−68 4.000 2.2153

M1 4 2.48× 10−4 7.62× 10−21 6.81× 10−83 4.000 1.6697
M2 4 2.15× 10−5 2.03× 10−21 1.63× 10−85 4.000 1.7793
M3 4 2.19× 10−5 2.51× 10−21 4.35× 10−85 4.000 1.7942
M4 4 2.11× 10−5 1.66× 10−21 6.29× 10−86 4.000 1.6855

The problems considered for numerical testing are shown in Table 2.
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Table 2. Test functions.

Functions Root (α) Multiplicity Initial Guess

ψ1(u) = u3 − 5.22u2 + 9.0825u− 5.2675 1.75 2 2.4
ψ2(u) = − u4

12 + u2

2 + u + eu(u− 3) + sin u + 3 0 3 0.6

ψ3(u) =
(

e−u − 1 + u
5

)4
4.9651142317. . . 4 5.5

ψ4(u) = u(u2 + 1)(2eu2+1 + u2 − 1) cosh4
(

πu
2

)
i 6 1.2 i

ψ5(u) =
[

tan−1 (√5
2

)
− tan−1(

√
u2 − 1) +

√
6
(

tan−1 (√ u2−1
6

)
− tan−1 ( 1

2

√
5
6

))
− 11

63

]7 1.8411294068. . . 7 1.6

From the computed results in Table 1, we can observe the good convergence behavior of the
proposed methods. The reason for good convergence is the increase in accuracy of the successive
approximations as is evident from values of the differences |uk+1 − uk|. This also implies to stable
nature of the methods. Moreover, the approximations to solutions computed by the proposed methods
have either greater or equal accuracy than those computed by existing counterparts. The value 0 of
|uk+1 − uk| indicates that the stopping criterion |uk+1 − uk|+ |ψ(uk)| < 10−100 has been satisfied at
this stage. From the calculation of calculated convergence order as shown in the second last column
in each table, we have verified the theoretical fourth order of convergence. The robustness of new
algorithms can also be judged by the fact that the used CPU time is less than that of the CPU time by
the existing techniques. This conclusion is also confirmed by similar numerical experiments on many
other different problems.

6. Conclusions

We have proposed a family of fourth order derivative-free numerical methods for obtaining
multiple roots of nonlinear equations. Analysis of the convergence has been carried out under standard
assumptions, which proves the convergence order four. The important feature of our designed scheme
is its optimal order of convergence which is rare to achieve in derivative-free methods. Some special
cases of the family have been explored. These cases are employed to solve some nonlinear equations.
The performance is compared with existing techniques of a similar nature. Testing of the numerical
results have shown the presented derivative-free method as good competitors to the already established
optimal fourth order techniques that use derivative information in the algorithm. We conclude this
work with a remark: the proposed derivative-free methods can be a better alternative to existing
Newton-type methods when derivatives are costly to evaluate.
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