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Abstract 

The case of ungapped alignment of two literal sequences under constrains is considered. The 

analysis lead to general formulas for probability mass function and cumulative distribution function 

for the general case of using an alphabet with a chosen number of letters (e.g. 4 for 

deoxyribonucleic acid sequences) in the expression of the literal sequences. Formulas for three 

statistics including mean, mode, and standard deviation were obtained. Distributions are depicted 

for three important particular cases: alignment on binary sequences, alignment of trinomial series 

(such as coming from generalized Kronecker delta), and alignment of genetic sequences (with four 
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literals in the alphabet). A particular case when sequences contain each letter of the alphabet at least 

once in both sequences has also been analyzed and some statistics for this restricted case are given. 

 

Keywords: alignment; contingency matrix; probability mass function (PMF); cumulative 

distribution function (CDF). 



1 Introduction 

Researches related to sequence alignments are frequently done due to the huge amount of already 

identified sequence of DNA (deoxyribonucleic acid), RNA (ribonucleic acid), or proteins (Pruitt et 

al. 2012). Sequence alignment is defined as a way of arrange DNA, RNA (Allali et al. 2012), or 

amino acid (Mongiovì and Sharan 2013) sequences to identify similar regions that could reflect 

functional, structural or evolutionary relationships between sequences (Mount 2004). Several 

algorithms were developed and implemented for global (Rahrig et al. 2013; Szalkowski and 

Anisimova 2013) or local alignments (Phuong et al. 2006; Tabei and Asai 2009; Frith et al. 2010), 

each algorithm with certain advantages and disadvantages. For example, the approach proposed by 

Szalkowski and Anisimova (2013) detect insertions and deletions of TR (tandem repeats) units not 

restricted to TR unit boundaries and proved more performing (~10%) compared to other aligners for 

cases with divergence high TR rates. Frith et al. (2010) assessed several combinations of score 

parameters for alignment (495) and found that high value of X-drop parameter are not always 

better, when tandem repeats are masked in a non-standard way the E-values accurately indicate the 

rate of spurious alignment, while highly reliable subsets of aligned bases could be obtained by γ-

centroid alignment. 

The state-of-the art in the pairwise alignments showed that statistical significance of the alignment 

is directly related to scoring scheme, sequence length and number of literals in the sequence (Mott 

2005). Different approaches had been developed and implemented to estimate statistical 

significance of scores of alignment. BLAST2.0 (Altschul et al. 1997) implement a lookup method 

where K and λ parameters are pre-computed for different scoring schemes using average amino acid 

composition of both sequences. FASTA package (PRSS program) estimate the statistical 

significance of the shuffled (1,000 times) score distribution (Pearson 2000) while HMMER use 

maximum likelihood fitting in estimation of statistical significance (Mitrophanov and Borodovsky 

2006).  



Different scoring functions, such as probability consistency transformation – PCT (Do et al. 2005), 

Burrows-Wheeler Transform – BWT (Li and Durbin 2009), PSAR (Kim and Ma 2011), gPSP 

(Mokaddeml and Elloumi 2013), PSAR-Align (Kim and Ma 2014), etc., are used to characterize the 

alignment. BWT could be seen as a scoring function since the extension of BWT introduced by 

Mantaci et al. (2008) led to a general method for comparing sequences. 

Distribution analysis found its usefulness in assessment of different natural (Bolboacă et al. 2011, 

Jäntschi et al. 2012a; 2011) or simulated phenomena (Jäntschi and Bolboacă 2011; Jäntschi et al. 

2012b). Karlin and Altschul (1990) proved for ungapped alignment that the optimal local alignment 

scores used in the evaluation of sequence alignments follow an extreme-value distribution 

(characterized by characteristic value K, and scale λ). Computational experiments suggest that the 

optimal local alignment scores also apply to gapped local alignments (Smith et al. 1985; Altschul et 

al. 2001).  The most important advantages of the island method (Olsen et al. 1999) over the direct 

method (Waterman 1994) in estimation of statistical parameters for gapped local sequence 

alignment is related with systematic errors that are easiest to be controlled (Altschul et al. 2001).  

Our research started from the hypothesis that the distribution of ungapped alignments could provide 

useful information about the chance of their occurrences. A statistical approach based on 

distribution analysis able to identify the thresholds for rejecting an ungapped alignment by chance 

has been developed and is presented in this manuscript. 

 

2 Methods 

The global ungapped alignment of two sequences of equal length (equal number of literals, n) was 

investigated in this study. The general formulation of the problem investigated in this study along 

with an example of a particular case (total number of letters q = 4 – for DNA and RNA, A = 

adenine, C = cytosine, G = guanine, and U = uracil; respectively A, C, G, and T = thymine) is 

presented in Table 1. 

 



Table 1: Alignment of two sequences of identical length: general case (left-hand) and particular 
case (right-hand, q=4)  
j 1 2 3 4 … n-4 n-3 n-2 n-1 n j 1 2 3 4 … n-4 n-3 n-2 n-1 n 
Seq1 a11 a12 a13 a14 … a1(n-4) a1(n-3) a1(n-2) a1(n-1) an Seq1 A C C G … U A G A C 
Seq2 a21 a22 a23 a24 … a2(n-4) a2(n-3) a2(n-2) a2(n-1) an Seq2 C A C U … A A G C A
Match ? ? ? ? … ? ? ? ? ? Match no no yes no … no yes yes no no
Seq1 = first sequence; Seq2 = second sequence; 
aij: the first subscript number refers the number of sequence 
(1 or 2); the second subscript number refers the index of the 
literal in the sequence (1 ≤ j ≤ n);  
n = the length of the sequence 

A = adenine, C = cytosine, G = guanine, and U = uracil

 

A match is present when identical alphabet letters are present in both sequences at the same. The 

case presented in Table 1 could be transposed in a contingency of alignment as it is presented in 

Table 2. The total number of possible literals in the sequences (q) gives the size of alignment 

contingency (Table 2). 

 

Table 2: Alignment contingency: general case (left-hand) and particular case (right-hand, q=4) 
Seq1\Seq2 1 … … q Σ Seq1\Seq2 'A' 'C' 'G' 'U' Σ

1 b11 … … b1q b11+…+b1q 'A' Σ('A','A') Σ('A','C') Σ('A','G') Σ('A','U')  
… … … … … … 'C' Σ('C','A') Σ('C','C') Σ('C','G') Σ('C','U')  
… … … … … … 'G' Σ('G','A') Σ('G','C') Σ('G','G') Σ('G','U')  
q bq1 … … bqq b11+…+b1q 'U' Σ('U','A') Σ('U','C') Σ('U','G') Σ('U','U')  
Σ b11+…+bq1   b1q+… +bqq n Σ     n
Seq1 = first sequence; Seq2 = second sequence; 
e.g. for the first literal in the alphabet equal A (1=A),  
b11= no of cases when A is in the same position in both 
sequences  

A=adenine, C=cytosine, G=guanine, and U=uracil 
n = the length of the sequence from Table 1 
ex. Seq1 = 'AGCUAA'; Seq2 = 'ACGUAC' 
→ Σ('A','A') = 1 + 0 + 0 + 0 + 1 + 0 = 2 

 

The number of aligned literals from two stings of n literals, PSq(q), is therefore given by the main 

diagonal of the alignment contingency presented in Table 2 (Eq(1) for general case): 

PSq(q) = Σ1≤i≤nb11+ Σ1≤i≤nb22+…+ Σ1≤i≤nb(q-1)(q-1)+ Σ1≤i≤nbqq    (1) 

where PSq(q) ranges from 0 (no matches) to n (perfect alignment).  

In the particular case (q=4), the Eq(1) became: 

PSq(4) = Σv∈{A,C,G,U}Σ1≤i≤n(Seq1i=v,Seq2i=v)      (1P) 

Based on the perfect alignment (the same literal exists at the same position in both sequences), the 

alignment ratio (AR) could be obtained for the general case using the formulas presented in Eq(2): 

AR = PSq(q)/n          (2) 

and for the particular case (q=4) using the formula presented in Eq(2P): 



AR = PSq(4)/n          (2P) 

Two cases of alignment of two sequences of equal length were investigated in this study:  

• Unrestricted case: no restriction is imposed in regards of appearance of letters in each sequence.  

• Restricted case: all letters of the alphabet (genetic sequence alignment: A, C, G, T or A, C, G, 

U) appear at least once in each of both sequences.  

A full enumeration study was conducted on ungapped alignment of two sequences with identical 

length from 2 to 10, with 2 to 4 literals in the alphabet (0≤i≤10, where i = number of matches). The 

full enumeration study was conducted in accordance with conventional procedures to generate all 

numbers whose representation in base q (number of literals in the alphabet, 2≤n≤4) has n (the length 

of the sequence) digits; two by two such sequences were generated and then aligned. All 

frequencies of alignments in the generated sequences were counted for unrestricted case and for 

restricted case (where were counted only if accomplished the criterion of all letters appearance).  

The results of the full enumeration analysis were used to identify (whenever possible) the general 

formulas for: 

• Number of possibilities of arrangements Sq(i;n,q); 

• Number of perfect alignments Sq(i=n;n,q) and number of no matches Sq(i=0;n,q); 

• Statistical parameters of alignment: mode, mean, and variance; 

• Probability mass function (PMF) and cumulative distribution function (CDF); 

• Thresholds for alignment by chance (q=4 and 4≤n≤40) at a significance level of 5% by Monte-

Carlo experiment. 

 

3 Results and Discussion 

The results and associated discussion presented in this section refer to the unrestricted case as well 

as, in certain case, to the restricted case (the restriction referred to apparition at least once of any 

letters from alphabet in each sequence, equations referred with 'R' along the manuscript). The 

results obtained on full enumeration study are given in Tables 3-5. 



Table 3: Total number of possible arrangements: 2≤q≤4 and n≤10 
Unrestricted case Restricted case 

n q=2 q=3 q=4 q=2 q=3 q=4 
2 16   4   
3 64 729  36 36  
4 256 6561 65536 196 1296 576 
5 1024 59049 1048576 900 22500 57600 
6 4096 531441 16777216 3844 291600 2433600 
7 16384 4782969 268435456 15876 3261636 70560000 
8 65536 43046721 4294967296 64516 33593616 1666598976 
9 262144 387420489 68719476736 260100 329422500 34774790400 

10 1048576 3486784401 1099511627776 1044484 3133760400 669974990400 

 

Table 4: Full enumeration results on unrestricted case: q=2 and q=4, q≤n≤10 
q=2 and 2≤n≤10 

n i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 
2 4 8 4         
3 8 24 24 8        
4 16 64 96 64 16       
5 32 160 320 320 160 32      
6 64 384 960 1280 960 384 64     
7 128 896 2688 4480 4480 2688 896 128    
8 256 2048 7168 14336 17920 14336 7168 2048 256   
9 512 4608 18432 43008 64512 64512 43008 18432 4608 512  
10 1024 10240 46080 122880 215040 258048 215040 122880 46080 10240 1024

q=4 and 4≤n≤10 
4 20736 27648 13824 3072 256       
5 248832 414720 276480 92160 15360 1024      
6 2985984 5971968 4976640 2211840 552960 73728 4096     
7 35831808 83607552 83607552 46448640 15482880 3096576 344064 16384    
8 429981696 1146617856 1337720832 891813888 371589120 99090432 16515072 1572864 65536   
9 5159780352 15479341056 20639121408 16052649984 8026324992 2675441664 594542592 84934656 7077888 262144  
10 61917364224 206391214080 309586821120 275188285440 160526499840 64210599936 17836277760 3397386240 424673280 31457280 1048576

 

Table 5: Full enumeration results on restricted case: q=2 and q=3, q≤n≤10 
q = 2 

n i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 
2 2 0 2         
3 6 12 12 6        
4 14 48 72 48 14       
5 30 140 280 280 140 30      
6 62 360 900 1200 900 360 62     
7 126 868 2604 4340 4340 2604 868 126    
8 254 2016 7056 14112 17640 14112 7056 2016 254   
9 510 4572 18288 42672 64008 64008 42672 18288 4572 510  
10 1022 10200 45900 122400 214200 257040 214200 122400 45900 10200 1022 

q = 3 
3 12 18 0 6        
4 288 504 324 144 36       
5 3180 7410 7020 3660 1080 150      
6 26640 77220 94230 63000 24570 5400 540     
7 195132 671622 996030 828030 417690 128646 22680 1806    
8 1326528 5262768 9159192 9139536 5721660 2305296 586152 86688 5796   
9 8624460 38653578 77098392 89828424 67375476 33753132 11308248 2449656 312984 18150  
10 54532080 272115900 611443890 814654800 712684980 427812840 178525620 51181200 9664110 1089000 55980 

 

The general formula for the total number of possibilities of arrangements between two sequences of 

identical length (Sq(i;n,q)) in unrestricted case was identified and is given by Eq(3): 
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where i = number of matches, n = length of sequence, q = number of letters in the alphabet. 



The total number of possibilities of arrangements between two sequences of identical length (n) in 

restricted case is given by Eq(3R) along with formula for q=2: 
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where i = number of matches, n = length of sequences, q = number of letters in the alphabet, k = 

integer,  = the number of q-combinations from a given set k of n (k!/((k-q)!·q!)), and  = the ⎟⎟
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number of ways to partition a set of n objects into k non-empty subsets, or Stirling number of the 

second kind (Sharp 1968). 

The formulas on three restricted particular cases of Eq(3R) for 2≤q≤4 are given bellow: 
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The formula is more complex for the restricted case compared to unrestricted case, as could be 

observed when Eq(3) is compared with Eq(3R). As expected, the total number of possible 

arrangements is smaller for restricted case compared to unrestricted case and the difference 

increased with q (total number of letters in the alphabet). Furthermore, the difference for the same q 

decreases with the increasing of sample size (n), while the decrease is faded for large n. 

Formula presented in Eq(3R) could be checked for given n and q with the full enumeration results 

presented in Table 3.  

General formula for the total number of i matches out of n for unrestricted case (Eq(4)) and some 

particular formulas for restricted case (2≤q≤4) (coming from q2n = qn·((q-1)+1)n, Eq(4R)) were 

obtained as follows: 
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where i = number of matches, q = number of letters in the alphabet, n = length of the sequences. 

The number of perfect matches (i=n) in both unrestricted and restricted case is the square root of the 

total number of possibilities of arrangements as could be verified with the results presented in Table 

4 and 5: 

 ∑
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==
n

0i
)q,n;i(Sq)q,n;ni(Sq        (5&5R) 

It should be noted that (see 5&5R) the problem of counting the number of all full alignments (when 

i = n) is equivalent with the problem of counting the number of partitions of an n-set into k non-

empty but distinguishable boxes (ordered non-empty subsets). The explicit formula for them can be 

obtained by applying the principle of inclusion-exclusion, when using the universal set consisting of 

all partitions of the n-set into k (possibly empty) distinguishable boxes, and the exclusion property 

that the partition has the associated box empty, the principle of inclusion-exclusion gives the answer 

for the related result (Brualdi 2010). Each arrangement (from the ones of which number is given by 

5&5R) can be seen as an individual sequence obeying the imposed rule to contain all literals and 

here is a bijective function (if exists a sequence containing all letters and following the imposed rule 

then exists a perfect arrangement having the second sequence identical with the first one and vice 

versa). Therefore, the number of paired sequences is the square of this number and the proof for the 

(3R) formula is completed too. 



One important property that can be observed by analyzing the results presented in Table 4 is that, 

for q=2 and 0≤i≤10, the distribution of total number of matches is symmetric and had one pick for 

even n and two equal values at the pick of the distribution for odd n. The distribution of total 

number of matches become asymmetrical and always have just one pick for q=4 and 0≤i≤10. The 

second property that could be observed by analyzing the results presented in Table 4 refers the total 

number of matches for i=n which verify the formula qn for both q=2 and q=4. When two letters are 

in the alphabet (q=2), the symmetry of the distribution associated to the total number of matches 

observed for unrestricted case (Table 4) has also been observed for the restricted case (Table 5). 

Moreover, in the restricted case for q=2, one pick is observed for even n and two equal values at the 

pick of the distribution for odd n. Similar with the non-restricted case, the distribution of the total 

number of matches become asymmetrical for q=3 and with just one value to the pick of the 

distribution and with a tendency to symmetry for large sample sizes. 

The probability mass function (PMF) associated with the frequency of apparition of matches using 

freely q literals (unrestricted case) is given by Eq(6) while the cumulative distribution function 

(CDF) is given by Eq(7). 
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Graphical representation of PMF for 2≤q≤4 is showed in Figure 1 (Eq(6)), while Figure 2 showed 

the CDF (Eq(7)). 

[Place Figure 1 here] 

Figure 1. Probability mass function for 2≤q≤4 (0.0-0.1-0.2-0.3-0.4-0.5 with red, green, blue, cyan 
and magenta) with PMF on vertical axis and number of aligned literals (i) on frontal axis 

(unrestricted case) 
 

[Place Figure 2 here] 



Figure 2. Cumulative distribution function for 2≤q≤4 (0.0-0.1-0.2-0.3-0.4-0.5 with red, green, blue, 
cyan and magenta) with CDF on vertical axis and number of aligned literals (i) on frontal axis 

(unrestricted case) 
 

Figure 1 shows the symmetrical distribution for the unrestricted case as already observed and the 

remoteness from the symmetry with the increase of the number of letters in the alphabet. The PMF 

and CDF associated with the frequency of apparition of matches for restricted case is under 

investigation in our laboratory and the absence of the results is due to our available power of 

computation.  

General formulas of three alignment statistical parameters (named mode, mean, and variance) 

associated to Sq(i;n,q) have been identified for the unrestricted case and are given by Eq(8) - 

Eq(10). 
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where μ̂  = mode, μ = arithmetic mean, q = number of letters in the alphabet, n = length of the 

sequences, k = integer, σ2 = variance.  

Formulas presented in Eq(8)-Eq(10) become the well known binominal formulas for q=1/p (p ∈ [0, 

1], probability of success). Therefore, the unrestricted case could be seen as a binomial experiment. 

The mode – Eq(8) – defines the alignment with highest probability to be observed by chance. The 

distribution of the mode in unrestricted case for 2≤q≤4 and q≤n≤10 is presented in Figure 3. 

 

[Place Figure 3 here] 

Figure 3. Mode in distribution of the alignment by chance vs. length of sequences: unrestricted case 

 



Figure 3 showed different number of modes for different length of the sequence and 2≤q≤4. The 

alignment by chance proved systematically bimodal to every odd n when q=2 (n=q·k+(q-1), k being 

any positive integer). For q=3, first bimodal alignment appeared when n=5 and occurred with a step 

equal with q (n=q·k+(q-1)). For q=4, first bimodal alignment appeared when n=7 and occurred with 

a step equal with q (n=q·k+(q-1)). 

In the restricted case, the formula for the mean proved the same as for unrestricted while the mode 

in the distribution of alignment by chance is: 

÷ q=2: bimodal distribution for odd n at (n-1)/2 and (n+1)/2 and unimodal for even n (excepting 

n=2) at n/2. 

÷ q=3: unimodal distribution when n ranges from q·k to q·k+q-1 at k. 

÷ q=4 (and higher): the expression of mode for the distribution of alignment by chance has not yet 

been identified. 

The threshold of the alignment by chance CDF95 (k, CDFSq(k;n,q)≥0.95)) for restricted case when 

2≤q≤4 had been estimated from a Monte-Carlo experiment and is approximated by Eq(11)-Eq(13). 

q=2: ; k → 0.56·n, where n → ∞  (11) 02.091.0
%95CDF )n1()05.084.0(k ±

≥ +⋅±=

q=3: ; k → 0.39·n, where n → ∞  (12) 02.089.0
%95CDF )n1()05.068.0(k ±

≥ +⋅±=

q=4: ; k → 0.30·n, where n → ∞  (13) 03.083.0
%95CDF )n1()07.066.0(k ±

≥ +⋅±=

where q = number of letters in the alphabet, n = length of the sequences. 

The formulas presented in Eq(11)-Eq(13) provide the threshold (CDF95) at which, with a risk 

smaller than the significance level (in this case a significance level of 5% was used), the obtained 

matches did not appear by chance. 

The distribution of CDF95 for restricted case, q=4 and q≤n≤40 obtained through simulations is 

presented in Figure 4. 

[Place Figure 4 here] 

Figure 4. Thresholds to reject matches by chance for two equally length sequences and q=4 

 



The plot presented in Figure 4 showed that for example when 4≤n≤6 if there are observed more 

than three matches, with a 5% risk to be in error, these matches are not by chance. With two 

exceptions (when 10≤n≤11 and 30≤n≤33), the thresholds to reject matches by chance in ungapped 

alignment of two equally length sequences repeatedly are the same for three sample sizes (e.g. 

4≤n≤6). 

The genetic sequence responsible for alpha hemoglobin stabilizing protein (AHSP) on Homo 

sapiens (HS, chromosome 16) and Mustela putorius furo (MP) were used to exemplify the 

usefulness of CDF on restricted case. One hundred and eight pairs of strings of 8 bp were obtained, 

and 26 of them proved to belong to ungapped alignment restricted case (in both string all letters 

appears at least one time).  The number of matches varied from 0 (15% [3.99; 34.47], where the 

lower and upper bound of 95% confidence interval calculated using an exact approach (Jäntschi and 

Bolboacă 2010) are provided in square brackets) to 5 (0.15; 26.78) with the highest frequency at 

two matches (38% [19.38; 57.54]). According to full enumeration results, for n=8 and q=4, the 

matches are not by chance if more than 3 are observed. More than three matches were observed in 

four out of twenty-six cases (15% [3.99; 34.47]) on AHSP experiment, leading to the conclusions 

that these ungapped alignments between HS and MP are not by chance.  

Although there is much remains to be done, the work presented in this manuscript generates 

findings in the field of distribution analysis on equal length sequence alignment.  The case with and 

without restriction were investigated for the number of letters in the alphabet that varied from 2 to 

4. Although the present study provides full results for the unrestricted case of ungapped alignment 

and yielded some finding for the restricted case, its design is not without deficiencies. One of the 

main limitations of our study is relatively small size of the studies samples (n≤10) but this is linked 

with the applied method, full enumeration. Other main limitation is the lack of full characterization 

of the restricted case. Even if most formulas were identified and can be verified using the results 

obtained by full enumeration, due to the complexity of the calculations, we did not succeed yet to 

identify the general formulas for probability mass function and cumulative distribution function for 



restricted case, these two statistics being under investigation in our lab. Although the formulas for 

some alignment statistical parameters were identified (mean and mode) for both investigated cases 

(unrestricted and restricted case), the variance formula has been identified just for the unrestricted 

case. Investigation of other statistical parameters such as skewness and kurtosis could also bring 

valuable information regarding the distribution of alignments. Thus, these statistics could be used as 

approximation method (e.g. Fisher-Tippet (1928) with the same skewness and kurtosis) of the 

distribution functions in limit cases. The approximate formulas for the alignment by chance had 

been obtained for restricted case. Furthermore, it could also be interesting to extend the research 

regarding the alignment by chance for the particular case of amino-acids sequences. Despite its 

limitations, this study can be seen as the first step in assessment of the distribution analysis of real 

ungapped sequences alignments. 



4 Conclusions 

General formula for total number of possibilities of arrangements between two sequences of 

identical length Σ0≤i≤nSq(i;n,q), total number of matches Sq(i;n,q), and perfect alignment 

Sq(i=n;n,q) had been identified for both unrestricted case and restricted case, for number of letters 

in the alphabet from 2 to 4. Formulas of mean and mode associated to Sq(i;n,q) had been identified 

for both cases while the formula of variance had been identified just for the unrestricted case. 

Furthermore, the probability mass function and cumulative distribution function had also been 

identified for the unrestricted case, while approximate formulas for restricted alignment by chance 

are presented for 2≤q≤4 (where q = number of letters in the alphabet). 
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