Extending characteristic polynomial from graphs to molecules Lorentz JÄNTSCHI

 \& Sorana D. BOLBOACĂ
Reference materials

- Jäntschi L, 2006. Characteristic \& counting polynomials. Online calculation software. URL: http:///.academicdirect.org/Fundamentals/Graphs/polynom ials/
- Bolboacă SD, Jäntschi L, 2007. How good can the characteristic polynomial be for correlations?, International Journal of Molecular Sciences 8(4): 335-345.
- Jäntschi L, Bolboacă SD, Furdui CM, 2009. Characteristic and counting polynomials: modelling nonane isomers properties, Molecular Simulation 35(3): 220-227.
- Jäntschi L, 2012. Structure vs. Properties: Algorithms and Models. Habilitation thesis in Chemistry. Bucharest: CNATDCU (defended in 2013 in Cluj-Napoca: BabeşBolyai University). 175 p.
- Jäntschi L, Bolboacă SD, 2016. Characteristic polynomial In: Explicative dictionary of nanochemistry (Ed. M.V. Putz). Oakville(ON): AAP \& CRC Press, to appear.

Graphs vs. molecules

\&	classical	classical \& H	b.-type	b.-type \& H	groups
num.					classical molecular topology classical characteristic polynomial
un-num.					numbered weighted graphs isomorphic-free weighted graphs vertex-labeled
a.-type					graphs chemical structural formula (labeled graphs)

Molecular geometry

| 0 | $\angle(\mathrm{BCN})=120.0^{\circ}$ | $\angle(\mathrm{CNB})=125.7^{\circ}$ | $\angle(\mathrm{NBC})=114.3^{\circ}$ |
| :--- | :--- | :--- | :--- | :--- |

Challenges:
-Molecules carry both topological and geometrical features
-Atom type \& bond type are essential factors in the expression of the measurable properties
-Atoms $\& / \mid$ bonds numbering induces an undesired isomorphism
-Geometry \& bond types induces other kinds of isomorphism

Classical molecular graphs

Classical Molecular Topology:
Unlabeled Unweighted Undirected Graphs

Definition	Names (concepts)	Cardinality	Example
$\mathrm{V}:$ finite set	$\mathrm{V}:$ vertices (atoms)	$\|V\|=N:$ atoms	$\mathrm{G}=$ "A-B-C"
$\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$	$\mathrm{E}:$ edges (bonds)	$\|E\|=M:$ bonds	$\mathrm{V}=\{1(\leftrightarrow A), 2(\leftrightarrow B), 3(\leftrightarrow C)\}$
$G=G(V, E)$	G: graph (molecule)	$\forall N, V \leftrightarrow 1 . . N$	$\mathrm{E}=\{(1,2),(2,3)\}$

Topological description of a molecule requires storing the adjacencies (the bonds) between the atoms as well as the identities (the atoms). If this problem is simplified at maximum, by disregarding the bond types and atom types then: -adjacencies are simply stored with 0 and 1 in the vertex adjacency matrix ([Ad])
-the identities are stored with 0 and 1 into the identity matrix ([ld]).

Characteristic polynomial

- The characteristic polynomial (ChP) is the natural construction of a polynomial in which the eigenvalues of the [Ad] are the roots of the ChP as it follows:
λ is an eigenvalue of $[\mathrm{Ad}] \leftrightarrow$ it exists $[\mathrm{v}] \neq 0$ eigenvector such that $\lambda \cdot[\mathrm{v}]$ $=[A d] \cdot[\mathrm{v}] \rightarrow(\lambda \cdot[\mathrm{ld}]-[\mathrm{Ad}]) \cdot[\mathrm{v}]=0$;
since $v \neq 0 \rightarrow[\lambda \cdot$ Id $-\operatorname{Ad}]$ is singular $\rightarrow \operatorname{det}([\lambda \cdot \operatorname{ld}-\mathrm{Ad}])=0$

$$
\mathrm{ChP} \stackrel{\operatorname{def}}{=}|\lambda \cdot \mathrm{Id}-\mathrm{Ad}|
$$

- The characteristic polynomial is a polynomial in λ of degree the number of atoms.
- Please note that this definition allows extensions.
- A natural extension is to store in the identity matrix (instead of unity) non-unity values accounting for the atom types, as well as to store in the adjacency matrix (instead of unity) non-unity values accounting for the bond types.

Short history

- Hückel 1931: First report of using the ChP in relation with the chemical structure; Hückel's method of molecular orbitals it is actually the first extension of the ChP
- Hartree 1928ab, Slater 1929, Fock 1930ab, Hartree \& Hartree 1935 give the path of the second extension of ChP (embeded as HF 'theory level' in molecular modeling; geometry of $\mathrm{B}_{2} \mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{6}$ molecule obtained from restricted HF with $3-21 \mathrm{G}^{*}$ basis set)
- More general, the eigenproblem (finding of eigenvalues and eigenvectors) may be involved to any Hessian (Sylvester 1880) matrix [A] ([Ad] $\rightarrow[A]$; Hessian: $\left.A_{i, j}=A_{j, i}\right)$.

Characteristic polynomial extension

Challenge:

$$
a=?, b=?, c=?, d=?, e=?, f=?
$$

	010001	
$\mid 2$	1010002	1
	0101000	
4	01010	
	00101	000
6	00001006	
extension \downarrow		
A]	$1234456 \mid[I]$	
	0a 0000 c	d 0
	a 0 b 0	e 0
	0 b 0 c 00	00 f 0
	0 c 0 a 0	000
	000 a 0 b	0000
	c 0000 b $0{ }^{6}$	

ChPE solution: a family of ChPs!

- There is no determinism in selecting the values of a-f.
- If $a=b=c=d=e=f=1$ then ChPE $\leftarrow \mathrm{ChP}$ as in classical molecular topology;
- If $a=b=c=1.5^{-1}$, then [A] accounts for the (inverse of the) bond order;
- If $a=1.35^{-1}, b=1.448^{-1}$, and $c=1.493^{-1}$ then $[\mathrm{A}]$ accounts for the (inverse of the) geometrical distance (in ${ }^{\circ} \mathrm{A}$);
- If $d=12 / 294, e=14 / 294$, and $f=10.8 / 294$, then [l] accounts for atomic mass relative to Uuo, last element from the 7th period of the system of elements;
- If $d=2267 / \rho_{\text {reff }} e=1026 / \rho_{\text {reff }}$ and $f=2460 / \rho_{\text {pef }}$, then [l] accounts for solid state relative density (in $\mathrm{m} 3 / \mathrm{kg}$); $\rho_{\text {ref }}$ can be fixed to 30000 ;
- If $d=2.55 / 4.00, e=3.04 / 4.00$, and $f=2.04 / 4.00$, then [l] accounts for electronegativity relative to Fluorine when Pauling scale is used;
- If $d=1086.2 / 1312, e=1402.3 / 1312$, and $f=800.6 / 1312$, then [[] accounts for first potential of ionization relative to the potential of ionization for Hydrogen;
- If $d=3820 / 3820, e=63 / 3820$, and $f=2573 / 3820$, then [l] accounts for melting point relative to diamond's allotrope of Carbon (in K);
- If $d=1 / 4, e=1 / 4$, and $f=1 / 4$, then [l] accounts for the number of hydrogen atoms attached relative to the score of CH_{4};

Characteristic polynomial extension

[Ad]			34	,	6	[Id]		23	34			[Di]		23	34	45		[Id]				
1		10	00	00	1	1		00	00	0		1		12	23	32		1	10			
2		0	10	00	0	2		10	00		0	2		01	12	23		2				
3		10	01	10		3		01	10		0	3		10	01	12	23	3	00			
4		0	10	01	0	4		00	01		0 \%	4		21	10	01		4	00			
5		00	01	10	1	5		00	00		$0 \rightarrow$	5		32	21	10		5	00			
6		0	00	01	0	6		00	00	0		6		23	32	21	0	6	00	0		
\downarrow extension \downarrow												\downarrow extension \downarrow										
[A]		23	34	45		[I]		23	34			[D]		23	34	45	56	[I]	12	,		
1		a 0	00	00		1		00	00		$0 \rightarrow$	1		a h	h k	kg		1		00		
2		0 b	b 0	00		2		e 0	00			2		0 b	b g	$\mathrm{g} j$		2	0 e	0		
3		b	0 c	0		3		0 f	f 0			3		b 0	0 c	c i		3		f		
4		0	c 0	0		4		00	0 d	0	0 䒽	4		g c	c 0	0 a		4		0		
5		0	0	0		5		00	00		$0 \xrightarrow{ }$	5		j i	i a	a 0	b	5		00		
6		0	00	0 b	0	6		00	00	0		6	c i	i 1	1 h	h b		6	$0 \mid 0$	00	0	

Extended characteristic polynomial

$$
\mathrm{ChPE} \stackrel{\text { def }}{=}|\lambda \cdot \mathrm{I}-\mathrm{A}|
$$

$[\mathrm{I}] \leftarrow$ Atomic properties

'A' - atomic mass (/294.0)	'B' - cardinality (always 1)
'C' - charges (atomic electrostatic charge, ESP)	' D ' - solid state density ($\mathrm{in} \mathrm{kg} / \mathrm{m}^{3}, / 30000$)
'E' - electronegativity (revised Pauling, /4.00)	'F' - first ionization potential (in $\mathrm{kJ} / \mathrm{mol}, / 1312.0$)
'G' - melting point temperature (in K, /3820.0)	'H' - attached hydrogen atoms (/4)

[A] \leftarrow Adjacency weights (bonds, distances)

On [Ad]	'g' - 0 or geometrical distance inversed	't' - (0 or 1)	'c' - 0 or inverse of bond order
On [Di]	' G ' - geometrical distance inversed	'T' - topological distances	' C ' - smallest sum of bond orders inverses

Software implementation

- ChPE is intended to be used to estimate molecular properties
- Let be ChPE = ChPE(A,l; x); A, I - fixed parameterizations; x - the variable. As for $\operatorname{ChP}(x), \operatorname{ChPE}(x)$ diverges (to ∞) fast with increasing of $x>1$. Thus, useful for polynomial evaluation is the $[-1,1]$ range
- We cannot use the full $[-1,1]$ interval to do regressions with measured properties but we may use a grid of it \rightarrow let be an integer (k) ranging from -1000 to 1000 and its fraction k/1000 vary then from -1 to 1 and provides a grid
- Usually biological properties are expressed in log scale and therefore a linearization $\left(L_{1}\right)$ is useful.
- The evaluated ChPE is labeled as follows: $L_{1} L_{2} L_{3} L_{4} d_{1} d_{2} d_{3} d_{4}$, with:
$-L_{1} \in\{I, R, L\}$ with $f_{l}(x)=x, f_{R}(x)=1 / x, f_{L}(x)=\ln (x)$
$-L_{2} \leftarrow$ Atomic property alternative from [I] matrix
$-L_{3} \leftarrow$ Metric of the distance alternative from [D] matrix
$-L_{4} \in\{N, P\}$ with N when $k<0(\& x=k / 1000<0)$ and P otherwise
$-L_{5} \leftarrow|k|$
- Evaluation is made in every point (out of 2001) requiring $\mathrm{O}\left(\mathrm{N}^{3}\right)$ ops.
- When k ranges from -1000 to 1000 the ChPE family have 288144 individuals and in general when k ranges from $-r$ to r it have $144 \cdot(2 r+1)$ individuals.

Numerical case study

C_{20} congeners
Atoms $\in\{B, C, N\}$
Stable if all the same in one layer
A simple math gives a count of 45 distinct compounds

The geometries were build at HF 6-31G level of theory and a calculated property were extracted from these calculations - polarizability, in \AA^{3}

Molecular property data

| Name Pola | Name Pola | Name | Pola | Name | Pola | Name | Pola | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| bbbb | 60.469 | bcnb | 59.881 | cbcb | 61.228 | cccc | 58.487 | cnnb | 56.511 |
| bbbn | 61.208 | bcnn | 58.182 | cbcn | 58.345 | cccn | 57.091 | cnnc | 54.992 |
| bbcn | 60.081 | bnbn | 54.813 | cbnb | 58.474 | ccnb | 58.372 | cnnn | 53.051 |
| bbnb | 60.272 | bncn | 56.543 | cbnc | 56.843 | ccnc | 56.784 | nbbn | 57.786 |
| bbnn | 58.602 | bnnb | 57.038 | cbnn | 55.059 | ccnn | 54.976 | nbnn | 52.938 |
| bcbb | 62.309 | bnnn | 54.572 | ccbb | 61.306 | cnbb | 59.378 | ncbn | 55.991 |
| bcbn | 59.187 | cbbb | 61.333 | ccbc | 59.911 | cnbn | 54.798 | nccn | 54.967 |
| bccb | 62.714 | cbbc | 60.198 | ccbn | 57.661 | cncb | 59.111 | ncnn | 52.906 |
| bccn | 59.196 | cbbn | 59.654 | cccb | 61.359 | cncn | 54.802 | nnnn | 51.084 |

ChPE usage: Polarizability(Molecule) $=\mathrm{f}(\mathrm{ChPE}($ Molecule $)$)
Alternatives for f :

$$
\begin{aligned}
& f\left(x_{1}\right)=a x_{1}+b \\
& f\left(x_{1}, x_{2}\right)=a x_{1} x 2+b \\
& f\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}+c \\
& f\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}+c x_{1} x_{2}+d
\end{aligned}
$$

Results: best candidate regressions

Model	Descriptors	Coefficients	$r_{a d j}^{2}$
$\hat{y}=a \cdot x_{1}+d$	$x_{1}=$ IATN0079	$\mathrm{a}=-38.50(\mathrm{t}=18.9)$ $\mathrm{d}=500.4(\mathrm{t}=21.4)$	0.890
$\hat{y}=c \cdot x_{1} \cdot x_{2}+d$	$x_{1}=$ LFTN0225	$\mathrm{c}=25.09(\mathrm{t}=24.9)$	0.934
	$x_{2}=$ LBGP0631	$\mathrm{d}=71.64(\mathrm{t}=126)$	
$\hat{y}=a \cdot x_{1}+b \cdot x_{2}+d$	$x_{1}=$ LBgN0419	$\mathrm{a}=25.09(\mathrm{t}=24.9)$	0.957
	$x_{2}=$ LGGN0488	$\mathrm{b}=0.6533(\mathrm{t}=12.7)$	
$\hat{y}=a \cdot x_{1}+b \cdot x_{2}+c \cdot x_{1} \cdot x_{2}+d$	$x_{1}=$ LDGN0394	$\mathrm{d}=760.82(\mathrm{t}=43.1)$	
	$x_{2}=$ LDGN0402	$\mathrm{b}=735.4(\mathrm{t}=14.9)$	0.961
		$\mathrm{c}=-1.499(\mathrm{t}=5.76)$	

Comparison based on radj^{2} values (see Fisher Z transformation):

- $z_{1,2}=8.21$, between $\hat{y}=a \cdot x_{1}+d$ and $\hat{y}=c \cdot x_{1} \cdot x_{2}+d ;$
- $z_{1,3}=15.0$, between $\hat{y}=a \cdot x_{1}+d$ and $\hat{y}=a \cdot x_{1}+b \cdot x_{2}+d$;
- $z_{1,4}=16.5$, between $\hat{y}=a \cdot x_{1}+d$ and $\hat{y}=a \cdot x_{1}+b \cdot x_{2}+c \cdot x_{1} \cdot x_{2}+d$;
- $z_{2,3}=6.77$, between $\hat{y}=c \cdot x_{1} \cdot x_{2}+d$ and $\hat{y}=a \cdot x_{1}+b \cdot x_{2}+d$;
- $z_{2,4}=8.30$, between $\hat{y}=c \cdot x_{1} \cdot x_{2}+d$ and $\hat{y}=a \cdot x_{1}+b \cdot x_{2}+c \cdot x_{1} \cdot x_{2}+d$;
- $z_{3,4}=1.53$, between $\hat{y}=a \cdot x_{1}+b \cdot x_{2}+d$ and $\hat{y}=a \cdot x_{1}+b \cdot x_{2}+c \cdot x_{1} \cdot x_{2}+d$;

Discussion

- It is important that the full model selects the same polynomial for the both descriptors ("DG" in both LDGN0394 and LDGN0402) while the evaluation is in two closer points (-394/1000 and $-402 / 1000$). This fact suggests that the best model to be used is this model of full effects since is strongly related with the concept of polarization - a charge separation - which usually takes small values relative to the total charge of an atom or an molecule.

Conclusion

- ChPE it is useful for what was intended to to estimation of the molecular properties?
- It seems that the answer is "Yes"; statistics suggests and physical interpretation sustain
- ChPE is the ideal extension of ChP?
- Ideal gas doesn't actually exist, so the same for ChPE
- It is its natural extension
- The scales of the atomic properties were more or less arbitrary selected - here is something to do later
- The reversed distance seemed to be the best alternative, but also here some search for the best alternative can be deployed

Thank you for your attention!

- Questions?

