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Abstract: The characteristic polynomial (ChP) has found its use in the characterization of chemical
compounds since Hückel’s method of molecular orbitals. In order to discriminate the atoms
of different elements and different bonds, an extension of the classical definition is required.
The extending characteristic polynomial (EChP) family of structural descriptors is introduced in
this article. Distinguishable atoms and bonds in the context of chemical structures are considered
in the creation of the family of descriptors. The extension finds its uses in problems requiring
discrimination among same-patterned graph representations of molecules as well as in problems
involving relations between the structure and the properties of chemical compounds. The ability of
the EChP to explain two properties, namely, area and volume, is analyzed on a sample of C20 fullerene
congeners. The results have shown that the EChP-selected descriptors well explain the properties.
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1. Introduction

The term ‘secular function’ has been used for what is now called a characteristic polynomial (ChP,
in some of the literature, the term secular function is still used). The ChP was used to calculate secular
perturbations (on a time scale of a century, i.e., slow compared with annual motion) of planetary
orbits [1]. The first use of the ChP (|λ·Id−Ad|, where Id is the identity matrix, and Ad is the adjacency
matrix) in relation with chemical structure appeared after the discovery of wave-based treatment at the
microscopic level [2]. The Hückel’s method of molecular orbitals is actually the first extension of the
ChP definition. He uses the ‘secular determinant’—the determinant of a matrix which is decomposed
as |E·Id−Ad|, standing with the energy of the system (E instead of λ)—to approximate treatment of
π electron systems in organic molecules [2].

The second extension of the ChP was found by Hartree [3,4] and Fock [5,6] by going in a different
direction with the approximation of the wavefunction treatment. They actually found the same
older eigenvector–eigenvalue problem (§20 in [7]; T1 in [8]) in Slater’s treatment [9,10] of molecular
orbitals. More generally (and older), the eigen-problem (finding of eigenvalues and eigenvectors)
is involved in any Hessian [11] matrix [A] ([Ad] → [A], where Ad is the adjacency matrix). The
Laplacian polynomial is a polynomial connected with the ChP (in Table 1). This uses a modified form
(the Laplacian matrix, [La]) of the adjacency matrix ([Ad]), [La] = [Dg] − [Ad], where [Dg] simply
counts on the main diagonal the number of the atom’s bonds (the rest of its elements are null; for
convenience with the graph-theory-related concept, it was denoted [Dg], from vertex degree). The
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ChP is related also to the matching polynomial [12], degenerating to the same expression for forests
(disjoint union of trees). Adapting [13] for molecules, a k-matching in a molecule is a matching with
exactly k bonds between different atoms; see §3.1 & §3.3 in [14] for details. Each set containing a single
edge is also an independent edge set; the empty set should be treated as an independent edge set with
zero edges—this set is unique due to the constraint of connecting different atoms, where the matching
may involve no more than [n/2] bonds, where n is the number of atoms. It is possible to count the
k-matches [15], but, nevertheless, it is a hard problem [16], as well as to express the derived Z-counting
polynomial [17] and matching polynomial—both are defined using m(k) as the k-matching number of
the selected molecule, as shown in Table 1 (where n is the number of atoms).

Table 1. Characteristic polynomial (ChP), Laplacian polynomial (LaP), Z-counting, and Matching
Polynomials.

Name Formula

ChP |λ·[Id] − [Ad]|
LaP |λ·[Id] − [Dg] + [Ad]|

Z-counting Σk≥0 m(k)·λk

Matching Σk≥0 (−1)k·m(k)·λn−2k

A topological description of a molecule requires the storing of the bonds (as adjacencies) between
the atoms and the atoms themselves (as identities). If this problem is simplified at maximum, by
disregarding the atom and bond types, then the molecule is seen as an undirected and unweighted
graph. The graph structure can be translated into the informational space by numbering the atoms.
Unfortunately, this procedure also induces an isomorphism—the isomorphism of numbering, which
may collapse into a nondeterministic polynomial time to be solved—see [18]. This is a reason for the
desire of graph invariants, e.g., which do not depend on the numbering made on the graph.

Once the atoms (or the vertices) are numbered, the information can be simply stored as lists of
vertices (V) and edges (E), and the graph structure of the molecule is associated with the pair G = (V, E).
An equivalent representation is obtained using matrices. The adjacencies ([Ad]) are simply stored
with 0 when no bond connects the atoms and 1 when a bond connecting the atoms exists. The identity
matrix ([Id]) identifies the atoms by placing 1 on the main diagonal and 0 otherwise.

The ChP is the natural construction of a polynomial (in λ) in which the eigenvalues of [Ad] are
the roots of the ChP as follows:

λ is an eigenvalue of [Ad]→ there exists eigenvector [v] 6= 0 such that λ·[v] = [Ad] × [v].

As a consequence:

(λ·[Id] − [Ad])·[v] = 0; since [v] 6= 0→ λ·[Id] − [Ad] is singular→ |λ·[Id] − [Ad]| = 0.

Finally,
ChP← |λ·[Id] − [Ad]|.

ChP is a polynomial (in λ) of degree n, where n is the number of atoms. The ChP finds its uses in
the topological theory of aromaticity [19,20], structure-resonance theory [21], quantum chemistry [22],
and counts of random walks [23], as well as in eigenvector–eigenvalue problems [24].

This definition allows extensions. A natural extension is to store in the identity matrix ([Id])
non-unity instead of unity values ([Id]i,j = 1→ [Id]i,j 6= 1) accounting for the atom types, as well as to
store in the adjacency matrix ([Ad]) non-unity instead of unity values accounting for the bond types
([Ad]i,j = 1→ [Ad]i,i 6= 1. This extension was subjected to study in the context of deriving structural
descriptors useful for structure–property relationships.
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2. Materials and Methods

2.1. Graphs, Matrices, and the Characteristic Polynomial

The topology of a graph structure could be expressed as matrices, and, in this regard, three of
them are more frequently used: identity, adjacency (vertex–vertex, edge–edge, and vertex–edge), and
distance matrices can be built (Table 2).

Table 2. Classical molecular graphs.

Definition V: Finite Set E ⊆ V × V G = G(V,E)

Name (concept) V: vertices (atoms) E: edges (bonds) G: graph (molecule)
Cardinality |V| = n |E| = m ∀n, V↔ {1, . . . , n}

Example G = “A-B-C” V = {1,2,3} E = {(1,2), (2,3)}

The matrices reflect in a 1:1 fashion the graph if the full graph is stored (each vertex pair stored
twice, in both ways). The matrices of vertex adjacency ([Ad]) and of edge adjacency are square and the
double enumeration of the edges is reflected in symmetry relative to the main diagonal (see Figure 1).
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Figure 2. Graphs vs molecules—an example. 

Figure 1. Encoded identities [I], adjacencies [A] and distances [D]—an example.

ChP is the natural construction of a polynomial in which the eigenvalues of the [Ad] are the roots
of the ChP. ChP is a polynomial in λ of degree n, where n is the number of atoms. A natural extension
is to store in [Id] (instead of unity) non-unity values accounting for the atom types, as well as to store
in [Ad] (instead of unity) non-unity values accounting for the bond types.

An extremely important problem in chemistry is to uniquely identify a chemical compound.
If the visual identification (looking at the structure) seems simple, for compounds of large size, this
alternative is no longer viable. The data related to the structure of the compounds stored into the
informational space may provide the answer to this problem. Nevertheless, together with the storing
of the structure of the compound another issue is raised—namely, the arbitrary numbering of the
atoms (Figure 2).
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For a chemical structure with N atoms stored as a (classical molecular) graph, there exist exactly
N! possibilities for numbering the atoms. Unfortunately, storing the graphs as lists of edges and
(eventually) vertices does not provide a direct tool to check this arbitrary differentiation due to the
numbering. The same situation applies to the adjacency matrices. Therefore, seeking for graph
invariants is perfectly justified: an invariant (graph invariant) does not depend on numbering.
The adjacency matrix is not a graph invariant and, therefore, it is necessary to go further than
the adjacencies.

Important classes of graph invariants are the graph polynomials. To this category belongs the
ChP—a graph invariant encoding important properties of the graph. On the other hand, unfortunately,
ChP does not represent a bijective image of the graph, as there exist different graphs with the same
ChP (i.e., cospectral graphs—the smallest cospectral graphs occurs for 5 vertices [25]). In order to
count the cospectral graphs, one should compare A000088 and A082104 [26,27]. The ideal situation is
that the invariant should be uniquely assigned to each structure, but this kind of invariant is difficult
to find. A procedure to generate a non-degenerate invariant proposed by IUPAC is the international
chemical identifier (InChI), which converts the chemical structure to a table of connectivity expressed
as a unique and predictable series of characters [28].

Despite this inconvenience (not representing a bijective image of the graph) due to its link with
the partition of the energy [2], the ChP seems to be one of the best alternatives for quantifying the
information from the chemical structure.

Previously, researchers have shown the performance of estimation and/or prediction of the ChP
on nonane isomers [29–31] as well as in the case of carbon nanostructures [32,33]. Furthermore, an
online environment has been developed to assist researchers in the calculation of polynomials based
on different approaches; this includes the ChP [34].

2.2. Characteristic Polynomial Extension

When doing calculations on molecular graphs, it is important to consider that, with the increase
in the simplification in the graph representation (such as neglecting the type of the atom, bond orders,
geometry in the favor of topology), the degeneration of the whole pool of possible calculations increases
and there are more molecules with the same representation. This is favorable for the problems seeking
similarities but is clearly unfavorable for the problems seeking dissimilarities.

A necessary step to accomplish better coverage of similarity vs dissimilarity dualism is to build
and use a family of molecular descriptors, large enough to be able to provide answers for all. In the
natural way, such a family should possess a ‘genetic code’—namely, a series of variables from which to
(re)produce a (one by one) molecular descriptor, all descriptors being therefore obtained in the same
way. It is expected that all individuals of the family are independent of the numbering of the atoms in
the molecule (should be molecular invariants).

The construction of such a family needs to consider the following:

• Molecules carry both topological and geometrical features (see Figure 3);
• Atom and bond types are essential factors in the expression of the measurable properties;
• Atom and/or bond numbering induces an undesired isomorphism;
• Geometry and bond types induce other kinds of isomorphism.
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The distinct identities from Figure 4 are given using a, b, and c as variables in the case of adjacency
and using d, e, and f as variables in the case of identity. This formalism allows the introduction of a
natural extension of the ChP from graphs to molecules. There is no determinism in selecting the values
of a–f. However,

• If a = b = c = d = e = f = 1 then ChPE← ChP as in classical molecular topology.
• If a = b = c = 1.5−1, then [A] accounts for the (inverse of the) bond order.
• If a = 1.35−1, b = 1.448−1, and c = 1.493−1 then [A] accounts for the (inverse of the) geometrical

distance (in Å).
• If d = 12/294, e = 14/294, and f = 10.8/294, then [I] accounts for atomic mass relative to Uuo, the

last element from the 7th period of the system of elements.
• If d = 2267/ρref, e = 1026/ρref, and f = 2460/ρref, then [I] accounts for the solid state relative

density (in m3/kg); ρref can be fixed to 30,000.
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The extended ChP has the following formula:

ChP← |λ × [I] − [C]|
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where [C] is either [A] or [D], the identities (a, b, and c from [I]) and the connectivity (d, e, f, g, h, i, j, k,
and l from [C]).

The single-value entries (0 and 1 6= 0 for the classical definition of the ChP) can be upgraded to
multi-value (any value), accounting for different atoms and bonds. Obviously, the classical ChP is
found when a = b = c = d = e = f = 1 and g = h = i = j = k = l = 0.

Figure 6 shows the ChP extension differently accounting the identities from atomic properties
([I]← AP ∈ {A, B, C, D, E, F, G, H, I, J, K, L}) and connectivity properties ([C] ← CP ∈ {t, g, c, b, T,
G, C, B,}).
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The extending characteristic polynomial (EChP) is designed for estimation/prediction of
molecular properties, so a software implementation was done. EChP(λ, IP, CP) diverges as ChP(λ) does
(to ∞) quickly with the increase of λ > 1. Thus, the [−1, 1] range→ ‘2001′ grid is useful for evaluation.
A linearization (LL) is required and was implemented since biological properties are expressed in log
scale. The evaluation is performed at every point (out of 2001), requiring O(n3) operations (where n is
the number of atoms).

EChP is a family with 96 (nI*nC) polynomial formulas and 288 (*nL) linearized ones, leading to
a total of 576,288 individuals. The FreePascal software was used for implementation since it is very
fast and allows a parallelized version to be used with multi-CPUs (chp17chp.pas) [35]. The program
requires input files in the ‘chp’ format (such as chfp_17_q.asc, see Figure 7), and uses a filtering (PHP)
program (→chfp_17_t.asc) as well as a molecular property file (such as chfp_17 [prop].txt). The filtering
program was designed to look for degenerations and to reduce the pool of descriptors by eliminating
the degenerated ones.
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The family of EChP descriptors was then used with a series of chemical compounds to obtain
associations between the structure and properties as regression equations.

2.3. Numerical Case Study

The case study was conducted on C20 fullerene congeners with Boron, Carbon, or Nitrogen atoms
on each layer (Figure 8). A sample of 45 distinct compounds was obtained. The generic name of the
files was stored as dd_R1R2R3R4, where dd is the number of the compound in the set and R1–R4 are
the atoms on layers 1–4 (e.g., 02_bbbn.chp is the second compound in the sample and has boron of the
first three layers and nitrogen on the last layer).

Mathematics 2017, 5, 84 7 of 12 

 

The family of EChP descriptors was then used with a series of chemical compounds to obtain 
associations between the structure and properties as regression equations. 

2.3. Numerical Case Study 

The case study was conducted on C20 fullerene congeners with Boron, Carbon, or Nitrogen 
atoms on each layer (Figure 8). A sample of 45 distinct compounds was obtained. The generic name 
of the files was stored as dd_R1R2R3R4, where dd is the number of the compound in the set and R1–R4 
are the atoms on layers 1–4 (e.g., 02_bbbn.chp is the second compound in the sample and has boron 
of the first three layers and nitrogen on the last layer). 

 

R1 R2 R3 R4  
Figure 8. C20 fullerene congeners (R is the symbol of the atom on the layer). 

The geometries were built at the Hartree-Fock (HF) [3–6] 6-31 G [36] level of theory and 
calculated properties (namely, area and volume) were extracted from these calculations. Two 
different structures proved stable for bbbb (see Figure 9) and both were included in the analysis, 
resulting in a sample of 46 compounds. 

00_bbbb

 

 01_bbbb 

 

 

Figure 9. bbbb C20 stable fullerenes. 

The values of the calculated properties are given in Table 3. 

Table 3. C20 congeners: values of investigated properties. 

Mol Area Volume Mol Area Volume Mol Area Volume
00_bbbb 54.641 30.063 16_cbbb  50.537 27.863 31_ccnc 42.689 22.542 
01_bbbb 51.863 26.948 17_cbbc 51.114 29.107 32_ccnn 43.987 23.862 
02_bbbn 54.848 32.333 18_cbbn 49.097 27.424 33_cnbb 49.186 28.569 
03_bbcn 48.481 27.524 19_cbcb 51.733 30.156 34_cnbn 44.694 24.794 
04_bbnb 53.093 30.658 20_cbcn 47.401 26.543 35_cncb 46.994 26.275 
05_bbnn 49.797 27.573 21_cbnb 48.262 26.68 36_cncn 44.723 24.062 
06_bcbb 54.597 32.043 22_cbnc 45.944 25.109 37_cnnb 45.76 24.995 
07_bcbn 49.415 28.726 23_cbnn 45.578 24.689 38_cnnc 48.834 24.315 
08_bccb 51.676 29.739 24_ccbb 52.365 30.954 39_cnnn 45.508 24.847 
09_bccn 47.392 26.933 25_ccbc 45.618 24.718 40_nbbn 48.119 26.881 
10_bcnb 48.782 26.786 26_ccbn 45.857 25.514 41_nbnn 45.726 24.275 
11_bcnn 47.15 25.543 27_cccb 46.446 25.49 42_ncbn 45.735 25.533 
12_bnbn 47.791 27.383 28_cccc 43.707 23.584 43_nccn 45.211 24.676 
13_bncn 47.048 26.368 29_cccn 43.86 23.926 44_ncnn 44.848 24.445 
14_bnnb 48.244 27.25 30_ccnb 45.901 25.525 45_nnnn 46.463 25.872 
15_bnnn 47.226 25.93 - - - - - - 

Figure 8. C20 fullerene congeners (R is the symbol of the atom on the layer).

The geometries were built at the Hartree-Fock (HF) [3–6] 6-31 G [36] level of theory and calculated
properties (namely, area and volume) were extracted from these calculations. Two different structures
proved stable for bbbb (see Figure 9) and both were included in the analysis, resulting in a sample of
46 compounds.
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The values of the calculated properties are given in Table 3.

Table 3. C20 congeners: values of investigated properties.

Mol Area Volume Mol Area Volume Mol Area Volume

00_bbbb 54.641 30.063 16_cbbb 50.537 27.863 31_ccnc 42.689 22.542
01_bbbb 51.863 26.948 17_cbbc 51.114 29.107 32_ccnn 43.987 23.862
02_bbbn 54.848 32.333 18_cbbn 49.097 27.424 33_cnbb 49.186 28.569
03_bbcn 48.481 27.524 19_cbcb 51.733 30.156 34_cnbn 44.694 24.794
04_bbnb 53.093 30.658 20_cbcn 47.401 26.543 35_cncb 46.994 26.275
05_bbnn 49.797 27.573 21_cbnb 48.262 26.68 36_cncn 44.723 24.062
06_bcbb 54.597 32.043 22_cbnc 45.944 25.109 37_cnnb 45.76 24.995
07_bcbn 49.415 28.726 23_cbnn 45.578 24.689 38_cnnc 48.834 24.315
08_bccb 51.676 29.739 24_ccbb 52.365 30.954 39_cnnn 45.508 24.847
09_bccn 47.392 26.933 25_ccbc 45.618 24.718 40_nbbn 48.119 26.881
10_bcnb 48.782 26.786 26_ccbn 45.857 25.514 41_nbnn 45.726 24.275
11_bcnn 47.15 25.543 27_cccb 46.446 25.49 42_ncbn 45.735 25.533
12_bnbn 47.791 27.383 28_cccc 43.707 23.584 43_nccn 45.211 24.676
13_bncn 47.048 26.368 29_cccn 43.86 23.926 44_ncnn 44.848 24.445
14_bnnb 48.244 27.25 30_ccnb 45.901 25.525 45_nnnn 46.463 25.872
15_bnnn 47.226 25.93 - - - - - -
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Normal distribution of the data is one assumption that needs to be assessed before any linear
regression analysis. Six different tests were used (AD = Anderson-Darling, KS = Kolmogorov-Smirnov,
CM = Cramér-von Mises, KV = Kuiper V, WU = Watson U2, H1 = Shannon’s entropy [37]) [38] and
the decision was made based on the combined test proposed by Fisher [39]. The distribution of the
investigated properties proved to be not significantly different from the expected normal distribution
(see Table 4, all p-values > 0.05).

Table 4. C20 congeners: values of investigated properties. AD = Anderson–Darling; KS = Kolmogorov–Smirnov;
CM = Cramér–von Mises; KV = Kuiper V; WU = Watson U2; H1 = Shannon’s entropy.

Prop. Title AD KS CM KV WU H1 FCS(6)

area stat 0.826 0.758 0.131 1.213 0.110 22.83 3.660
p 0.462 0.423 0.548 0.552 0.770 0.565 0.723

volume
stat 0.845 0.791 0.133 1.272 0.108 22.95 3.503

p 0.445 0.477 0.552 0.633 0.765 0.525 0.744

Where for a series of cumulative distribution function values ((fi)1≤i≤n):

Statistic Formula

AD −n− 1
n

n
∑

i=1
(2 · i− 1) · ln( fi · (1− fn+1−i))

KS
√

n · max
1≤i≤n

(
fi − i−1

n , i
n − fi

)
CM 1

12n +
n
∑

i=1

(
2·i−1

2n − fi

)2

KV
√

n ·
(

max
1≤i≤n

(
fi − i−1

n

)
+ max

1≤i≤n

(
i
n − fi

))
WU CM− n

(
1
n

n
∑

i=1
fi − 1

2

)2

H1 −
n
∑

i=1
fi · ln( fi)−

n
∑

i=1
(1− fi) · ln(1− fi)

FCS ln(pAD·pKS·pCM·pKV·pWU·pH1)

The absences of the outliers have also been investigated using Grubb’s test [40] for the association
between volume (vol) and area on the sample of investigated C20 congeners. The analysis identified
three compounds as outliers, their exclusion leading to a performing linear association (Figure 10).
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The absences of the outliers have also been investigated using Grubb’s test [40] for the association 
between volume (vol) and area on the sample of investigated C20 congeners. The analysis identified 
three compounds as outliers, their exclusion leading to a performing linear association (Figure 10). 
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Figure 10. Volume as linear function of area. Figure 10. Volume as linear function of area.

The values of the EChP descriptors were generated for all molecules in the dataset and were used
as input data for searching linear regression models able to explain the investigated properties (area
and volume). Three different approaches were used, searching for additive, multiplicative, or full
linear dependence (see Table 5).
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Table 5. Approaches in bivariate (kD = 2) regression analysis.

Y ~Ŷ = a0 + a1*ChPE1 + a2*ChPE2 + a3*ChPE1*ChPE2

Effect Coefficient Constraints kC

Additive (“+”)
a0 = 0, a1 6= 0, a2 6= 0, a3 = 0 2 (a1, a2)
a0 6= 0, a1 6= 0, a2 6= 0, a3 = 0 3 (a0, a1, a2)

Multiplicative (“*”) a0 = 0, a1 = 0, a2 = 0, a3 6= 0 1 (a3)
a0 6= 0, a1 = 0, a2 = 0, a3 6= 0 2 (a0, a3)

Full
a0 = 0, a1 6= 0, a2 6= 0, a3 6= 0 3 (a1, a2, a3)
a0 6= 0, a1 6= 0, a2 6= 0, a3 6= 0 4 (a0, a1, a2, a3)

The selection of the performing models was done using the adjusted determination coefficient
(r2

adj = r2 − (1− r2)*kD*(n− kC)−1, where n is the number of compounds in the model). The difference
between models with the same properties was tested using the studentized version of the Fisher Z
transformation [41,42].

The best-performing models identified for the investigated properties are presented in Table 6
while the characteristics of the models are given in Table 7.

Table 6. ChPE models.

Eff P Model eq

“+”
A 35.8±0.3 − 8.2±0.1 * LCG+0.238 + 1.4±0.3 * LCG−0.896 1 a

V 21.6±2.0 − 7.4±0.7 * LCG+0.238 + 1.7±0.3 * LCG−0.896 2

“*”
A 34.0±0.9 + 0.16±0.01 * LEG+0.436 * LFG−0.952 3
V 17.6±1.0 + 0.101±0.011*LEG+0.436 * LCG−0.384 4

Full
A 50.4±0.5 − 6.36±0.06 * LCG+0.276 + 2.3±0.5 * LCG-0.908 + 0.13±0.06 * LCG+0.276 * LCG−0.908 5
V 64±17 − 2.5±1.9 * LCG+0.236 + 4.5±1.2 * LCG-0.908 + 0.35±0.14 * LCG+0.236 * LCG−0.908 6

Eff = Effect; “+” = additive model; “*” = multiplicative model; P = property: A = Area, V = Volume. a 03_bbcn
excluded outlier.

Table 7. Model characteristics.

Eff P eq r2
adj se F (p-Value)

“+”
A 1 0.9934 0.2487 3386 (5.01 × 10−48)
V 2 0.9385 0.5767 344 (3.41 × 10−27)

“*”
A 3 0.9462 0.6575 931 (3.06 × 10−31)
V 4 0.8894 0.7651 372 (4.37 × 10−23)

Full
A 5 0.9940 0.2406 2413 (5.04 × 10−47)
V 6 0.9462 0.5458 258 (4.37 × 10−27)

Eff = Effect; “+” = additive model; “*” = multiplicative model; P = property: A = Area, V = Volume, r2
adj = adjusted

determination coefficient; se = standard error of estimate, F (p-value) = Fisher’s statistic (associated significance).

The relationship between volume and area is translated in the identification of the same EChP
descriptors as the explanatory variable (two descriptors for additive models and one descriptor for
multiplicative and respective full model, see Table 6). All models had a capacity of explanation higher
than 85%, with the worst performance obtained by multiplicative models and similar performances
(without significant difference) obtained by additive and full models (see Table 8).
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Table 8. Fisher’s Z model comparisons: results.

Prop. Parameter “*” vs “+” “*” vs Full “+” vs Full

Area
Stat 4.61 4.82 0.21

p-value <0.0001 <0.0001 0.4176

Volume
Stat 1.42 1.74 0.32

p-value 0.0791 0.0425 0.3752

Graphical representations of calculated and estimated area and respective volume by the
investigated effects are given in Figure 11 (eq1–eq3) and Figure 12 (eq4–eq6).
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The model comparison strongly suggests that the best performing models are the additive or the
full model for both investigated properties. However, since 03_bbcn is an outlier for the area on the
additive model, we can say that choosing the full model will give a correct estimation.

It is important that the performing models identified using the EChP descriptors—the full
model—select the same polynomial for both descriptors when both area and volume (”CG” in
LCG+0.236, LCG+0.276, and LCG−0.908) are investigated. It should be noted that one descriptor is
common for the estimation of the area and of the volume (LCG−0.908) for the C20 fullerene congeners.
This fact, in conjunction with the higher correlation between volume and area (r2

adj ≈ 0.97), the
presence of outliers in one additive model, and the significant higher performance by full models in
estimation sustained by goodness-of-fit and the graphical representation of calculated versus estimated,
suggests that the best models are those with full effects.

3. Conclusions and Further Work

EChP proved useful for estimation of the investigated molecular properties. Both properties of
C20 congeners—volume and area—are explained by a common descriptor (LCG−0.908 (or vice versa)).

EChP is a natural extension of the ChP. The scales of the atomic properties were more or
less arbitrary selected and will be further investigated to find the optimal solution. Furthermore,
the reversed distance seemed to be the best alternative but further analysis must be conducted to
demonstrate this observation.
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