
Supervised Evolution: Research Concerning the
Number of Evolutions that Occur Under Certain
Constraints

Lorentz J€antschi1 and Sorana D. Bolboac�a2,*

1Department of Physics & Chemistry, Technical University
of Cluj-Napoca, 103-105 Muncii Boulevard, Cluj-Napoca,
400641, Romania
2Department of Medical Informatics and Biostatistics, “Iuliu
Hat�ieganu” University of Medicine and Pharmacy Cluj-
Napoca, 6 Louis Pasteur, Cluj-Napoca, 400349, Romania
*Corresponding author: Sorana D. Bolboac�a,
sbolboaca@umfcluj.ro

It is known that evolution may lead to a new species
while adaptation may lead to a new variety. In this manu-
script, we present an analysis of the number of evolu-
tions (defined by improvement of the score associated
with an objective function of a genetic algorithm) in an
experiment supervised by a genetic algorithm, experi-
ment conducted on octan-1-ol/H20 partition coefficient
of polychlorinated biphenyls. The numbers of evolutions
resulted from 9 implemented evolution strategies were
investigated. Evolutions arisen from the first 20 000 gen-
erations coming from 46 independent runs were
recorded. A distribution analysis has been conducted
for each evolution strategy. Without exception, the Wei-
bull distribution fits well with the number of evolutions at
a significance level of 5% for any evolution strategy. Fur-
thermore, the Weibull distribution could not be rejected
when different merged samples were investigated.
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Evolution is a process which refers to populations not to
individuals and could be seen as the process that results
in heritable changes spread over generations (1). The
model of selection and fitness introduced by Darwin (1)
inspired the evolutionary processes implemented in
genetic algorithms (2,3). Numerical simulations of geneti-
cally explicit evolutionary processes could be considered
as a valuable tool for study of evolution (4–7).

Studies dealing with use of genetic algorithms in structure–
activity relationship modeling [methods able to establish

functional links between the structure of chemical com-
pounds and the associated physical–chemical properties
(SPRs) or biological activities (SARs) (8)] are reported in litera-
ture. Generally, the algorithm effectiveness (speed required to
achieve the imposed objective function), mutation, and
cross-operators have been investigated and reported (9–11),
besides identification of the optimum solution (12,13). Fur-
thermore, some studies related to genetic algorithms were
conducted regarding the correlation coefficient (14), evolution
(15), validation of number of genotypes present in the
generations when an evolution occurred (16), and assess-
ment of the distribution law for the relative moments of
evolution (17).

The aim of present research was to analyze the behavior
of number of evolutions expressed as an increase in deter-
mination coefficient of linear regression model applied to
the structure–activity relationship for the octan-1-ol/H2O
partition coefficient of polychlorinated biphenyls under
imposed selection and survival strategies of a genetic
algorithm. Exploiting the advantage of molecular descrip-
tors family as a huge population of molecular descriptors,
population of which structure is naturally constructed of
genetic type, the experiment of evolution was conducted
keeping constant all parameters excepting strategy of
selection and strategy of survival to isolate the
variability induced by the strategy. Proportional, tourna-
ment, and deterministic were used as selection and sur-
vival strategies, generating nine pairs of strategies for
evolution.

Methods and Materials

An evolution experiment supervised by a genetic algorithm
(16) using the relationships between MDF [molecular de-
scriptors family (18)] descriptors (as genetic material) and
the octan-1-ol/H2O partition coefficient of PCBs [Polychlori-
nated Biphenyls (19)] was conducted to achieve the aim of
the research. The workflow of the study is presented in
Figure 1 while details about genetic algorithm implementa-
tion could be found in (16). Three strategies (p = propor-
tional – the chance is proportional with the value of score
function; T = tournament – two genotypes randomly drawn
are the candidates for selection and the one with the
highest value of the score function is chosen; and
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D = deterministic – each time the genotypes with the higher
scores are selected) were used as both selection and sur-
vival functions, resulting in nine selection-survival strategies
investigated (TT, TD, TP, DT, DD, DP, PT, PD, and
PP). Three objective functions supervise the evolution: (i)
minimum of the determination coefficient from regressions
of a certain genotype from the sample as score for selec-
tion (r2min); (ii) ½jr2minðXjÞ � r2minðXkÞj þ NCDðXj;XkÞ=NC��0:5 as
score for survival (where Xj, Xk are genotypes, NCD is the
number of distinct genes, NC is the total number of genes
(6 in this experiment); and (iii) the determination coefficient
(r2) of the best regression with genotypes from the sample
of a generation as score for evolution.

The first letter in the selection-survival strategy refers to
the selection, while the second refers to the survival. The
selection score was defined as the highest value from the
minimum of adaptation, defined as a linear expression of
phenotypes association. The objective of this experiment
was to maximize the determination coefficient of the
regression models (evolution score).

The initial genetic sample, represented by MDF descrip-
tors, comprised 12 genotypes (descriptors). Four geno-
types were selected from the initial sample for crossover
and mutation. The mutation appears with a probability of
5% before and after crossover. As survival strategy, four
genotypes resulted after crossover and/or mutation were
selected for replacement in each generation.

The numbers of evolutions on the first 20 000 generations
obtained in 46 independent runs are presented in Table 1.
The evolution occurred whenever an improvement of the
evolution score was obtained (defined in this experiment
as improvement of determination coefficient).

The following steps were applied to analyze the number of
evolutions:

� Chi-square test on selection-survival contingency to iden-
tify if selection and/or survival strategies contribute to the
pathway of the number of evolutions (factored). The pro-
posed algorithm runs if the hypothesis of association could
not be rejected (Obsc,r = ac�br ~ Estc,r, and ΣrObs�
ΣcObs/Σc,rObs ~ Estc,r ~ (ac�br), where Obs = observed
value, Est = estimated value, a, b = factors in the contin-
gency (in this experiment one factor is represented by
selection strategy and the other factor is represented by
survival strategy); c = refers the column, r = refers the row,
ΣcObs = sum of the cth column; ΣrObs = sum of the rth

row; Σc,rObs= sample size in the contingency table (20).

� ANOVA test to identify the sources of variance (selection
strategy and/or survival strategy) in the number of evolu-
tions (21).

� Distribution analysis on the number of evolutions. A pre-
vious analysis identified that in 9 of 10 cases, the number

Figure 1: Schematic of the experimental workflow. The geometry of chemical compounds of PCBs was used as input to the
computation of MDF descriptors as independent variable (data stored in the MDF database). The linearity between dependent variable
represented by octan-1-ol/H20 partition coefficient and MDF descriptors was of interest in this study. The supervised evolution of the
regression analysis was conducted with genetic algorithm in a constrained environment with 12 genotypes in the sample. Two pairs of
two genotypes were selected for crossover and mutation (probability of 5%), and descendants competed for survival in each generation.
The algorithm runs 46 times for 20 000 generations, and the number of evolutions defined as improvement of the determination
coefficient was recorded and evaluated.

604 Chem Biol Drug Des 2013; 82: 603–611

J€antschi and Bolboac�a



of evolutions follows the Weibull distribution (22). In this
research, the maximum likelihood estimation (MLE) was
applied to obtain population’s parameter for the Weibull
distribution.

� Verify the linearity between parameters of Weibull distri-
bution. This step was introduced as dependence between
parameters of probability distribution function was previ-
ously identified (17).

� Optimize the parameters and test the agreement
between the new models and observation using Kolmogo-
rov-Smirnov (23,24), Anderson-Darling (25), and Chi-
squared (26) statistics, whenever linearity exists. Evaluate
the overall agreement of linearity with F-C-S (27).

� Compare selection strategies, survival strategies, and
selection-survival strategies in terms of differences between
speciation produced by a certain strategy and speciation pro-
duced by another strategy. For any two Weibull distributions
associated with the number of evolutions, DWeibull [Eqn (1)]
represents the positive difference of probability associated
with the j strategy relative to the k strategy, while PDWeibull
[Eqn (2)] represents the difference of the probability.

DWeibullj;kðxÞ

¼
0;Weibullðx; aj; a�aj þ bÞ � Weibull (x; ak, a�ak + b)

Weibull (x; aj, a�aj + b) - Weibull (x; ak, a�ak + b),

otherwise

8<
:

(1)

PDWeibullj;k ¼
Z1

0

DWeibullj;kðxÞ (2)

where DWeibull = positive difference of the j evolution
strategy probability relative to k evolution strategy;
PDWeibull = positive difference of probability density
function of j evolution strategy relative to k evolution
strategy; x = random variable – number of evolutions;
a = shape; a�a+b = estimated scale of Weibull distribu-
tion (under the hypothesis of linearity between shape
and scale).
Similarly, the mean difference between evolutions when j

strategy is compared with k strategy could be calculated
using the formula presented in Eqn (3).

MDWeibullj;k ¼
Z1

0

x�DWeibullj;kðxÞ (3)

where MDWeibull = mean difference of number of evolu-
tions with j and k strategies; x = random variable � number
of evolutions.
Identify the properties associated with the distribution of
number of evolutions. Three properties were of interest:
skewness, excess kurtosis, and information entropy.
The Shannon’s information entropy (28) associated
with obtained probability distribution function (Weibull
distribution) was calculated using the formula presented in
Eqn (4).

Table 1: Number of evolutions (increase in the determination coefficient) on the first 20,000 generations obtained in 46 independent runs
according to selection-survival strategy

Run TT TD TP DT DD DP PT PD PP Run TT TD TP DT DD DP PT PD PP

1 18 27 13 13 18 8 53 23 38 24 32 21 27 11 47 20 14 25 29
2 28 28 41 14 20 26 21 37 20 25 22 36 48 18 26 15 21 41 27
3 27 33 29 31 25 14 30 31 39 26 18 30 29 22 21 25 26 47 18
4 28 19 17 18 37 27 17 28 37 27 38 29 30 20 33 14 32 33 37
5 29 43 14 33 28 23 21 37 24 28 19 39 35 5 19 25 34 33 19
6 21 50 18 26 9 26 28 25 29 29 51 39 19 23 26 35 27 57 33
7 20 39 37 35 26 21 29 40 29 30 38 52 44 21 19 11 45 29 27
8 24 39 21 24 24 18 36 24 21 31 24 30 21 22 27 12 35 23 15
9 38 35 45 13 34 22 31 29 41 32 19 35 21 36 33 7 33 41 13
10 19 40 23 15 37 20 18 39 62 33 37 21 24 16 34 26 27 20 22
11 37 20 16 28 12 25 32 34 34 34 33 23 31 44 7 31 28 43 14
12 26 36 25 28 27 25 34 39 34 35 28 43 65 16 32 14 33 30 31
13 36 27 39 22 7 15 40 50 34 36 37 40 23 15 15 15 58 29 33
14 49 21 26 16 33 6 23 19 44 37 31 17 32 24 29 28 34 36 24
15 37 45 40 20 33 5 41 21 28 38 26 41 33 25 14 23 45 21 39
16 22 25 37 13 21 11 35 51 29 39 28 24 18 44 19 30 36 34 41
17 57 42 28 34 30 32 27 29 47 40 27 47 51 25 23 11 24 27 9
18 25 34 24 19 28 29 46 50 20 41 32 21 19 16 35 22 27 30 26
19 30 20 24 24 12 17 37 15 22 42 20 23 57 22 23 15 27 36 25
20 24 31 29 24 23 7 43 46 36 43 48 24 22 14 20 24 26 45 41
21 32 26 39 18 21 19 37 19 46 44 39 40 27 37 9 11 35 30 35
22 38 26 32 19 30 16 42 18 34 45 35 33 31 28 25 35 39 27 32
23 38 21 15 33 43 15 48 48 35 46 40 40 25 18 16 21 34 31 26

P, proportional; T, tournament; and D, deterministic.
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H ¼ c 1� 1

a

� �
þ In

b
a

� �
þ 1 (4)

where c = Euler-Mascheroni constant (0.57721…) (29);
a = shape; b = scale.

Results and Discussion

The first step in the analysis was to identify if there was any
association between selection and survival strategies when
the criterion was number of evolutions. The summary of
the numbers of evolutions in the contingency of selection-
survival strategies when the octan-1-ol/H2O partition coeffi-
cient of PCBs was investigated is presented in Table 2.

The results presented in Table 2 revealed that the factor-
ization hypothesis of number of evolutions as function of
selection and survival strategies could not be rejected
(p-value = 0.0651, Table 2). The ANOVA test was applied to
identify the source of variation regarding the number of
evolutions (selection and/or survival strategy) and the
results are presented in Table 3.

As could be observed from results presented in Table 3,
both selection and survival strategies proved to have a sig-
nificant influence on the number of evolutions with a higher
influence of the selection strategy. The contribution of the
survival strategy to the number of evolutions was one tenth
of the contribution of the selection strategy (see the values
of the mean squares – Table 3).

As Table 2 revealed the existence of the dependency
between selection and survival strategies, the presence of
association was explored by applying the following steps:

� (start point) It is known from previous results that evolu-
tion depends on selection and survival strategies and that
the numbers of evolutions follow the Weibull distribution
(22). Starting with this information, the population’s param-
eters for samples of paired selection or survival strategies
as well as for merged samples (selection and survival)
were calculated and are presented in Table 4. Thus, clas-
sical MLE estimates of the population characteristics [Wei-
bull shape (a) and scale (b)] were calculated for each

sample: (ai, bi)1≤i≤16, given in Table 4 (two MLE parameters
estimated for each sample).

� The linearity analysis between Weibull distribution
parameters was conducted and the hypothesis of linearity
between shape and scale could not be rejected at a signif-
icance level of 5% (b’=8.5 + 6.95�a, r2 = 0.74 – where
b’ = estimated scale, a = shape), and this linear associa-
tion was assumed for the next steps.

� (end-point) Under the supposition of the linear depen-
dence, new MLE estimates should be calculated; if (ai, bi)
are maximum likelihood estimates for Weibull (a,b) from
Obsi under assumption of independence (for i from 1 to
16) then, under assumption of dependence (b = a�a + b),
the new MLE estimates for a, b, and ai (for i from 1 to 16)
must come from:

MLER ¼
X16
i¼1

MLEi ¼
X16
i¼1

Xni
j¼1

Weibullðx; ai; a�ai þ bÞ ! max :

where MLE = maximum likelihood estimation; n = sample
size; a = shape parameter of the Weibull distribution;
a = intercept of the shape; b = intercept of simple linear
regression between shape and scale.

Table 2: Number of evolutions at the contingency of selection and survival strategies: observed values (Obs), expected values (Exp), and
Σr,c(Obs-Exp)

2/Exp

Obs _T _D _P Expa _T _D _P v2 b _T _D _P

T_ 1425 1475 1364 T_ 1441.5 1495.5 1326.9 T_ 0.2 0.3 1.0
D_ 1042 1130 897 D_ 1037.5 1076.4 955.1 D_ 0.0 2.7 3.5
P_ 1509 1520 1399 P_ 1497.0 1553.1 1378.0 P_ 0.1 0.7 0.3

T_, D_, P_ = selection strategy; _T, _D, _P = survival strategy; P, proportional; T, tournament, and D, deterministic; Obs, observed evolu-
tion; Exp, expected evolution.
a(Exp=(ΣrObs)(ΣcObs)/(Σr,cObs), r = rows, c = column).
bv2(Chi-squared test) = Σr,c(Obs-Exp)

2/Exp = 8.8; pv2(8.8,4)=6.51%.

Table 3: ANOVA test results for selection and survival strategies

Source of
variation SS df MS F-valuea p-value

Selection
strategy

366866.9 2 183433.4 140.192 0.000198

Survival
strategy

37586.89 2 18793.44 14.3632 0.014939

Error 5233.778 4 1308.444
Total 409687.6 8

SS, sum of squares; df, degrees of freedom; MS, mean squares;
F-value = Fisher’s statistics; p-value, significance; Selection: T_: m
(arithmetic mean)=1421, var(variance)=3090; D_: m = 1023,
var=13843; P_: m = 1476, var=4477; P, proportional; T, tourna-
ment; and D, deterministic; Survival: _T: m = 1325, var=61972;
_D: m = 1375, var=45525; _P: m = 1220, var = 78553.
aF critical value at 5% confidence level (equal with 6.944276).
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The shape and scale Weibull’s parameters were optimized
along with regression coefficients (we should call this com-
bined MLE). The results of the agreement analysis con-
ducted between new obtained models and observations
are presented in Table 5.

Thus, for independence (Table 4), 16 9 2 = 32 parame-
ters were estimated using MLE and, for dependence
(Table 5), only 16 + 2 = 18. From the new estimates of

the population parameters (ai, a�ai + b), statistics of the
agreement between observation and the model were cal-
culated (A-D, K-S, C-S in Table 5).

The results of combined Fisher chi-square (F-C-S) test
showed that the data follow the Weibull distribution
(v2 = 30.32, df = 48, p = 0.9783). Probability distribution
functions of investigated pairs of selection-survival strate-
gies are presented in Figures 2 and 3.

The analysis of Figure 1 reveals relatively compact groups
in populations that are not deterministic in selection.
Besides this group, the subpopulations that comprise
deterministic selection with all investigated survival strate-
gies can be observed. Similarly, Figure 2 shows a compact
group that excluded deterministic selection and propor-
tional survival strategies, while the subpopulation that com-
prises the observations from all strategies is on a median
position between the compact group and its outliers. It is
important to appreciate the difference between speciation
produced by a strategy against speciation produced by
another strategy. A measure of this difference could be
given by the difference in probabilities reported to the
higher values; this approach was applied in this study to
compare strategies. As could be seen from Figures 2 and
3, whenever such a difference exists it represents the
difference of probability relative to the higher values.

Distinct properties of Weibull distribution for number of
evolutions have been identified as functions of shape
parameter, and the results are presented in Figures 3–5.

The linearity between shape and scale allowed to estimate
the skewness and excess kurtosis for any selection and

Table 4: Weibull population’s parameter from samples of paired
selection and survival strategies and from merged samples

No (i) Strategy ni Weibullðx; a; bÞ ¼ a
b

x
b

� �a�1
� exp �

�
x
b

�a� �

1 TT 46 Weibull (x; 4.0192, 33.524)
2 TD 46 Weibull (x; 3.9073, 34.947)
3 TP 46 Weibull (x; 3.2206, 32.182)
4 DT 46 Weibull (x; 2.8911, 25.01)
5 DD 46 Weibull (x; 2.6152, 27.349)
6 DP 46 Weibull (x; 2.4423, 21.771)
7 PT 46 Weibull (x; 4.0584, 35.527)
8 PD 46 Weibull (x; 3.7579, 35.967)
9 PP 46 Weibull (x; 3.2433, 33.27)

10 T_ 138 Weibull (x; 3.7631, 33.889)
11 D_ 138 Weibull (x; 2.7172, 24.853)
12 P_ 138 Weibull (x; 3.7449, 35.27)
13 _T 138 Weibull (x; 3.2447, 31.937)
14 _D 138 Weibull (x; 3.1577, 33.249)
15 _P 138 Weibull (x; 2.6709, 29.544)
16 __ 414 Weibull (x; 3.0274, 31.693)

Stra = strategy; n = sample size; __=∑(all observations from both
complete and incomplete selection-survival strategies); – observa-
tion independent by strategy; x = random variable – number of
evolutions; a = shape; b = scale; P, proportional; T, tournament;
and D, deterministic.

Table 5: Statistics of agreements for optimized shape and scale Weibull parameters from combined MLE

Stra

Weibull (x, a, b’) Kolmogorov-Smirnov Anderson-Darling Chi-Squared

a b’ Stat p-value Stat p-value Stat (df) p-value

TT 3.46 34.42 0.11413 0.5486 0.75038 0.4329 1.3325 (3) 0.7214
TD 3.61 35.68 0.09594 0.7550 0.56791 0.5363 2.3273 (4) 0.6758
TP 3.25 32.69 0.09481 0.7673 0.82647 0.3954 2.9440 (5) 0.7086
DT 2.49 26.20 0.12812 0.4030 0.92734 0.3502 5.5181 (4) 0.2381
DD 2.69 27.96 0.08054 0.9031 0.33530 0.6985 2.6045 (5) 0.7607
DP 2.16 23.47 0.11331 0.5577 0.84605 0.3862 5.9434 (4) 0.2034
PT 3.67 36.23 0.10038 0.7052 0.40711 0.6445 4.0939 (4) 0.3935
PD 3.72 36.66 0.10689 0.6306 0.42194 0.6338 1.7556 (5) 0.8818
PP 3.37 33.73 0.06154 0.9906 0.18747 0.8214 0.1631 (5) 0.9995
T_ 3.44 34.26 0.07783 0.3549 1.21300 0.2468 9.9073 (7) 0.1939
D_ 2.43 25.74 0.07629 0.3790 0.97770 0.3294 5.0953 (7) 0.6483
P_ 3.60 35.61 0.06371 0.6068 0.46426 0.6041 3.8776 (7) 0.7938
_T 3.18 32.08 0.07338 0.4270 0.51944 0.5671 9.5454 (7) 0.2158
_D 3.32 33.25 0.05651 0.7484 0.47152 0.5991 4.9757 (7) 0.6629
_P 2.84 29.15 0.04054 0.9703 0.46618 0.6027 5.3000 (7) 0.6234
__ 3.12 31.56 0.04364 0.3983 0.90044 0.3618 6.6673 (8) 0.5729

Stra = strategy, Stat = statistics; p-value = probability; df = degrees of freedom; x = random variable – number of evolutions; a = shape;
b’ = estimated scale (b’ = 8.5 + 6.95�a); P, proportional; T, tournament; and D, deterministic.
Probability of observation equal to 97.83%.
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survival strategy as the dependencies had determination
coefficients so closed to the perfect model (Figures 4 and
5). Furthermore, Figures 4 and 5 give an analytical relation-
ship with a determination of 99% of exponential type
(Figure 4) and respectively of rational type (Figure 5).

Exponential as well as rational functions are common in
process modeling; it is not a surprise that we found them
here. For example, the process of drug diffusion on the
water proved exponential, (30) while rational function
proved its usefulness in numerical simulation of stroke
(31). Likewise, it also happens for entropy, when the
entropy could be seen as a function of shape parameter
of the Weibull distribution (Figure 6). The models for skew-
ness and excess kurtosis as third-degree polynomial func-

tions are not very useful because any process modeling
proved up to now to follow this kind of functions.

In summary, the primary research aim has been achieved
by identifying the behavior of number of evolutions under
certain conditions and restrictions. It has been identified
that the number of evolutions when the study was con-
ducted on the octan-1-ol/H2O partition coefficient of PCBs
depends by both selection and survival strategy. The
selection strategy proved to have a more significant influ-
ence in the number of evolutions supervised by genetic
algorithms. The probability distribution function of the num-
ber of evolutions was already known as following a Weibull
distribution. Furthermore, the scale and shape parame-
ters of the Weibull distribution proved linearly related.

Figure 2: Weibull probability densities for evolution according to complete selection-survival strategies. The lines represent the Weibull
probability distribution associated with the number of evolutions (defined as increase in determination coefficient of linear regression
models) for all possible pairs of selection-survival strategy (where p = proportional, T = tournament, and D = deterministic). The selection-
survival strategies that are deterministic in selection are quite different for all other selection-survival strategies. The deterministic selection
strategy led to reaching the maximum number of evolutions earlier compared with other strategies. Other two groups of selection-survival
strategies could be identified, the one resulted from the combination of tournament and proportional strategies (PP, TP, and TT) and the
other form as a combination of all implemented strategies (TP, PT, and PD).

Figure 3: Weibull probability densities for evolution according to incomplete selection or survival strategies (where p = proportional,
T = tournament, and D = deterministic) in context of extreme complete strategies (DP and PD). The behavior of probability distribution
function associated with evolutions of incomplete strategies is presented in the boundaries of two extreme complete distribution functions
represented by DP and PD. Two distinct behaviors could be observed near the left-hand boundary, one with deterministic selection, and
the other one with proportional survival.
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Based on this information, the population’s parameters for
full and partial selection-survival strategies, where full
selection-survival strategy implied the presence of both
strategies while partial selection-survival strategies implied
the presence of selection or survival strategy, had been
calculated. Distinct pattern of Weibull probability densities
for evolution was identified for both full and partial
selection-survival strategies: (i) relatively compact groups
of populations that are not deterministic in selection for
complete selection-survival strategies; (ii) distinct behavior
with deterministic selection; (iii) distinct behavior with pro-
portional selection. There are significant ramifications of
these findings. The number of evolutions proved follows a
natural process because the Weibull modeled natural pro-
cesses (32) such as wind energy potential (33,34) and
microbial survival (35). Moreover, their probability distribu-

tion function could be defined by one unknown parameter.
All complete selection-survival strategies that comprise
deterministic selection had distinct behavior compared
with all other selection-survival strategies. This behavior
consists on an earlier attainment of the maximum number
of evolutions. Therefore, deterministic selection strategy is
recommended when it is desirable to obtain the maximum
number of evolutions in a shorter time. Moreover, two
main properties of Weibull distribution for number of evolu-
tions were identified: exponential function of skewness as
function of shape and rational function of excess kurtosis
as function of shape.

This study showed distinct behavior in the number of evo-
lutions in the QSAR on octan-1-ol/H2O partition coefficient
of PCBs according to selection and/or survival strategies.
We hope that the results obtained in this study are extend-
able to other cases. The most important result pointed out
in this study is related with the degrees of freedom of the
supervised evolution. Surprisingly or not, our results
revealed the existence of only one independent parameter
that characterizes an evolution supervised in a certain
strategy. The possibility of translating the experimental set-
ting proposed here should be explored for certain pure
biological processes of supervised evolution. Furthermore,
ongoing studies in our laboratory aim to analyze whether
the results obtained in this study could be generalized on
number of evolutions for quantitative structure–activity rela-
tionships using the same conditions of genetic algorithm
regardless the type of investigated compounds or regard-
less the sample size.

Conclusions

The number of evolutions expressed as increase in deter-
mination coefficient of linear regression model applied to
the structure–activity relationship on the octan-1-ol/H2O
partition coefficient of polychlorinated biphenyls proved

Figure 4: Dist skewness as function of shape. The exponential
function with shape of the Weibull probability density function (x)
as independent variable fits 99% of the skewness. The numerical
values in the round brackets are the amount that must be
subtracted and added to obtained the confidence level of the
associated value.

Figure 5: Dist excess kurt as function of shape. The exponential
function with shape of the Weibull probability density function (x)
as independent variable fits more than 99% of the excess
kurtosis. The numerical values in the round brackets are the
amount that must be subtract and add to obtain the confidence
level of the associated value.

Figure 6: Entropy as function of shape. A third-degree
polynomial function explains the entropy as function of shape
parameter associated with Weibull probability density function (x),
with a fit more than 99%.
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significantly influenced by both genetic algorithm selection
and survival strategy with a higher significant influence of
selection strategy. Whenever reaching the maximum num-
ber of evolution in a shorter time is desired, a deterministic
selection strategy is needed.

The analysis of distribution showed that the number of
evolutions in a certain time frame of a system under con-
strained evolution comes from the Weibull distribution in
which it is very likely (we found over 74% determination in
the initial seek for linear association) to be only one inde-
pendent statistical parameter. This parameter shapes the
distribution and better supervising strategy applies when
higher value is obtained.

From the pair of selection-survival strategies included in
the study, we found that the highest value of the Weibull
distribution shape parameter for the number of evolutions
occurs when the proportional selection is associated with
deterministic survival. On the opposite, the smallest num-
ber of evolutions is most likely to be observed when the
evolution is supervised by deterministic selection and pro-
portional survival.
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