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Abstract

The aim of this paper was to review and summarize the usefulness of Bose-Einstein and Fermi-Dirac
distributions in biological sciences. Starting with the introductory presentation of these distributions,
the paper presents their rationale, formulas and applications. Furthermore, the increase interest of
applying Bose-Einstein and Fermi-Dirac statistics in nowadays life science researches has also been

highlighted.
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INTRODUCTION

The Bose-Einstein statistic started to find
its applications to biological sciences (Frohlich,
1968a; Frohlich, 1970.) since 1968 when Frohlich
(Frohlich, 1968b) showed how a driven collection
of vibrational oscillators could achieve a highly
ordered non-equilibrium state, a property usually
compared to phenomena involving macroscopic
quantum coherence like as the Bose-Einstein
condensation. Such a condensation would have an
important influence on the dynamical properties
of systems, and there has been considerable
interest in finding its applications (Reimers et al.,
2009). Following Frohlich, the authors of (Lauck
et al, 1992) considered a system that models a
biological structure represented by a long chain
of proteins possessing polar modes of vibration
on which energy is pumped through metabolic
processes. A theory of relaxation based on the
non-equilibrium statistical operator method was
used in the derivation of the kinetic equations
to introduce non-linearity due to interactions of
the polar vibrations with the carriers and with
a thermal bath. Non-linearity arising from high

order relaxation processes lead to the emergence
of the Frohlich effect in the polar modes, the
occurrence of a (non-equilibrium) Bose-Einstein-
like condensation.

Shortly after Frohlich’s paper, a series of
distributions associated to Bose-Einstein statistics
(defined as one of two possible ways that a
collection of non-interacting indistinguishable
particles may occupy a set of available discrete
energy states) were revised in a more general
path - distributions giving the probability of a
new occurrence of an event proportional to the
number of times it had previously been occurred
- and under this more general frame some
application on modeling the city sizes and growth
were identified (ljiri and Simon, 1975).The main
idea behind the use of the Bose-Einstein, Fermi-
Dirac and Maxwell-Boltzmann statistics is that the
cells can be seen as urns towards the molecules of
a given substance and therefore the humoral laws
deducted from the cellular laws may be used to
interpret the evolution of molecular metabolism
with time (Boutros-Toni and Duhamel, 1972).
Dipolar elements contained in biological systems
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that oscillate in a frequency of 10'*-10'2 s were
found as possible channel for various life processes
such as cell division and protein synthesis, driving
the system under certain conditions as a Bose-
Einstein condensation into the lowest energy
state (Wu and Austin, 1978). Plant metabolism
responses to a simple plant growth model with
three resources (light, water and nutrients) were
described with continuous-time Markov chains
when the effects of varying the used resource and
tolerance on optimum growth were successfully
modelled with a Fermi-Dirac distribution function
(Olson et al, 1985). Bose-Einstein and Maxwell-
Boltzmann statistics were compared in efficiency
of developing stochastic models of arthropod
populations (empirical data for support are pre-

THE RATIONALE OF FERMI-DIRAC AND
BOSE-EINSTEIN DISTRIBUTIONS

sented for many models by Young and Willson
(1987)). Patterns of organelles within cells, for
example, invertebrate smooth muscle filaments,
microtubules in axons and micropinocytic vesicles
in capillary endothelial cells, found to occur non-
randomly within cells, were studied and has been
suggested that Bose-Einstein statistics could be
of significant value in this context (James, 1989).
The origin of the chirality of protein amino acids
from the point of view of a phase transition
from a racemic mixture into an optically pure
state were studied under assumption that Bose-
Einstein condensation may act as an amplification
mechanism and the results were previously
presented by Chela-Flores (1994).

Considering an enzymatic reaction at equilibrium (Eq.1):

E+8S — ES, v=k [E][S]
E+S « ES,u=k,|[ES]

E + S « ES, equilibrium (u = v) — k, = [ES]/([E

where E is the enzyme; S is the substrate; ES is
the enzyme-substrate complex, and u and v are

1)

1[S]), where k , =k /K,

the corresponding reaction rates with the coefficients k, and k,.

The ratio of linked substrate/enzyme is (Eq.2):
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By using the well known the relationship between

equilibrium constant and Gibbs free energy
(Ink,, =- AG’/RT), result the Eq.3:

1 1 1

1

fg — —_— f_ —
E 1 AG® /RT-In([E]) > °E
- 41 e 4]

It is easy to be recognized now the Fermi-
Dirac function. At a given temperature and a
given concentration, the standard free enthalpy of
binding (AG") vary and this enthalpy for an enzyme
depends on a series of environmental factors and
therefore we may see the process of site-binding

e.\G‘ /RT-In{[S]) +1

3)

as a process shaped probabilistically by a Fermi-
Dirac function.

Even simpler is to reveal the potential of
Fermi-Dirac distribution to DNA and RNA sequen-
ces. Thus, if the chain of amino acids is seen as a
carrier of the genetic information, and let n be its
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size, then it is easy to imagine that some amino
acids (let abbreviate with r their number) are not
carriers of the information, due to misplacement.
The distribution of misprints corresponds to
a distribution of r balls in n cells with no cell
containing more than one ball. It is therefore
reasonable to suppose that, approximately, the
misprints obey the Fermi-Dirac statistic. If we
look for a specific amino acid and we count
its occurrences in a certain chromosome, we
may extend this counting to the whole space
of chromosomes. Then, the chromosomes are
distinguishable one to each other and are filled
with same (undistinguishable) specific amino acid
under the observation. Thus, the distribution of
the amino acids in chromosomes corresponds to a
distribution of r balls in n cells. We must take into
account that it is required about same energy of
binding of a certain amino acid to a chromosome,
and therefore is very likely that the distribution
of amino acids among chromosomes to follow the
Bose-Einstein statistic.

(n+b-1)! s

A nl(b—1)!

Checking of the above relation can be con-
ducted noting that: A(n,1) = 1 (all particles are in
one box), A(n,2) = n+1 (the first box are from 0
to n particles, remainder in the second), A(0,3) =
[{000}| = 1, A(1,3) = |{001 010 100}| = 3, A(2,3)
= [{002, 011, 020, 101, 110, 200}| = 6, A(3,3) =
[{003, 012, 021, 030, 102, 111, 120, 201, 210,
300}| = 10. A program to generate for ‘n’ and ‘b’
given all the numbers represented in the ‘n +1’
(with ‘digits’ between 0 and n), represented in
exactly the ‘b’ memory units can be made and

(n;+n,/f,-1)!
= HA(“"b) H nMn,/f -1’

For the above relation observables are n,
- number of particles occupying each energy
state (51.) as compared to the natural tendency at
equilibrium function W reaches its maximum at
the given number of particles N = X' n. and energy
(E = Zjnjej). Function W = W (n,, .., n]] reaches
its maximum together with its logarithm. The
reason for the switch from W to InW is that it is
more convenient to work in logarithmic scale
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A(n,f) =

, InW =In(W) = Z]

BOSE-EINSTEIN DISTRIBUTION OF

ENERGY STATES

At low temperatures, material particles
(called bosons) behave differently from the model
proposed by Boltzmann with a finite number of
possible energy states. A key role in Bose-Einstein
model plays both the number of particles per unit
volume (greater than “quantum concentration”
in which the distance between particles is equal
to the de Broglie wavelength (Broglie, 1924)) as
well as the (low) temperature. The analysis was
originally proposed by Satyendra Nath Bose for
the distribution of the radiation energy (Bose,
1924) and adapted by Albert Einstein for gaseous
state (Einstein, 1924; Einstein, 1925a; Einstein,
1925b). Let consider a system evolving at constant
volume (V = ct.). This can be achieved by direct
verification that the arrangement of the ‘n’ particle
in ‘b’ boxes is given by Eq.4. (let f be the ratio of
average occupancy ofabox - n/b=f—b=n/f):

(n+n/f-1)!

nk(n/f -1)! @)

should count how many of these exact figures
have the sum of digits ‘n’. Considering that there
are/ (j=1,2, .., ]) energy states (sl., €,<g <. < sl),
each containing a number of boxes (bj), and each
populated by a number of molecules (n), then the
number of arrangements (W) is the product of the
number of arrangements of each individual states
(filling of two energy states ¢, < ¢, each of n, and
n, molecules are independent of one another) is
given by Eq.5:

(n,+n, ff -1)! .
ntn,/f -1)! )

j=1
when operating with large numbers (the number
of molecules in a system is a large number).
Transforming the constrained maximum (N =
Z'].nj = constant; E = Zjn}.sj = constant) on InW into
unconstrained one (Lagrange’s method (Lagrange,
1811)) on InW1 = InW + a[N-Z].nf,) + ,B(E-Z'injei),
results Eq.6:
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-
PSR . f L A
= nJ!—(anfJ—l)!
Derivatives at the point of maximum it cancels
and establishes a set of relationships between the
number of states specific to each energy level and
population of the levels with molecules (Eq.7):

O{N —ZjlanH{E—inj -81] =max (6)

= =) A
a]nWIEn],,,, n,) _ H(, I (n, +n,/f, -1 +a(0-1)+B(0—5,)=0 (7)
ony on, n (n, /f, —1)!
Forlarge numbers,log(n!) ~n-log(n)-nisagood
approximation (Stirling’s approximation (Stirling,
1730)) and d(n-log(n)-n)/0n = In(n) simplifies the
relationship give in Eq.7 as it is presented in Eq.8:
;[ ClE 1+f, 1 1
“In - ; “In(n, ——=~1)~In(n,)~—In(n, —~1) —
ony n, [.(nk E_ ! k k k k (8)
(;:anIEHI,..,,nJ): 1+f£, ln(nkl L 1)~ In(n, )_ ln(n L—l) o —Pe, =0
an, £ k £y £,
For n,(1+f)/f, >> 1 and n/f, >> 1 the
relationship becomes (Eq.9):
e +
o+fe, = I+f, In(n, l f“' )—ln(nk)—lln(nk i) -
f fi k )
I+f 1+f, 1 1
o +Pe, =——=In(—)——In(-)
f, ;3 fk £,
Distribution of the energy states is therefore
approximated by Eq.10:
[,_‘
+ Tex  bix 1 li x
‘s;(x)—H—xl 1 x—llnl:ln[(1+x)x x *xX |=In|(1+x)* x :ln&- (10)
X X X X X
through the relationship presented in Eq.11:
g(f,)=a+B-¢g, (12)

As for Fermi-Dirac distribution (see below),
f, = n/b, is a sub-unitary small number for low
temperature. Bose-Einstein distribution is found

when following limit approximations are used
(Eq.12):
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1+x

1+1:{l+1}—1n(”x)x >0;[1+1n[

X X

when:

k

o +pe, El+ln[fL+IJ — a—1+fe, Eln[

f, = 1

FERMI-DIRAC DISTRIBUTION OF
ENERGY STATES

Number of possibilities to distribute ‘N’
particles ‘A’ levels with at most one particle per
level (0 or 1) is equal to the number of possibilities
to choose ‘N’ objects from a total of ‘A’ (the fraction
fis denoted by a particle occupancy levels):

r
i Al N

N,A) =
) NLA -N)! A

In the assumption of independence, namely
a many-block of levels system (‘B’ blocks) that do
not interact with each other levels (no particles
are transferred from one group to another), the
number of possibilities for the distribution of the
N, .., N, particles is given in Eq.15:

1y

B _f_ 3
W(NPAHNR.fl...,,fR):1_[+
. NJ-(%—NJ!

]

Extreme points of the function W are the
same with the extreme points of the function
U. It will be observed that the value function
W (hence the function U) that has the greatest
chance of observation (relative to observables Nj)
so in relation to observables N]., the functions W
and U are in their extreme point. There are two
conditions (n =2','le and E =Z'J.£].Nj) which makes this
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X

Lat) = Lzeen
£ £y (13)

eﬂ 1+feg 1

(N/f)!

T NK(N/f - N)! ({149)

i1

5 - N, N,
) U:[n{W)zz ]“(r_!)_l“(N|!)_[n{{T_Ni)!) (15)

extreme to be conditioned. Applying the method
of Lagrange multipliers, the extreme points of
the function U (and the function W) subject to
constraints are among the extreme points of the
function V (Eq.16):
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U=max.|[N=> N, E= ZN €, > U+a(N- ZN)+B(E ZN -€,) = max.
j=1 J=l =l

(16)

=0

=1 =1 i

Expression of these extreme conditions is
presented in Eq.17:

(o))

N i[[n(—-‘—l) In(N,!) - ln((—l-—N I |+

i =l

-2 Ni'g) (17

1

In order to obtain an analytic expression is
necessary to employ an approximation in which
the derivative factorial (Stirling’s approximation)

as given in Eq.18:
E?Jzﬂl:ln((a-x)!) ('_?Ji:ln((a-x)!) ot ajzﬂljln((ae%”) o
= . s -a=a-In(a-x)
Ox o(a-x) Ox d(a-x)

Substituting this approximation in all 3 ex-
pressions involving the derivative of the logarithm
of a factorial, and grouping the terms that depend
on N, areduction of the obtained relationship that
is independent of the value of N, is presented in
Eq.19:

Ef‘l ]n(— N,)- ln{Nl)—([_L—l)-ln((rl—l)-N])+a(0—l)+B(O—ai)
1,1 : 1 | 1 | 1 1.1 1 | (19)
o+ Pe, :f—llnf+fln(Ni)—ln(Nl}—(Fj—l)ln(Fl—l}—(Fl—l)ln(N,):Filnfl-—(f—l)ln(f—l)
EQ.19 can be simplified by arranging the terms
as is showed in Eq.20:
1 1-f. I’_Iﬁ 1 fi fl_&f 3 1
o+ e, :]n—l—in%:]n—1 i = In— i ti -=1In = (20)
O T )t a-f)' £a-6)°
Let g(x) be the function presented in Eq.21:
1
g(x)=In——" 21)

x(1-x) =
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The solutions for energy distribution are
obtained by the inverse function g analytical
problem and it is not solvable for the general case.
A small value of x has the meaning of a very low
stockinglevels of energy molecules (f= N/A), which

is perfectly justified at very low temperatures.
Analytical solution proposed (independently) by
Fermi (Fermi, 1926) and Dirac (Dirac, 1926) is
given in Eq.22:

fj—0 1
f=g'() =2 —— 22
=8 (&) 2" (22)
The solution presented in Eq.22 is an approxi-
mate supported by the relations given in Eq.23:
; 1 1- S 1 1- 1
lim| In ——In x—1 =0; lim|In =< Rl feas o
x—0" _\ e x—0* T X 2
x-(1-x) * x-(1-x)° (23)
In : — :l+lnl_—x+0(x)
x-(l—x)T X

where O(x) is the error in the approximation,
linear in x. A closest the x is to 0, the better the
approximation is. Thereby approximating the

=1+In f
f

1 1

The distribution functions of the energy sta-
tes according to Fermi-Dirac distribution model
are presented in Fig.1l. It is noted that in the

otp-&i = g(fi

1
=a+fBe — ——1=e
Be, — 7

function g(x), the distribution in energy expression
is simplifies as presented in Eq.24:

l+e<1 1+Pe;

o—1+Pe; iy f'l =

(24)

neighbourhood of 0, the proposed approximation
distribution function overlaps the one from the
exact model (see Fig. 1).

| £(x)

I @ 0:{-‘IBEI l= g(f; I

El— 0.01} 4
1 1
@ [0.0001] [o.4[[o.6] ]0.9999
1 . . 3 1 i ,\ 1 |
In — — 2 51+In :—'ln : — 20 5 %]n X .
a-x= M T X -~

Fig. 1 Fermi-Dirac distribution of energy states
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The analysis of Fig. 1 led to the conclusion
that the Fermi-Dirac distribution of molecules on
energy has two vertical asymptotes.

INCREASED INTEREST OF USING

BOSE-EINSTEIN AND FERMI-DIRAC

DISTRIBUTIONS

Recentstudies revealed an increased interest of
using Bose-Einstein and Fermi-Dirac distributions.
Thus, following a paper reporting successful results
of Bose-Einstein model for predicting Piaget's
cognitive-developmental variable, conceptualized
as a quantitative construct, the maximum number
of discrete pieces of information or schemes that
can control or integrate in a single act, assumed

to grow in an all-or-none manner as a function
of age reported by Pascual-Leone (1970) other
researches were more recent follows. Reimers et
al. (2009) found evidences for weak incoherent
Frohlich condensates within individual proteins
as being significant. They found also that coherent
regimes or strong ones are not possible because
no mechanical source of energy can produce such
a condensate, and that although intense radiation
could facilitate its formation, the energies required
preclude their production in biological media.
A sociological study was conducted on ciliate
Spirostomum ambiguum’s capacity to learn and
store behavioural strategy advertising mating
availability in (Clark, 2010).

Tab. 1 Recent studies revealing an increased interest of using Bose-Einstein and Fermi-Dirac distributions

Subject Data Distribution Reference
Seedling emergence of downy brome, Fermi-Dirac (Prostko et
johnsongrass, and round-leaved mallow al., 1997)
The frequency of siblings occurring in the same
_ generation of a pedigree varies with the population Fermi-Dirac (Pattison, 2001)
Populations size when applied to the population of Britain
distribution
. . L. . (Uedaetal,
Disease progression on commercial citrus groves Fermi-Dirac 2010)
Intra-specific local abundances for a set North Bose-Einstein (Abades and
American breeding bird species Marquet, 2011)
A theoretical model for creating empirically measurable
cc.)herent states in vitro microtubules and QNA oligomers Bose-Einstein  (Amoroso, 1996)
using a system of modulated tuneable laser interferometer
in resonance with an applied Frohlich frequency
The binding of chloroform to bovine serum albumin s (Uedaand
. . . . Fermi-Dirac Yamanaka,
with isothermal titration calorimeter
1997)
Thermodynamics, kinetics, and quantum mechanics of the (Bieberich
primer/template duplex formation during DNA amplification by Bose-Einstein 2000) !
polymerase chain reaction: primer annealing process statistics
Str.uctural Atomic distributions as a function of the distance
biology . . R (Gomes et
. R from the molecular geometrical centre in a Fermi-Dirac
and chemistry . al., 2007)
nonredundant set of compact globular proteins
The complete base sequence of HIV-1 virus and GP120 Bose-Einstein (Valenzuela,
ENV gene: probability of runs of bases and No-bases 2009)
103 nucleotide sequences of the HIV-1 env gene, sampled from Bose-Einstein (Valenzuela
35 countries: The expected random number of fixations per site etal,2010)
miRNA expression in the prediction of target occupancy
improving the performance of two popular single miRNA
. . . . (Coronnello
target finders (rs17737058 disrupting estrogen receptor on Fermi-Dirac etal, 2012)

NCOA1; miRISC protein IP independent datasets, ranging over

three species, D. melanogaster, C. elegans and H. sapiens)
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The authors of the study shown that when
these ciliates switched from their first strategy
choices, Bose-Einstein condensation of strategy
use abruptly dissipated into a Maxwell-Boltzmann
computational phase no longer dominated by a
single fittest strategy. Recursive trial-and-error
strategy searches annealed strategy use back into
a condensed phase consistent with performance
optimization. ‘Social’ decisions performed by ci-
liates showing no non-associative learning were
largely governed by Fermi-Dirac statistics, re-
sulting in degenerate distributions of strategy
choices. Representative works reporting new
applications of Bose-Einstein and Fermi-Dirac
distributions are given in Tab.1.
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