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Abstract 

Structure-activity relationships emulate the adaptation of chemical compounds to the 

biological environment. When a family of descriptors derived from a skeleton using different 

mathematical operations and physical properties is involved, the search space for structure-

activity relationships is constructed in a natural way. A genetic algorithm implementing 

different selection and survival strategies, an unexplored issue, was designed and it is 

presented. A comparison of evolutionary strategies was conducted on a series of 206 

polychlorinated biphenyls with known values of octan-1-ol/H2O partition coefficients, on 

which a Molecular Descriptors Family (MDF) was generated as the search space. The 

obtained results showed that the implemented genetic algorithm proved to be a reliable 

method of finding optimal multiple-linear regression models that are able to explain 

relationships between structure and activity. The results showed that different tournament 

selection and proportional survival provide the solution closest to the one obtained by 

complete search. Furthermore, the results revealed that, in general, every pair of survival and 

selection strategies pushes evolution on significantly different paths and may form the basis 

of phylogeny analysis. 
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1. Introduction 

Quantitative Structure Property/Activity Relationships (QSPR/QSAR) have many 

applications in drug design and discovery [1, 2]. One of the first methods used to explain the 

relation between the structure of compounds and their property/activity is the Multiple Linear 

Regression (MLR). This method is still a widely used approach in SPR/SAR studies, due to 

its form and accessible interpretable expressions [3, 4]. 

A crucial and difficult problem in SPR/SAR model development is the selection of the 

most relevant set of descriptors used as variables in MLR models. The description of the 

relationship between the structure of the compounds and their property/activity is also a 

difficult problem, since it involves the following issues: a). optimization - applied to the 

SPR/SAR model in order to maximize its estimation and prediction ability; b) classification - 

use of the SPR/SAR model in order to classify compounds into classes of 

activities/properties; c) decision - use of the SAR/SPR model in order to make a decision 

regarding the synthesis of a new compound for which the model predicts a better 

activity/property. 

The difficult problem in structure-activity/property relationships could be stated as 

follows: Find the best structure-activity/property relationship that can describe the 

activity/property of the compounds (biochemical information) depending on their structure 

(structural information), when structural and biochemical information is available [5]. 

Usually, structural information is obtained from the molecular topology and geometry, 

and the biochemical information is obtained from an experiment. 

The combination of Genetic Algorithm (GA) and MLR is used in QSAR/QSPR studies [6, 

7] due to their capabilities of obtaining predictable models quickly. The differences in 

evolution, when different strategies are used for the selection of the progenitors and for the 

survival during generations of the sampled genetic material, are still unexplored. Structure-

activity relationships emulate the adaptation of chemical compounds to the biological 

environment. When a family of descriptors derived from a skeleton using different 

mathematical operations and physical properties is involved, the search space for structure-

activity relationships is constructed in a natural way. 

Our goal was to compare the evolutions arising from a contingency of selection and 

survival strategies. For this, we have designed a GA, we have implemented and run it in order 

to obtain SAR. More precisely, we have solved the following difficult problems: How to 

identify the relationship between the biochemical structures and the measured 

activity/properties of a set of compounds, when pools (families) of structure descriptors are 

available? Which evolutionary strategy is the best choice in order to obtain the relationship 

(which strategy provides the nearest optimum?). 
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2. Methods 

2.1. Genetic algorithm implementation 

The problem of finding a link between the structure of compounds and their activity or 

property was first translated into genetic terms. In this research we used one family of 

descriptors (Molecular Descriptors Family (MDF) [8]), in order to define the portability of the 

program that implemented the genetic algorithm, but the approach is suitable to any family of 

descriptors (such as Fragmental Properties Index Family (FPIF) [9]; Molecular Descriptors 

Family on Vertices (MDFV) [10]; Structural Atomic Property Family (SAPF) [11]). 

Every gene (one of the values from the Gene column in Table 1) encodes an operator 

which is used to construct the chromosome of a molecular descriptor. For example the gene 

sequence of the MDF family is DMAPIDIMFCSMLO as presented in Table 1. 

Table 1: Search space using MDF family of molecular descriptors 

Gene Genome 

DM t g                            

AP C H M E G Q                        

ID D d O o P p Q q J j K k L l V E W w F f S s T t      

IM r R m M d D                        

FC m M D P                          

SM m M n N S A a B b P G g F f s H h I i           

LO I i A a L l                        
MDF = Molecular Descriptors Family: ▪ DM = distance operator: t = topologic distance; g = geometric distance. 

▪ AP = atomic property: C = cardinality; H = number of hydrogen atoms adjacent to the investigated atom; M = 

relative atomic mass; E = atomic electronegativity. ▪ G = group electronegativity; Q = atomic partial charge, 

semi-empirical extended Hückel model. ▪ ID = interaction descriptor: D = d; d = 1/d; O = p1; o = 1/p1; P = p1·p2; 

p = 1/p1·p2; Q = (p1p2)
1/2

; q = 1/(p1·p2)
1/2

; J = p1·d; j = 1/p1·d; K = p1·p2·d; k = 1/p1·p2·d; L = d·(p1·p2)
1/2

; l = 

1/d·(p1p2)
1/2

; V = p1/d; E = p1/d
2
; W = p1

2
/d; w = p1·p2/d; F = p1

2
/d

2
; f = p1·p2/d

2
; S = p1

2
/d

3
; s = p1·p2/d

3
; T = 

p1
2
/d

4
; t = p1·p2/d

4
. ▪ IM = overlapping interactions: r, R = models with sporadic and distant interactions; m, M = 

models with frequent and distant interactions; d, D = models with frequent and closed interactions. ▪ FC = 

algorithm of molecular fragmentation applied on atomic pairs: m = fragmentation in minimal fragments; M = 

fragmentation in maximal fragments. D = fragmentation based on distances (Szeged criterion) [12]; P = 

fragmentation based on paths (Cluj criterion - [13]). ▪ SM = global overlapping of fragments interaction: m = 

minimum value (group of values); M = maximum value (group of values); n = lowest absolute value (group 

values); N = highest absolute value (group of values); S = sum (group of means); A = arithmetic mean according 

to the number of fragment properties (group of means); a = arithmetic mean according to the number of atoms 

(group of means); B = (group of means); b = arithmetic mean according to the number of bonds (group of 

means); P = multiplication (geometric group); G = geometric mean according to the number of fragment 

properties (geometric group); g = geometric mean according to the number of fragments (geometric group); F = 

geometric mean according to the number of atoms (geometric group); f = geometric mean according to the 

number of bonds (geometric group); s = harmonic sum (harmonic group); H = harmonic mean according to the 

number of fragments property (harmonic group); h = harmonic mean according to the number of fragments 

(harmonic group); I = harmonic mean according to the number of atoms (harmonic group); i = harmonic mean 

according to the number of bonds (harmonic group). ▪ LO = linearization operator: I = identity; i = inverse; A = 

absolute value; a = inverse of absolute value; L = logarithm; l = logarithm of absolute value. 
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Every descriptor in a family is a genotype (a possible set of values for every gene of a 

chromosome; e.g., tCDrmmI for MDF). The set of all genotypes represent the genetic 

material. The set of all possible combinations of values from the Genome column presented in 

Table 1 for MDF is: 

{t, g} · {C, H, M, E, G, Q} · {D, d, O, o, P, p, Q, q, J, j, K, k, L, l, V, E, W, w, F, f, S, s, T, t} · 

{r, R, m, M, d, D} ··{m, M, D, P} · {m, M, n, N, S, A, a, B, b, P, G, g, F, f, s, H, h, O, I, i} · 

{I, i, A, a, L, l} 

The number of encoded values of the genes varies from two (for example for the gene 

encoding the metric type - topological or geometrical distance - DM for MDF) to twenty-four 

(the ID interaction descriptor of the MDF family). The size of the genetic material is of 

787,968 for MDF (2(DM)·6(AP)·24(ID)·6(IM)·4(FC)·19(SM)·6(LO)). The GA was used for 

searching the MDF descriptor space whereas the MLR (multiple linear regression) was used 

for fitness evaluation.   

One of the following types of multiple linear regressions represents a possible solution 

and was searched on the molecular descriptors space: 

where Y is the array of the observed activity/property, X1, ... , Xk are descriptors drawn from 

a family, bi, i = 0, ..., k are the parameters of the model which have to be obtained under the 

assumption of least squares errors from a certain number M of observations, and Y is the 

activity/property estimated by the MLR equation (1) or (2). 

We use the following notations: 

- k = |X| is the number of independent variables; 

- m = |Y| = |X1| = ... = |Xk| is the number of experimental observations; 

- |b| = k + 1 or |b| = k is the number of unknown parameters of the multiple linear regression 

model (11) or (12), respectively. 

The following assumptions were made in the multiple linear regression analysis: 

- The measurement error of Y is both randomly and normally distributed; 

- The values of the descriptors X1, ... ,Xk are normally distributed and are not affected by 

errors. 

The calculation of the regression parameters bi, i ≤ k from equation (1) or (2) is always 

risky. The statistical significance and the associated confidence intervals of regression 

parameters can be obtained using Student’s t distribution - see [14,15]. 
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b0 + b1X1 + ... + bkXk = Ŷ ~ Y (1) 

b1X1 + ... + bkXk = Ŷ ~ Y (2) 



 

If equation (1) or (2) has unique solution then |b| ≤ m − 1. However, this condition is not 

sufficient. The parameters (bi), i < k have statistical significance if |b| ≤ m − 6. 

If b0 from equation (1) is not statistically significant, then equation (2) is used as an 

alternative to (1). The absence of statistically significant coefficients bi for 1 ≤ i ≤ k in 

equations (1) and (2) should reject the hypothesis that there is a linear relation between Xi and 

Y. 

Let S denote the search space and let N be the total number of descriptors. Then its size is 














 k

N

j

1jN
|S|

k

1j

 
(3) 

Formula (3) expresses the number of all possible selections of k descriptors from a total of 

N. The value of |S| could be doubled if the search is conducted by both (1) and (2). 

We can show that this search defines an NP-hard problem (a problem whose solution 

obtained by the best known algorithm requires an execution time that increases exponentially 

with the size of the input data). 

The design of the genetic algorithm implies the random or deterministic initialization of a 

sample p of chromosomes from the genetic material. For example, a subset of the genetic 

material of the molecular descriptors family, such as, {tCDrmmI, gHdRMMi, gMddMMi} is a 

sample of size 3 for MDF. The descriptors X1, ... , Xp enter the evolutionary process in the 

cultivar. The evolutionary process is a complex genetic process that implies selection, 

crossover and mutation, while the cultivar is regarded as a memory or virtual space in which 

the genotypes are transformed into phenotypes by applying the operators defined by the gene 

values for the entire set of molecules; the phenotype associated with the genotype is thus an 

array of numerical values, one for each compound. 

The genetic algorithm, regarded here as an algorithm that uses instructions to describe the 

evolutionary process applied to the sample, operates on a sample for which the content is 

modified in every generation. A generation is an iteration of the genetic algorithm. Every set 

of k distinct descriptors is a point in the search space and is a possible solution of regression 

equation defined by (1), or if (1) fails of (2). Our genetic algorithm implements the following 

operations: 

- Crossover of two genotypes involves the choice (random or deterministic) of a 

contiguous sequence, which must be crossed over from the gene array. The values of the 

sequences are exchanged and two descendants are obtained. 

- Mutation of a genotype implies a change in the value of a gene from a chromosome with 

other values from the list of possible values for the gene. 
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- Selection is the implicit operation that is required by mutation and crossover. Selection 

acts based on a selection score, FS i.e. a numerical value that is associated with the 

individual and calculated from the fitness of the phenotype into its cultivar. At least part 

of the descendants should be viable descriptors (phenotypic viability refers to the potential 

use in regressions). A descriptor was considered to be viable if it had real and finite non-

identical values for all of the molecules in the dataset. Other supplementary conditions 

imposed for phenotypic viability are a reasonable variability with the coefficient of 

variation, a reasonable departure from normality with Jarque-Bera test [16], and a 

reasonable power of explanation with its determination coefficient). 

- Survival replaces some individuals from the sample with viable descendants. This process 

was applied based on a survival score, VS, a numerical value associated with an individual, 

based on the genotype and on the phenotype. On the genotype it measures the similarity of 

a genotype with all of the other genotypes of the sample, for the purpose of maintaining 

diversity in the genetic material, while on the phenotype, it measure the similarity of the 

phenotype with all the other individuals from the cultivar, in order to preserve the 

diversity of the traits. 

- Evolutionary objective is measured by an objective function, where the determination 

coefficient was used and the objective was to maximize it. 

Not all of the individuals were included in the next generation; the individuals that did not 

survive were withdrawn. The number of the replaced individuals was equal to the number of 

viable descendants. This strategy was applied to maintain the same number of individuals in 

the cultivar. Selection and survival were applied based on selection and survival scores and 

were they implemented via selection and survival strategies. 

The strategy is a method of extracting an individual from the sample using scores. Three 

approaches were applied (proportional, deterministic, and tournament) to the scores (see 

Table 2). The values of the scores were normalized from [min., max.] to [0, 1]. The values 

were updated in every generation during the entire evolutionary process. Score functions (fi in 

Table 2) had different expressions for: evolution (evolution objective scores, Figure 1), 

selection (selection scores, Figure 1) and survival (survival scores, Figure 1). 

Table 2: Evolutionary strategies (scores function fi = Fitness(Chromosome i)) 

Method Extraction Comments 

Proportional pi = fi/Σifi Likelihood proportional to the score (using the pi 

probability to extract) 

Deterministic i | fi = max. or min. Extraction of the strongest or of the weakest individual 

(elitism) 

Tournament (fi,fj) = max. or min. Pairs of individuals compete for extraction 
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 Objective scores 
 ses(Ŷ)=min, where se = sum of estimation errors; 

usually s=2; for s=1 (and more for s=1/2) the general 

tendency of regression are more weighted in disfavor 

of grosser deviations from regression line 

 rs
2(Ŷ)=max, where r2 = determination coefficient; 

usually s=1; most common objective (highest 

determination) 

 Mts(t)=max, where Mt = Minkowski mean of 

significances; Give weights to the significance of 

every parameter from the regression (ti = t(bi)); t - 

Student t statistic 

 Hrs(r
2)=min, where Hr = Shannon entropy of 

determination; It uses a logarithmic scale for 

expressing the objective (in bits) 

Selections scores 
 number of valid regressions containing Xi phenotype: nalive(Xi) 

 from all valid regressions containing Xi phenotype: 

o determination coefficient (r2): r2_min(Xi) - r2_max(Xi) - 

r2_avg(Xi) 

o standard error of estimate (se): se_min(Xi) - se_max(Xi) - 

se_avg(Xi) 

o Hölder mean of student t-parameters associated to the 

intercept and coefficients of the MLR model (Mt=(1/n∑i=1
n 

(ti
p))1/p, where p = 1 (for this value the arithmetic mean was 

obtained), ti = Student t-parameter associated to the 

regression coefficients): Mt_min(Xi) - Mt_max(Xi) - 

Mt_avg(Xi) 

o Quantity of explained or un-explained entropy (Hr= H(r2,1-

r2,p)): Hr_min(Xi) - Hr_max(Xi) - Hr_avg(Xi) 
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Survival scores 
 phenotypes dissimilarity (the phenotypes are more similar as the value of VSP is 

smaller) = min; where VSP = survival similarity for phenotypes; q, r = weighting 

parameter for genotype (q) and phenotype (r); Xi = one genotype; Xj = other genotype; 

f(Xi) = value of descriptor for genotype i 

 genotypes dissimilarity (the genotypes are more similar as the value of VSG is smaller) 

= min, where VSG = survival similarity for genotypes; NCD = number of different 

gene values for a given parameter; NC = number of genes in the chromosome 

 pair similarity = max, where VS = measure of likelihood (individual similarity: worst 

case defines the score) 

 individual similarity = max 

q

jijiq |)X(f)X(f|)X,X(VSP   

r

ji

jir
NC

)X,X(NCD
)X,X(VSG 
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Figure 1: Objective, selection and survival scores for multiple linear regressions (used with 

eq.(1) or with eq.(2) when b0 not statistically significant) 

 

Our genetic algorithm (see Figure 2) generates randomly a sample of genotypes of a given 

size p, maintained constant during the evolution, k < p < N, in order to solve the NP-hard 

problem of multiple linear regressions, given in the algorithm 1. 
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Figure 2: The genetic algorithm: evolution 
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Algorithm 1 The GA−MLR−QSAR algorithm 

repeat 

 Obtain phenotypes from genotypes; 

 Compute multiple linear regressions of type (1) and of type (2) if necessary; keep 

the best model found and mark the phenotypes, which act as descriptors in the 

model of the survivors; keep the regression scores; 

 Obtain objective scores of the individuals from regression scores; 

 Obtain selection scores of the individuals, FS; 

 Extract pairs of genotypes from a sample of size l (sample given) applying the s 

selection strategy on the selection scores; 

 Mutate every 2l genotypes (parents) with a low probability pp; 

 Crossover the l pairs of genotypes and obtain 2l new descendants; 

 Mutate every 2l genotypes (children) with a low probability cp; 

 Obtain a viable (adapted to the environment) subset of children of size v ≤ 2l; 

 Obtain survival scores of the remaining individuals (genotype and phenotype),VS; 

 Remove individuals from the sample applying the survival strategy v on the 

survival scores and replace them with a children subset; 

until the imposed number of iterations (set at 20,000) was exhausted. 

The proposed genetic algorithm was implemented as a Windows-based FreePascal 

application with MySQL connectivity for fetching the data and was run as a stand-alone 

program. 

 

2.2. Genetic algorithm assessment 

The developed and implemented GA−MLR−QSAR was assessed on a sample of 206 

polychlorinated biphenyls (PCBs) using the MDF descriptors family. The measured property 

was octan-1-ol/H2O partition coefficients [17]. The HyperChem program (Hypercube, Inc., 

Gainesville, FL, USA) was used to draw the structures of PCBs. The partial charges of the 

compounds were calculated using the semiempirical extended Huckel model (single point 

approach [18]), and the geometry was optimized using the Austin method [19]. The following 

statistics were applied to test the normality of the experimental data [20]: Kolmogorov-

Smirnov, Anderson-Darling, Chi-Square, Wilks-Shapiro, Zskewness, Zkurtosis, and Jarque-Bera 

tests. According to these statistics, the experimental data proved to be normally distributed 

[20]. The obtained descriptors were statistical analyzed in order to avoid potential overlapping 

and redundancy. The following descriptors were withdrawn from further MLR analysis: 
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 descriptors with identical names and/or values, 

 descriptors with a Jarque-Bera value greater than the critical value for the experimental 

activity [21], 

 highly inter-correlated descriptors. 

For testing the GA−MLR−QSAR program, an experiment containing all possible 

combinations of selection and survival strategies was designed and run on five dual core 

processor-based machines. The results are presented in Table 3.  

In order to avoid the overwriting of the files from one program to another, a random 

number was added automatically by the program to the name of the output file, as shown in 

Table 4. The following parameters were assigned to assess the implemented genetic 

algorithm: 

 Search space: Molecular Descriptors Family on PCBs, already available in the MDF 

database from the previous investigation [17], 

http://l.academicdirect.org/Chemistry/SARs/MDF−SARs/. 

 Initial sample: 12 descriptors randomly chosen from the pool of MDF descriptors. 

 Genotype adaptation: minimum of absolute deviation relative to the deviation of measured 

activity (a ratio 0.1 was taken); maximum of ratio between Jarque-Bera values for the 

descriptor and the measured activity (1 was taken); and minimum value of the 

determination coefficient between estimated and experimental data (0.1 was taken). 

 Number of independent variables in the MLR model (number of descriptors): 4. 

 Evolution strategy: all possible pairs of survival and selection strategies (e.g., PP, PT, PD, 

TP, TT, TD, DP, DT, DD, where P = Proportional, T = Tournament, and D = 

Deterministic). 

 Probability of parent/child mutation: set at 0.05. 

Table 3: Experimental design for GA-MLR assessment: selection and survival strategies 

Survival 

Selection 

Proportional (P) Deterministic (D) Tournament (T) 

Proportional (P) P&P: 4044 P&D: 2441 P&T: 9878 

Deterministic (D) D&P: 5108 D&D: 6369 D&T: 6690 

Tournament (T) T&P: 5828 T&D: 4872 T&T: 1758 
P = Proportional; D = Deterministic; T = Tournament; 

Experimental design: 

http://l.academicdirect.org/Horticulture/GAs/MLR_MDF_selection_vs_survival/PCB_XXXX_cfg.txt (were 

XXXX is the number corresponding to the selection-survival strategy: for example, XXXX = 4044 for PP 

evolution strategy); 

Evolution records: 

http://l.academicdirect.org/Horticulture/GAs/MLR_MDF_selection_vs_survival/PCB_XXXX_evo.txt  

 Two genes were implied in the mutation. 

 Generations: The identified solutions were stored in the results files. The program 

continued to adapt, until the imposed maximum number of 20,000 generations. 
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 Optimization criterion: maximization of the determination coefficient obtained from 

GA−MLR. 

The Chi-Square statistic [22, 23, 24] was used for testing the homogeneity of the 

populations’ genotypes, which were obtained by different selection and survival strategies. 

The frequency of the genotypes without accounting the last gene of the MDF family was used 

as both an adaptation and a variability measure of the genetic material produced by the 

selection and survival strategies. In order to avoid a random bias, we have performed 46 runs 

for every pair of selection and survival strategies. 

 

2.3. MLR evaluations 

In order to identify the best model for every survival-selection strategy, we have used the 

following criteria [25]: 

 Model assessment. Highest explanation of the observed variance (expressed as highest 

values of significant correlation coefficients between the observed and estimated activity), 

lowest standard error of estimate sest, highest Fisher value (and lowest associated p-value) 

as well as significant coefficients of the regression model (highest t-value, lowest 

associated p-value). 

 Internal validation. Cross-validation leave-one-out analysis (cv-loo) [26] was applied to 

test the performances of the identified GA−MLR−QSAR models. A QSAR model was 

considered reliable if a small difference between the determination coefficient r
2
 and the 

cross-validation leave-one-out score r
2

cv-loo was identified (difference<0.2, r
2

cv-loo>0.6). It 

was proved that leave-one-out analysis overestimates the predictive power of a model [27] 

 Information criteria: seven information criteria [10, 28] were applied to the models given 

in (4)-(13), in order to compare the information stored by the models. The following 

criteria were used: Akaike information criteria (AIC); AIC based on the determination 

coefficient (AICR2); McQuarrie and Tsai corrected AIC (AICu); Bayesian Information 

Criterion (BIC); Amemiya Prediction Criterion (APC); Hannan-Quinn Criterion (HQC); 

and Kubinyi function (FIT). The best model is the one with smallest AIC, BIC, APC and 

HQC and highest FIT. The comparisons of the models were conducted on correlation 

coefficients using Steiger’s formula [29]. 
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3. Results and Discussion 

3.1. Genetic algorithm 

The developed GA−MLR−QSAR was successfully implemented. The GA−MLR−QSAR 

program was realized implementing the following algorithms: 

Algorithm 2 The algorithm for Selection scores (FS) 

 Compute all possible regressions between phenotypes and store those with valid 

selection scores; 

 Compute the selection scores of the phenotypes from all of their occurrences in 

regressions; 

 Compute the selection scores of the genotypes from all of their occurrences in 

phenotypes; 

 Normalize the scores between generations whenever specified; 

 Round the obtained values to the defined number of significant digits; 

 Build ranks of the scores; 

 Replace the scores with ranks if configured to do so; 

 Sort out the scores; 

 Outputs: FS - array of selection scores; FSD - array of distinct selection scores; FSC 

- occurrences of every distinct selection score. 

Algorithm 3 Proportional strategy (P) 

 Set Selected−Genotypes to Empty; 

 For every selection from 1 to N_Sel (N_Sel - number of selections to be performed): 

- Compute the sum of unselected genotype scores to FS_Sum; 

- Randomly generate a number FS_Freq between 0 and FS_Sum (inclusive); 

- Find first index Group from FSD for which FS_Freq ≤ 



Groupi

ii FSCFSD  

- Randomly generate a number FSD_Next between 1 and FSCi; 

- Push into Selected−Genotypes the FSD_Next value (not selected yet) of FSDGroup 

from FS and decrease FSCGroup with one. 

Algorithm 4 Deterministic strategy (D) 

 Set Selected−Genotypes to ∅, Already_Selected to 0, Group to sample size; 

 While Already_Selected + FSCGroup ≤ N_Sel assign the indices from FS equal to 

FSDGroup into Selected−Genotypes and decrease Group by one if possible, or 

otherwise, increase by one; 
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 While Already_Selected ≤ N_Sel (full groups are exhausted; only a part of the group 

will be selected); 

- Randomly generate a number FSD_Next between 1 and FSCi; 

- Add to Selected−Genotypes the FSD_Next value (not selected yet) of FSDGroup 

from FS and decrease FSCGroup with one. 

Algorithm 5 Tournament strategy (T) 

 Let N_Gen be the number of genotypes from the sample; 

 Randomly generate a permutation of {1 ... N_Gen} into Selected−Genotypes; 

 For every i_Sel from 2 to N_Sel (first N_Sel competes in tournament) 

- If FSi_Sel ≤ FSi_Sel−1 then 

* If FSi_Sel = FSi_Sel−1 then if random selection between 0 and 1 generates 0, then 

continue (for iteration); 

* Exchange in FS the values from i_Sel and i_Sel − 1; 

 If N_Sel < N_Gen then (last selected did not participate in tournament and there are 

still elements with which to compete in sample) 

- Generate randomly a number i_Sel between N_Sel + 1 and N_Gen; 

- If FSN_Sel ≤ FSi_Sel then 

* If FSN_Sel = FSi_Sel then if random selection between 0 and 1; when 0 then stop 

(tournament completed); 

* Exchange in FS the values from i_Sel and N_Sel. 

The same calculations used in the selection scores (FS) were also applied to survival 

scores (VS) - see Figure 1. Proportional survival strategy uses the same procedure on VS as the 

proportional selection on FS. Deterministic survival strategy uses the same procedure on VS as 

deterministic selection on FS. Tournament survival strategy uses the same procedure on VS as 

tournament selection on FS. 

The evolutionary program which implements the genetic algorithm was built to work with 

any family of molecular descriptors and was parameterized through a series of configuration 

files. The program uses a configuration file to connect with the database in which molecular 

descriptors are stored. The c_galg.cfg configuration file specifies the security protocols 

required to connect to the database. The c_galg.cfg configuration file contains the definition 

of the genetic topology of the descriptors’ family. The values of the parameters that define the 

evolution of the genetic algorithm were stored in the c_galg.cfg configuration file. 
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3.2. GA-MLR-QSAR on PCB data set 

The summary of the results obtained on 46 runs on the investigated sample of PCBs was 

obtained by the processing of *_evo.txt files (Table 4). 

The genotypes’ adaptation capacity could be assessed by analyzing the frequency of 

genotype occurrences in the sample. This procedure also measures the variability of the 

genetic material induced by the selection and survival method. Tables 5 to 14 present the 

results obtained by checking the homogeneity hypotheses regarding the number of genotypes 

found in the evolution of generations. In these tables on the rows we have selection strategy; 

on the columns we have survival strategy. 

The tables contain the observed numbers; while the expected numbers, according to the 

homogeneity hypothesis, are given between parentheses. The analysis of the results presented 

in Tables 5-14 revealed the following: 

 The populations of the number of distinct genotypes, when the observations were 

drawn with proportional and deterministic selections, and all types of survival 

strategies were inhomogeneous (probability from Chi-Square distribution <5%, see 

Table 5). 

 The populations of the number of distinct genotypes, when all of the survival 

strategies were applied were inhomogeneous for tournament and deterministic 

selection strategies (probability from Chi-Square distribution <5%, see Table 5). 

 The populations of the total number of genotypes when the observations were drawn 

from different selection and survival strategies proved to be inhomogeneous (see 

Table 6). 

 The populations of the genotypes that provided valid regressions when the 

observations were drawn from different selection and survival strategies proved to be 

inhomogeneous (see Table 7). 

 The populations of the number of distinct genotypes from the top 23 proved to be non-

homogenous when the deterministic selection strategy and all the survival strategies 

were applied. For all of the other possibilities, the alternative hypotheses could not be 

rejected (see Table 8). 

 The populations of the total number of genotypes from the top 23 proved to be 

inhomogeneous when the observations were drawn using different selection and 

survival strategies (see Table 9). 
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Table 4: The most frequent genotypes found in the generations that led to evolution 

(improvement of the objective function) following 46 independent runs 

Selection strategy 

Proportional Deterministic Tournament 

VS Gen Num Occ Par 

P 

 

T23 

mMdlHg 

MDMKHt 

nDRLHt 

iPDKCg 

ADDJCg 

mDdjGg 

bDDDGg 

bDDJCg 

sDdLHg 

BDDDGg 

bDMLEg 

bDMLGg 

MMDPMt 

13 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

406 

46 

40 

40 

39 

35 

31 

28 

27 

25 

24 

24 

24 

23 

389 

43 

39 

39 

39 

35 

30 

19 

27 

25 

22 

24 

24 

23 

Tot 6760 16788 15902 

D T23 

iPMDHg 

bPRjCg 

IPMDEg 

mMdoHt 

IPRKCg 

MDRLHt 

MMdlHg 

MDmWHg 

BPRjCg 

NDRlHt 

iPMDCg 

bmrVCt 

IPMDCg 

13 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

378 

39 

38 

37 

30 

29 

29 

29 

26 

26 

25 

24 

23 

23 

371 

37 

38 

36 

29 

29 

29 

29 

26 

25 

25 

23 

23 

22 

Tot 8070 18240 17797 

T T23 

MMdlHg 

mMdlHg 

sPDLEg 

AMdwGg 

IPMDHg 

mMdqGt 

6 

1 

1 

1 

1 

1 

1 

214 

47 

46 

38 

29 

29 

25 

207 

47 

43 

38 

29 

27 

23 

Tot 7466 16599 15739 
 

VS Gen Num Occ Par 

P T23 

MDRLHt 

ImrWCg 

ImrWHg 

3 

1 

1 

1 

89 

31 

30 

28 

72 

31 

19 

22 

Total 3922 10764 9742 

D T23 

gmdKHg 

iPDDGg 

bmRkHg 

gMdEQg 

sDRDGg 

HDmLQt 

MDMKHt 

mMdLMt 

MMmwCg 

bmdFEt 

hDDJCg 

hDDpCg 

hPmEMg 

sPmJMt 

NmdlQg 

SMMFEg 

bMddEg 

sPRDHt 

BDrsGt 

hDMKEg 

smdoQg 

AMMpHt 

GPmVCg 

SMMjEt 

BPMkHg 

GmmlQt 

bPmjMg 

hDDDHg 

hMdWGt 

hPmSEg 

hmddCt 

imMtGg 

32 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

893 

48 

43 

37 

34 

34 

33 

33 

30 

29 

29 

27 

27 

27 

27 

26 

26 

26 

26 

25 

25 

25 

24 

24 

24 

23 

23 

23 

23 

23 

23 

23 

23 

893 

48 

43 

37 

34 

34 

33 

33 

30 

29 

29 

27 

27 

27 

27 

26 

26 

26 

26 

25 

25 

25 

24 

24 

24 

23 

23 

23 

23 

23 

23 

23 

23 

Tot 4385 13560 13316 

T T23 

NDRkHt 

sDDEMg 

hMrkGg 

MDDKHt 

sMrLCg 

5 

1 

1 

1 

1 

1 

152 

37 

30 

29 

28 

28 

152 

37 

30 

29 

28 

28 

Tot 4965 12504 11572 
 

VS Gen Num Occ Par 

P T23 

sPDJEg 

mMdlHg 

MMdlHg 

MDdjEg 

sDMDMg 

mMdqGt 

sDDKCg 

sPDLEg 

aDDKEg 

sDRKCg 

sPRKGg 

sDMLGg 

MDRLHt 

13 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

419 

64 

44 

40 

32 

29 

29 

28 

28 

27 

26 

25 

24 

23 

405 

64 

42 

40 

30 

28 

23 

28 

28 

27 

26 

22 

24 

23 

Tot 6537 16368 15317 

D T23 

MDRLHt 

IPMJCg 

IPMDEg 

sDRJEg 

iPMKCg 

iPDJCg 

sPDLEg 

mDRlHt 

nDRLHt 

sDMLCg 

iPDDGg 

iPDDEg 

mDRkHt 

IPRKCg 

IPDJCg 

iPDKCg 

bPmkEt 

sDDJEg 

MDDKHt 

IPDKCg 

sDDLHg 

21 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

714 

88 

46 

42 

41 

36 

35 

34 

33 

32 

31 

31 

29 

28 

27 

27 

27 

26 

26 

26 

25 

24 

687 

87 

45 

38 

39 

36 

33 

34 

33 

31 

29 

28 

27 

28 

26 

25 

25 

26 

26 

22 

25 

24 

Tot 7964 17700 17331 

T T23 

IDRwHt 

mMdlHg 

nMRSEt 

mPRDHt 

MDRLHt 

smmLCt 

AMDEQt 

IDRwGt 

8 

1 

1 

1 

1 

1 

1 

1 

1 

217 

34 

28 

28 

27 

26 

26 

24 

24 

213 

34 

28 

27 

26 

26 

24 

24 

24 

Tot 7529 17100 16151 
 

VS = Survival strategy; P = Proportional; T = Tournament; D = Deterministic; Gen = Genotypes; Num = Number (of 

distinct genotypes); Occ = Occurrences (of the genotypes); Par = Participations in valid regressions (of the genotypes); 

T23 = Top of the genotypes that occur more than or equal to 23 times; Tot = total number of all genotypes. 
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Table 5: Populations of distinct observed numbers of genotypes from total (expected numbers 

of genotypes provided in round brackets) 

χ
2 

P: 

Obs.(Exp.) 

T: Obs. 

(Exp.) 

D: Obs. 

(Exp.) 

Σ Unexplained squared error (pχ2(x
2
 > X

2
,2)

*
) 

P 6760 (6665) 7466 (7726) 8070 (7904) 22296 X
2
(P,·) = 13.6 (1‰) X

2
(·,P) = 2.25 (32%) 

T 6537 (6586) 7529 (7634) 7964 (7810) 22030 X
2
(T,·) = 4.85 (9%) X

2
(·,T) = 39.3 (3·10

-9
) 

D 3922 (3968) 4965 (4599) 4385 (4705) 13272 
X

2
(D,·) = 51.4 (7·10

-

12
) 

X
2
(·,D) = 28.3 (7·10

-

7
) 

Σ 17219 19960 20419 57598 X
2
(·,·) = 69.9 pχ2(x

2
 > X

2
,4) = 2·10

-14
 

P = Proportional; T = Tournament; D = Deterministic; Obs. = Observed frequency; Exp. = Expected 

frequency; ∑ = sum; 
*
 Probability from Chi-Square distribution; X

2
 = Chi-Square value; (pχ2(·,·)) = its 

associated probability to be observed 

 

Table 6: Populations of observed numbers of genotypes (expected numbers provided in round 

brackets) 

χ
2 

P T D Σ Unexplained squared error (pχ2(x
2
 > X

2
,2)

*
) 

P 
16788 

(16240) 

16599 

(17084) 

18240 

(18303) 
51627 X

2
(P,·) = 32.5 (9·10

-8
) X

2
(·,P) = 81.3 (2·10

-18
) 

T 
16368 

(16095) 

17100 

(16932) 

17700 

(18140) 
51168 X

2
(T,·) = 17.0 (2·10

-4
) X

2
(·,T) = 23.7 (7·10

-6
) 

D 
10764 

(11585) 

12504 

(12187) 

13560 

(13056) 
36828 X

2
(D,·) = 85.9 (2·10

-19
) X

2
(·,D) = 30.3 (3·10

-7
) 

Σ 43920 46203 49500 139623 X
2
(·,·) = 135 pχ2(x

2
 > X

2
,4) = 3·10

-28
 

P = Proportional; T = Tournament; D = Deterministic; ∑ = sum; 
*
 Probability from Chi-Square 

distribution 

 

Table 7: Populations of observed number of genotypes that provided valid regressions from 

total (expected number of genotypes provided in round brackets) 

χ
2 

P T D Σ Unexplained squared error (pχ2(x
2
 > X

2
,2)

*
) 

P 
15902 

(15241) 

15739 

(16172) 

17797 

(18025) 
49438 X

2
(P,·) = 43.1 (4·10

-10
) X

2
(·,P) = 115 (9·10

-26
) 

T 
15317 

(15044) 

16151 

(15963) 

17331 

(17792) 
48799 X

2
(T,·) = 19.1 (7·10

-5
) X

2
(·,T) = 19.1 (7·10

-5
) 

D 
9742 

(10676) 

11572 

(11328) 

13316 

(12626) 
34630 X

2
(D,·) = 125 (8·10

-28
) X

2
(·,D) = 52.5 (4·10

-12
) 

Σ 40961 43462 48444 132867 X
2
(·,·) = 187 pχ2(x

2
 > X

2
,4) = 2·10

-39
 

P = Proportional; T = Tournament; D = Deterministic; Obs. = Observed frequency; Exp. = Expected 

frequency; ∑ = sum; 
*
 Probability from Chi-Square distribution 

 

Table 8: Populations of distinct observed numbers of genotypes from the top 23 (expected 

values provided in round brackets) 

χ
2 

P T D Σ Unexplained squared error (pχ2(x
2
 > X

2
,2)) 

P 13 (8) 6 (5) 13 (19) 32 X
2
(P,·) = 5.22 (7.4%) X

2
(·,P) = 8.39 (1.5%) 

T 13 (11) 8 (7) 21 (24) 42 X
2
(T,·) = 0.88 (64%) X

2
(·,T) = 0.91 (63%) 

D 3 (10) 5 (7) 32 (23) 40 X
2
(D,·) = 8.99 (1.1%) X

2
(·,D) = 5.79 (5.5%) 

Σ 29 19 66 114 X
2
(·,·) = 15.1; pχ2(x

2
 > X

2
,4) = 4.5‰ 

P = Proportional; T = Tournament; D = Deterministic; ∑ = sum; 
*
 Probability from Chi-

Square distribution 
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 The populations of the genotypes from the top 23 that provided valid regressions, 

when the observations were drawn from different selection and survival strategies 

proved to be inhomogeneous (see Table 10). 

 

Table 9: Populations of observed numbers of genotypes from the top 23 (expected numbers 

provided in round brackets) 

χ
2 

P T D Σ Unexplained squared error (pχ2(x
2
 > X

2
,2)) 

P 406 (262) 214 (167) 378 (569) 998 X
2
(P,·) = 156 (10

-34
) X

2
(·,P) = 238 (2·10

-52
) 

T 419 (354) 217 (226) 714 (770) 1350 X
2
(T,·) = 16.4 (0.3‰) X

2
(·,T) = 21.2 (3·10

-5
) 

D 89 (298) 152 (190) 893 (646) 1134 X
2
(D,·) = 249 (10

-54
) X

2
(·,D) = 163 (5·10

-36
) 

Σ 914 583 1985 3482 X
2
(·,·) = 421; pχ2(x

2
 > X

2
,4) = 6·10

-90
 

P = Proportional; T = Tournament; D = Deterministic; ∑ = sum; 
*
 Probability from Chi-Square 

distribution 
 

Table 10: Populations of observed genotypes that provided valid regressions from the top 23 

(expected number of genotypes are provided in round brackets) 

χ
2 

P T D Σ Unexplained squared error (pχ2(x
2
 > X

2
,2)) 

P 389 (247) 207 (163) 371 (557) 967 X
2
(P,·) = 156 (2·10

-34
) X

2
(·,P) = 256 (2·10

-56
) 

T 405 (333) 213 (220) 687 (751) 1305 X
2
(T,·) = 21.2 (2·10

-5
) X

2
(·,T) = 19.3 (6·10

-5
) 

D 72 (285) 152 (189) 893 (643) 1117 X
2
(D,·) = 264 (6·10

-58
) X

2
(·,D) = 165 (2·10

-36
) 

Σ 866 572 1951 3389 X
2
(·,·) = 441; pχ2(x

2
 > X

2
,4) = 5·10

-94
 

P = Proportional; T = Tournament; D = Deterministic; Obs. = Observed frequency; Exp. = Expected 

frequency; ∑ = sum; 
*
 Probability from Chi-Square distribution 

 

3.3. Model analysis 

For each strategy pair, the equations of the most accurate best models are as follows: 

ŶPP = 40.90(±9.08) + lsDMLGg∙12.85(±2.95) + IBDmKGg∙(5.21∙10
-4

) (±7.75∙10
-5

) 

+ IMDRLHt∙(-2.06∙10
-2

)(±6.39∙10
-3

) + IsDRLEg∙(-176.68)(±40.39) 

(4) 

ŶPD = 26.33(±4.59) + iNDRlHt∙(-1.86∙10
-2

)(±6.18∙10
-3

) + IsPDJEg∙(-

50.14)(±11.06) + lSPRlEg∙(-6.26)(±1.25) + ISDRKHt∙(-5.87∙10
-5

)(±7.08∙10
-6

) 

(5) 

ŶPT = 11.15(±1.90) + IHDMDHt∙(-5.61∙10
-2

)(±6.70∙10
-3

) + IiPDLCg∙(-9.07)(±2.15) 

+ imDRlHt∙(1.93∙10
-2

)(±6.27∙10
-3

) + iIPMDHg∙(-1.97)(±0.41) 

(6) 

ŶDP = 24.50(±4.80) + ISDRkEg∙(-4.58)(±1.08) + iSDRlGg∙(-113.19)(±26.73) + 

InDRLHt∙(2.16∙10
-2

)(±6.59∙10
-3

) + iIDrkEg∙(5.63∙10
-4

)(±7.88∙10
-5

) 

(7) 

ŶDD = 4.24(±0.47) + LhDrjQg∙(-0.40)(±0.26) + InDRLHt∙0.02(±6.15∙10
-3

) + 

iADRkGg∙0.06(±7.05∙10
-3

) + IiDDKGg∙(-0.50)(±0.08) 

(8) 

ŶDT = 2.78(±0.61) + iADREMg∙(-31.29)(±4.33) + IHDMLEg∙0.20(±0.03) + 

IHDDKEg∙(-1.85∙10
-2

)(±1.11∙10
-2

) + iNDRkHt∙(-1.66∙10
-3

)(±6.54∙10
-4

) 

(9) 

ŶTP = 21.50(±3.52) + liPRLCg∙9.74(±1.78) + IIPDKCg∙(-14.83)(± 3.08) + (10) 
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iaPDFEt∙0.42(±0.05) + InDRLHt∙(1.78∙10
-2

)(±6.07∙10
-3

) 

ŶTD = 33.37(±6.29) + IhDDJCt∙(-0.06)(±7.04∙10
-3

) + IsPDLEg∙(-59.20)(±12.94) + 

IMDRLHt∙(-0.02)(±6.15∙10
-3

) + lsPRLCg∙6.56(±1.34) 

(11) 

ŶTT = 27.74(±5.38) + lsPRKEg∙8.88(±2.03) + IBDmKGg∙(8.22∙10
-4

)(±9.99∙10
-5

) + 

IsPRLGg∙(-204.95)(±46.85) + IMDRLHt∙(-1.93∙10
-2

)(±6.33∙10
-3

) 

(12) 

Here Ŷ is the estimated octan-1-ol/H2O partition coefficient and their indices come from the 

selection method (first letter) and from the survival method (second letter), with P = 

Proportional; T = Tournament, and D = Deterministic. The number associated with ± is the 

value to be extracted and added in order to obtain a 95% confidence interval associated with 

the regression coefficients and the variables iADREMg, iADRkGg, iaPDFEt, IBDmKGg, 

IhDDJCt, IHDDKEg, IHDMDHt, IHDMLEg, IiDDKGg, iIDrkEg, IIPDKCg, IiPDLCg, 

iIPMDHg, IMDRLHt, imDRlHt, IMDRLHt, iNDRkHt, iNDRlHt, InDRLHt, ISDRkEg, 

ISDRKHt, IsDRLEg, iSDRlGg, IsPDJEg, IsPDLEg, IsPRLGg, LhDrjQg, liPRLCg, lsDMLGg, 

lsPRKEg, lsPRLCg, and lSPRlEg are MDF descriptors, as independent variables. The median 

time needed per generation proved to be less than 0.1 seconds, and were obtained according 

to the MDF method [8]. 

In the present research the number of 20,000 generations was imposed, and thus the 

optimum solution was identified in less than 10 minutes. The equation of the best models 

obtained through a complete search is presented in [30]: 

ŶSS = 3.04(±0.30) + IIDDKGg∙(-0.42)(±0006) + IHDRKEg∙0.04(± 2.09∙10
-3

) + 

aHMmjQt∙0.07(±0.02) + aSMMjQq∙(-37.50)(± 10.10) 

(13) 

where SS states for systematic search and IIDDKGg, IHDRKEg, aHMmjQt, aSMMjQq are 

MDF descriptors. This equation is golden model for four-variable QSAR since any other than 

from this complete search for given data and given descriptors cannot be better. 

The descriptive statistics for the models (4)-(13) are presented in Table 11.  

Thee analysis of the GA−MLR models presented in Table 11 - Equations (4)-(12) we 

conclude that: 

 All combinations of selection and survival strategies provided statistically significant 

models. 

 The analysis of the GA−MLR−QSAR models (4)-(12) in terms of the descriptor’s 

contribution to the property of PCBs leads to the data given in Table 12. 

Table 12 shows that: 

 The top-3 survival-selection strategies, according to the correlation coefficient, are: TP (r
2
 

= 0.9066), TD (r
2
 = 0.9060), and PD (r

2
 = 0.9058). 
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Table 11: MLR models: GA-MLR search vs. complete search (sample size of 206 PCBs) 

Param Eq(4) Eq(5) Eq(6) Eq(7) Eq(8) Eq(9) Eq(10) Eq(11) Eq(12) Eq(13) 

R 0.9511 
a
 0.9517 

b
 0.9516 

c
 0.9505 

d 
0.9504 

e
 0.9501 

f 
0.9521 

g
 0.9519 

h
 0.9512 

i
 0.9575 

j
 

r
2
 0.9045 0.9058 0.9056 0.9034 0.9032 0.9027 0.9066 0.9060 0.9047 0.9168 

r
2
adj 0.9026 0.9039 0.9037 0.9015 0.9013 0.9008 0.9047 0.9042 0.9028 0.9151 

sest 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.24 

Fest 476
‡
 483

‡
 482

‡
 470

‡
 469

‡
 466

‡
 488

‡
 485

‡
 477

‡
 554

‡
 

tint 9.54
‡
 11.32

‡
 11.60

‡
 10.06

‡
 17.95

‡
 8.94

‡
 12.04

‡
 10.47

‡
 10.16

‡
 19.72

‡
 

tX1 8.59
‡
 -5.92

‡
 -16.51

‡
 -8.37

‡
 -3.04

†
 -14.26

‡
 10.78

‡
 -16.38

‡
 8.65

‡
 -14.80

‡
 

tX2 13.26
‡
 -8.94

‡
 -8.31

‡
 -8.35

‡
 5.33

‡
 11.93

‡
 -9.48

‡
 -9.02

‡
 16.23

‡
 41.73

‡
 

tX3 -6.35
‡
 -9.88

‡
 6.07

‡
 6.47

‡
 16.30

‡
 -3.29

†
 16.23

‡
 -5.76

‡
 -8.63

‡
 6.64

‡
 

tX4 -8.63
‡
 -16.35

‡
 -9.46

‡
 14.08

‡
 -12.76

‡
 -5.02

‡
 5.80

‡
 9.63

‡
 -5.99

‡
 -7.32

‡
 

r
2
cv-loo 0.8977 0.8985 0.8977 0.8967 0.8963 0.8956 0.8994 0.8986 0.8975 0.9093 

scv-loo 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.25 

Fpred 441
‡
 445

‡
 441

‡
 436

‡
 434

‡
 431

‡
 449

‡
 445

‡
 440

‡
 504

‡
 

X1, X2, X3, and X4 = structural descriptors (MDF) used as independent variables; r = correlation coefficient, a-j 

= 95%CI = 95% confidence interval of correlation coefficient; r
2
 = determination coefficient; r

2
adj = adjusted 

determination coefficient; sest = standard error of estimate; Fest = F-value of estimate; t = t-value; int = 

intercept; r
2
cv-loo = cross-validation leave-one-out square correlation coefficient; Fpred= F-value of predicted; scv-

loo = standard error of predicted; ‡ p < 0.0001; † p < 0.01; a = [0.9360; 0.9626]; b = [0.9368; 0.9630]; c = 

[0.9367; 0.9630]; d = [0.9353; 0.9621]; e = [0.9351; 0.962]; f = [0.9347; 0.9618]; g = [0.9373; 0.9633]; h = 

[0.9371; 0.9632]; i = [0.9362; 0.9627]; j = [0.9443; 0.9675] 

 

Table 12: Descriptor contribution to the observed property of PCBs 

 Eq(4) Eq(5) Eq(6) Eq(7) Eq(8) Eq(9) Eq(10) Eq(11) Eq(12) 

r
2
 90.45 90.58 90.56 90.34 90.32 90.27 90.66 90.6 90.47 

IntVia g-g-t-g t-g-g-t t-g-t-g g-g-t-t g-t-g-g t-g-g-t g-g-t-t t-g-t-g g-g-g-t 

DAP G-G-H-E H-E-E-H H-C-H-H E-G-H-E Q-H-G-G M-E-E-H C-C-E-H C-E-H-C E-G-G-H 

OvrInt M-M-R-R R-D-R-R M-D-R-D R-R-R-r r-R-R-D R-M-D-R R-D-D-R D-D-R-R R-m-R-R 

SPS l-I-I-I i-I-l-I I-I-i-i I-i-I-i L-I-i-I i-I-I-i l-I-i-I I-I-I-l l-I-I-I 

r
2
 - QSAR’s coefficient of determination (%); 

IntVia = Interaction Via - the 7
th
 letter in the descriptor name: Space (geometry - g), Bonds (topology 

- t); DAP = Dominant Atomic Property - the 6
th
 letter in descriptor name: Group electronegativity 

(G), Number of hydrogen atoms adjacent to the investigated atom (H), Atomic electronegativity (E), 

Cardinality (C), Atomic partial charge (Q), Relative atomic mass (M); OvrInt = Overlapping 

Interaction - the 4
th
 letter in descriptor name: Frequent and distant interactions (M, m), Sporadic and 

distant interactions (r, R); SPS = Structure on Property Scale - 1
st
 letter in descriptor name: Identity 

(I), Logarithm of absolute value (l), Inverse (i), Logarithm (L). 

 

 The top-3 survival-selection strategies, according to the results obtained in leave one-out 

analysis, are: TP (r
2

cv-loo = 0.8994), TD (r
2

cv-loo = 0.8986), and PD (r
2

cv-loo = 0.8985). 

 The top-3 survival-selection strategies, according to the smallest difference between 

determination coefficient and leave-one-out scores), are: PP (r
2
 − r

2
cv-loo = 0.0068); DP (r

2
 

− r
2

cv-loo = 0.0068); DD (r
2
 − r

2
cv-loo = 0.0069), and DT (r

2
 − r

2
cv-loo = 0.0071). 

 The squared cross-validation leave-one-out correlation coefficient proved to be, for each 

evolutionary strategy, greater than 0.6 [31], and the difference from the determination 
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coefficient smaller than 0.02. This scenario sustained the reliability of all 

GA−MLR−QSAR models. 

The models presented in (4)-(13) were used to predict the octan-1-ol/H2O partition 

coefficient of three PCBs: 2,3-Dichlorobiphenyl, 3,4’- Dichlorobiphenyl, and 2,2’,3,4,4’,5-

Hexachlorobiphenyl. All values predicted by QSAR models were in-between 4.151 and 9.603 

with one exception, represented by eq(4) where proportional selection and proportional 

survival strategy were used (Table 13). The equation of the most accurate model obtained 

when proportional selection and survival strategy (eq(4)) provided provided values of 2,3-

Dichlorobiphenyl and 3,4'- Dichlorobiphenyl lower than the minimum value in the sample 

(equal with 4.151). These results suggest that the GA−MLR model that used proportional 

selection and tournament survival strategies is not reliable. 

Several information criteria were used to compare the information stored in the 

GA−MLR−QSAR models obtained by pairs of investigated selection-survival strategies, 

including also the QSAR model obtained by a complete search (Table 14).  

Table 13: Predicted values by applying formulas (4)-(13) 

Eq 2,3-Dichlorobiphenyl 3,4'- Dichlorobiphenyl 2,2',3,4,4',5-Hexachlorobiphenyl 

4 1.9302 2.2518 4.1696 

5 4.9165 5.1385 7.1225 

6 4.8829 5.4007 7.1958 

7 5.0174 5.2201 7.1513 

8 4.6834 5.1199 6.8793 

9 4.6586 5.0298 6.9328 

10 4.9062 5.1712 7.1042 

11 4.7944 5.1898 7.0391 

12 4.8818 5.4524 7.1502 

13 4.4329 4.8505 6.3831 
 

Table 14: Results of information criterion analysis applied on obtained MLR models 

IC Eq(4) Eq(5) Eq(6) Eq(7) Eq(8) Eq(9) Eq(10) Eq(11) Eq(12) Eq(13) 

AIC -550.92 -553.65 -553.20 -548.64 -548.17 -547.08 -555.43 -554.25 -551.33 -579.33 

wi-AIC 6.78·10
-7
 2.66·10

-6
 2.12·10

-6
 2.17·10

-7
 1.71·10

-7
 9.96·10

-8
 6.46·10

-6
 3.59·10

-6
 8.36·10

-7
 1.00·10

0
 

AICR
2
 2.32 2.31 2.31 2.33 2.34 2.34 2.30 2.31 2.32 2.19 

wi-AICR
2
 0.0992 0.0998 0.0997 0.0986 0.0985 0.0983 0.1003 0.1000 0.0993 0.1063 

AICu -1.64 -1.65 -1.65 -1.63 -1.63 -1.62 -1.66 -1.66 -1.64 -1.78 

wi-AICu 0.0992 0.0998 0.0997 0.0986 0.0985 0.0983 0.1003 0.1000 0.0993 0.1063 

BIC -529.52 -532.25 -531.80 -527.24 -526.77 -525.68 -534.02 -532.85 -529.93 -557.92 

APC 0.0689 0.0679 0.0681 0.0696 0.0698 0.0701 0.0674 0.0677 0.0687 0.0600 

HQC -544.49 -547.22 -546.77 -542.21 -541.74 -540.65 -549.00 -547.82 -544.91 -572.90 

FIT 8.20 8.32 8.30 8.10 8.08 8.03 8.40 8.35 8.22 9.54 

IC = information criterion; AIC = Akaike information criteria; AICR2 =  AIC based on the determination 

coefficient; AICu = McQuarrie and Tsai corrected AIC; BIC = Bayesian Information Criterion; APC = 

Amemiya Prediction Criterion; HQC = Hannan-Quinn Criterion; FIT = Kubinyi function; wi = Akaike 

weights for model i. 
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The analysis of the results presented in Table 14 revealed the following: 

 According to the Akaikes information criteria and the AIC weight, the best model is the 

model that resulted from the systematic search (13). The model presented in (10) is the 

best model according to the Akaikes information criteria, when only the GA−MLR models 

are compared. 

 According to the Akaikes weights (AIC based on the coefficient of determination and AIC 

corrected by McQuarrie and Tsai), the GA−MLR models presented in (9) is the best 

model. Moreover, all models have smaller values of these weights compared to the 

systematic search. Note that the weights identified the models with the smallest relative 

distance from the "truth". 

 According to the Bayesian Information Criterion, the Amemiya Prediction Criterion, the 

Hannan-Quinn Criterion, and the Kubinyi function, the model that provides most 

information is the model obtained through a systematic search. The model from (10) is the 

best model, when only the GA−MLR models are compared. 

The analysis of correlation coefficients of the GA−MLR models and the model obtained 

through the systematic search revealed the following: 

 The greatest value is obtained by a systematic search. 

 The GA−MLR−QSAR model with the highest correlation coefficient is (10). 

 With two exceptions, (8) and (9), the correlation coefficients of the GA−MLR−QSAR 

models do not have a statistically significant difference (p ≥ 0.0591) compared to the 

correlation coefficient of the model obtained through a systematic search, at a significance 

level of 5%, by Steiger’s Z test: 

Z(13)−(4)(p) = 1.50276 (0.0665), Z(13)−(5)(p) = 1.34603 (0.0891), 

Z(13)−(6)(p) = 1.36491 (0.0861), Z(13)−(7)(p) = 1.56277 (0.0591), 

Z(13)−(8)(p) = 1.74524 (0.0405), Z(13)−(9)(p) = 1.79056 (0.0367), 

Z(13)−(10)(p) = 1.2725 (0.1016), Z(13)−(11)(p) = 1.32485(0.0926), 

Z(13)−(12)(p) = 1.45678 (0.0726). 

 The smallest difference between two correlation coefficients is 0.00536 and it was 

obtained for the model presented by (10) compared with a systematic search. 

In this study, we used GA for searching the MDF descriptors space and the MLR for 

fitness evaluation. Several guidelines that comprise how to validate a QSAR model have been 

previously published [32, 33]. To predict of the outcome is just one of the aim of linear 

regression analysis, beside identification of the strength of the linear association between 
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outcome and factors of interest or to identify those factors that affect the outcome [34]. Beside 

recommendation of assessment the model on an external data-set [32, 33], several parameters 

have been reported as useful in evaluation of predictive power a QSAR model (such as 

predictive square correlation coefficients in training, test sets and external sets [35, 36, 37], 

external predictive ability [38, 39], predictive power by Fisher's approach [10]). Furthermore, 

a series of classification methods could be useful whenever appropriate [28, 41]. The 

validation of the GA-MLR models was beyond the aim of this study since it has been 

previously proved [30]. Current research in our laboratory is on implementation of a GA-

MLR able to identify the best performing model with highest performances both in training 

and test sets as well as in external sets. 

 

4. Conclusions 

The proposed genetic algorithm for multiple linear regressions with families of descriptors 

for structure-property/activity relationships was successfully implemented and proved its 

efficiency in QSAR models identification. Different selection and survival strategies created 

different partitions of the entire population of genotypes, since different pathways of 

evolution can be followed under the pressure of various environmental factors. Moreover, the 

resulting models proved to have different estimation and prediction abilities, and some 

GA−MLR models were revealed not to be significantly different from the golden QSAR model 

obtained through a complete search. This result shows that, even if the evolution follows 

different pathways, it is likely to reach the same stages of development. The 

GA−MLR−QSAR model obtained with tournament selection and proportional survival proved 

to be the closest to the model obtained by complete search. Moreover, tournament selection 

and proportional survival seem to be the natural way of evolution since it proved to be the 

most effective and since the nature always evolve to maximize the chances of adaptation. 
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