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Abstract—Quantitative structure-activity 
relationships are mathematical models constructed 
based on the hypothesis that structure of chemical 
compounds is related to their biological activity. A 
linear regression model is often used to estimate 
and predict the nature of the relationships between 
a measured activity and some measure or 
calculated descriptors. Linear regression helps to 
answer main three questions: does the biological 
activity depend on structure information; if so, the 
nature of the relationship is linear; and if yes, how 
good is the model in prediction of the biological 
activity of new compounds. This manuscript 
presents the steps on linear regression analysis 
moving from theoretical knowledge to an example 
conducted on sets of endocrine disrupting 
chemicals.  

Keywords-robust regression; validation; 
diagnostic; predictive power; quantitative structure-
activity relationships (QSARs) 

I.  BRIEF HISTORY OF LINEAR REGRESSION 
Linear regression analysis is used in life science 

researches to describe the strength of the association 
between outcome and factors of interest, to adjust data 
for covariates or co-founders, to identify predictors 
(factors that affect the outcome) and/or to predict the 
outcome [1]. 

It could be considered that Sir Francis Galton 
provided the initial inspiration that led to correlation 
and regression. The fundamentals of correlation were 
discussed by Bravais [2] who presented the correlation 
of two and three variables. Galton improved notation as 
"Galton function" of correlation coefficient (r); this 
function could be found in Bravais' work but not as a 
single symbol. Edgeworth indicated in 1892 how to 
extend the Bravais' method to higher degree of 

correlation [3] and expressed his results in terms of 
"Galton's function". 

Galton used regression to understand heredity and 
suggested a slope of 0.33 that showed the relationships 
between extremely large or small mother peas seed and 
their less extreme daughter seeds [4,5]. Galton seems to 
build the regression analysis based on the work of 
Adolphe Quetelet who is known to be the first 
scientists that applied in a systematically way a 
statistical methods to human [6]. Furthermore, Quetelet 
showed normal distributions in diverse aggregated data 
[6]. 

Galton was able to fit all data in a single line and he 
abbreviated the slope of this line as "r" [7], later this 
symbol being use to stand for correlation coefficient 
[8]. Pearson demonstrated in 1896 that optimum values 
of slope and correlation coefficient could be calculated 
from the product-moment [8]. On the same time, 
George Yule refined regression analysis [9], [10], [11], 
solving his regression problem by minimizing the sum 
of squares error [9,10], method that was presented for 
the first time by Legendre in 1805 [12]. 

II. LINEAR REGRESSION ON QSAR ANALYSIS 
Quantitative structure-activity relationships 

(QSARs) are mathematical models linking chemical 
structure and pharmacological activity/property in a 
quantitative manner for a series of compounds [13]. 
The approaches are based on the assumption that the 
structure of chemical compounds (such as geometric, 
topologic, steric, electronic properties, etc.) contains 
features responsible for its physical, chemical and/or 
biological properties [14]. This assumption could be 
summarized as "similar compounds have similar 
properties" [15]. 

The two main fields were linear regression analysis 
found its applicability are drug discovery [16], [17] and 
toxicology prediction [18], [19]. In both of these fields, 
the linear regression is used mainly to predict not to 
estimate (the model is used to quickly determine the 



activity/property of new/un-investigated compounds) 
[20]. 

The linear regression is used in QSAR analysis to 
linearly link the activity/property of chemical 
compounds (measured or observed value - outcome 
variable abbreviated as Y) and some values translated 
from the structure of the compounds and generally 
called descriptors (assumed error non-affected 
independent variables abbreviated as X(s)). The 
multiple linear regression (MLR) expression is 
presented in Eq(1): 

  (1) εXbb Ŷ
k

1i
ii0 ++= ∑

=

where Ŷ = estimated activity/property; b0 = intercept; bi 
= coefficient of the ith variable (1 ≤ i ≤ k, 5×k ≤ n [21], 
where k = number of descriptors (independent 
variables) in the model, n = number of observations in 
the sample) and represents the slope of the straight-line 
relationship between activity/property and 
descriptor(s), the amount Y changes when X increased 
or decreased by 1 unit (b0 and b1 estimate the 
population parameters β0 and βi), and ε = random error. 
The identified values of b0 and bi are calculated to 
minimize the squared error for all n observations. 
However, the model could looks different if the values 
are obtained under other hypotheses like: maximization 

of r-value, maximization of F-value, minimization of p-
value associated to the F-value, maximization of t-
values of bi or minimization of their p-values. 
 

A. Linear Regression Assumptions 
The main assumptions of linear regression (Table 1) 

could be summarized as: 
1. Linearity. The relation between Y and each of 

descriptors Xi are linear. 
2. Independence of the errors. Both the experimental 

values (Y) and experimental/calculated descriptors (Xi) 
are measured without errors. 

3. Homoscedasticity. The variance of the errors is 
constant.  

4. Normality. The dependent variable (Y) is normal 
distributed. 

5. Absence of multicolinearity. The independent 
variables (Xi) are linearly independent of each other. 
Please note that this constrain did not exclude a certain 
degree of collinearity. 

Since it has been recognized that "normal law ... is 
not valid in a great many cases which are both 
common and important" [10] a series of transformation 
could be used to reach normal distribution [35] (see 
Table 2). 

 

TABLE I.  ASSUMPTIONS OF LINEAR REGRESSION: EFFECT - IDENTIFICATION - METHODS. 

Assumption What is the effect? How to detect it? How to fix it? 
Normality Unreliable coefficients 

and confidence 
intervals 

Plot: normal probability plot 
Statistics: skewness & kurtosis [22] 
Testc: Kolmogorov-Smirnov [23], [24], 
Anderson-Darling [25], Chi-Squared [26]; 
Shapiro-Wilks test [27] (n < 50) 

Identify and withdrawn the outliers 
(if any) - Grubs test [28] 

Linearity Estimations and 
predictions are in error  

Plot  
 observed vs estimated values 
 residuals versus estimated values 

Transformation  
(see Table 2) 

Independence Important in models 
where time is 
important 

Plot: autocorelation plot of residuals 
Test: Durbin-Watson a [29], [30]. If no 
autocorrelation exists in the sample DW ~ 2 

D-W < 1.00 → structural problem 
→ reconsider the transformation 
(if any). 
Add more independent variables. 

Homoscedasticity Too wide or too 
narrow confidence 
intervals 

Plot (pattern of errors): residuals vs predicted 
value 
Test: Breusch-Paganb [31], Bartlett [32], 
Levene [33] 

Use different variables. 
Use Generalized Least Square 

Collinearity 
(independent variables) 

Predictors are related to 
each other 

 Correlation matrix: r ≥ 0.80 or 0.90 indicates 
collinearity [34] 

 VIF ≥ 10 and/or T(tolerance) < 0.01 
indicates the existence of collinearity [34] 

Remove the variable that is 
correlated with others 
Be aware that collinearity is not 
bad all time 

a the errors are serially uncorrelated; WD ∈ [0, 4], DW = 2 → no autocorrelation; b the variance of the residuals is the same for all values of Y; c EasyFit program uses it to 
test the normality of Y;  



TABLE II.  METHODS FOR DATA TRANSFORMATION 

Transformation Formula Applied to: Appropriate when: 
log Y' = logY  stabilize the variance of Y 

 normalized the dependent variable ← positive skewed distribution of 
the residuals for Y 

 linearize the regression model 

Y have positive values 

square root Y' = √Y  stabilize the variance (the variance is proportional with the mean of 
Y) 

Y has the Poisson distribution 

reciprocal Y' = 1/Y  stabilize the variance the variance is proportional to 
the fourth power of the mean 
of Y 

square Y' = Y2  stabilize the variance (the variance decrease with the mean of Y) 
 normalized the dependent variable ← negative skewed distribution 

of the residuals for Y 
 linearize the regression model ← the original relation with some 

independent variable is curvilinear downward (such as decrease of 
slope with the increase of independent variable) 

 

arcsine Y' = 
asin√Y 

 stabilize the variance Y is a proportion or a 
percentage 

 

B. Model Selection and Diagnostic 
Selection of the regression model is an important task 

that researchers must to accomplish. The main criteria 
useful in this step are: 

• Determination coefficient (R2) and its adjustment 
form (R2

adj - R2 adjusted with the number of 
coefficients in the model → the value will not 
necessary increase with the addition of Xs). 
Generally, the R2 increase with the number of 
parameters in the model but R2

adj penalizes 
according to the number of parameters (the model 
with higher number of predictors does not 
necessary has the higher value of R2

adj). 
• Standard error of the estimate: the average error 

predicting the activity/property of interest by the 
identified model. 

• Statistics of overall model performances (F-value 
and associated p-value): assess the overall ability 
of a model to explain as much as possible from the 
observed variability in Y.  

• Models performances in leave-one-out analysis. It 
is say that a model with Q2 (determination 
coefficient in leave-one-out analysis) > 0.6 and 
|R2-Q2| < 0.1 is a desired model in QSAR analysis 
[36]. However, the value of F-statistics and its 
associated probability are as important as Q2 in 
assessment of internal validation of a QSAR 
model. 

The diagnosis of a regression model when the 
dependent variable is continuous could be conducted by 
analyzing of residuals.  

a) Look to the five largest and five smallest values ← 
detect if the values are in the plausible range. Also 
look to descriptive statistics value: mean, standard 
deviation ± histogram. 

b) Plot the independent variable(s) vs dependent 
variable. 

c) Plot the values associated to studentized residuals (si), 
leverage (hi), Cook's (Di) vs individual Xi values. The 
hat values (0 ≤ hi ≤ 1) are used to evaluate the leverage 
of observations in the dimensional space of 
independent variables (covariates). If the hi value of a 
compound exceeds the threshold value (2·(k+1)/n for 
a regression model with intercept and 2·k/n for a 
model without intercept, where k = number of Xi [37]) 
it is considered influential whenever if by its removal 
determine a significant improvement of the model. 
Cook's distance consider in its formula both residuals 
and hat matrix to identify influential compound(s) 
(threshold Di > 4/n, where Di = 1/(k+1) ·si

2·[hi/(1-hi)] 
for the model with intercept and Di = 1/k·si

2·[hi/(1-hi)] 
for the model without intercept, si =  studentized 
residuals [38]). 

d) Mallows’ Cp-statistic (Cp = SSres/MSres - n + 2*(k+1), k 
= number of dependent variables in the model) [39], 
[40], [41]: measures the overall bias or mean square 
error in the estimated model parameters. This is a 
useful parameter when models with different X(s) are 
compared on the same sample of compounds. A low 
Cp value indicates good model prediction or a model 
with a small positive/negative discrepancy between Cp 
and (k+1) - could be used in evaluating candidate 
regression models.  



e) Akaike’s information criterion and derivative 
formulas: assess the degree of fit by involving the 
goodness-of-fit of the model (R2): Akaike information 
criterion (AIC = n·ln(RSS)/n + 2·k, where n = sample 
size, RSS = residual sum of squares; k = number of 
parameters in the model) [42]; AIC based on the 
determination coefficient (AICR2 = ln[(1-R2)/n] + 2·k); 
McQuarrie and Tsai corrected AIC (AICu = ln[RSS/(n-
k)] + (n+k)/(n-k-2)) [43]; Bayesian Information 
Criterion (BIC = n·ln[RSS/(n-k)] + k·ln(n)) [44]; 
Amemiya Prediction Criterion (APC = RSS/n·(n-
k)/(n+k)) [45]; Hannan-Quinn Criterion (HQC = 
n·ln(RSS/n) + 2·k·ln[ln(n)] [46]. The smallest the AIC, 
BIC, APC and HQC values are the better the model is 
considered. In addition to AIC values, the Akaike 
weights are also used in models assessment: wi = 
[exp(-0.5·∆i)/[∑j=1

Jexp(-0.5·∆j)]] [47] where ∆i = AICi 
– min(AIC), ∆i = difference between the AIC of the 
best fitting model and that of the model ith, min(AIC) = 

minimum AIC value out of all models, j = the number 
of the models. 

f) Kubinyi function (FIT) [48], [49]: FIT = [R2·(n-k-
1)]/[(n+k2)·(1-R2)]. The highest the FIT value the 
better the model is considered. 

Other parameters that can found their usefulness in 
diagnosis of a MLR are presented in Table 3. Several 
parameters presented in Table 3 are also used by some 
authors as measures of model predictivity power (see for 
example MAE [50]). 

 

C. Model Predictive Power 
The ability to predict the activity/property of new 

compounds is of major importance in QSAR/QSPR 
analysis. Several parameters were proposed and are used 
to assess model predictivity power and are presented in 
Table 4. 

 
 

TABLE III.  OTHER STATISTICAL PARAMETERS FOR DIAGNOSIS OF MLR. 
Parameter (Abbreviation) Formula [ref] Remarks 

Residual Mean Square (RMS) 
- Error variance kn

)ŷy(
RMS

n

1i
2

ii

−

−
= ∑ =  RMS: the smaller the better 

0 < RMS < ∞ 

Average Prediction Variance (APV) )kn(
n

RMSAPV +⋅=  [51] The smaller the better 

Total Squared Error (TSE)  
nk2

ˆ
)ŷy(

TSE
2

n

1i
2

ii −⋅+
σ

−
=

∑ =  [52] 

2)k2n(
MSE
SSETSE +⋅−−=  [39] 

The smaller the better 
TSE > (k+1) → bias due to incompletely 
specified model 
TSE< (k+1) → the model is over specified 
(contains too many variables)  

Average Prediction Mean Squared Error 
(APMSE) 1kn

RMSAPMSE =
− −

[53] The smaller the better 

Mean Absolute Error (MAE) 
- Measures the average magnitude of the 
errors; could be also used to compare two 
models 

n
|ŷy|

MAE
n

1i ii∑ =
−

=  MAE = 0 → perfect accuracy 
0 < MAE < ∞ 

Root Mean Square Error (RMSE): 
- Measures the average magnitude of the 
error 

( )
n

ŷy
RMSE

n

1i
2

ii∑ =
−

=  
RMSE > MAE → variation in the errors 
exists 
0 < RMSE < ∞ 

Mean Absolute Percentage Error (MAPE) 
- Measure of accuracy expressed as 
percentage 

n
|y/)ŷy(|

MAPE
n

1i iii∑ =
−

=  [54], 

[55] 
MAPE ~ 0 → perfect fit 

Standard Error of Prediction (SEP) ( )
1n

yŷ
SEP

n

1i
2

ii

−

−
=

∑ =  The smaller the better 

Relative Error of Prediction (REP%) ( )
n

yŷ
y

100(%)REP
n

1i
2

ii∑ =
−

=  The smaller the better 

n = sample size; k = number of independent variables in the model; y = the mean of estimated/predicted activity/property; iŷ  = predicted value of the ith compound 
in the sample; yi = observed/measured activity/property of ith compound; SSE = sum of squared errors; MSE = mean of squared errors 



TABLE IV.  STATISTICS FOR ASSESSMENT THE PREDICTIVE POWER OF MLR. 

Parameter (Abbreviation) Formula [ref] Remarks 

Predictive Squared Correlation Coefficient 
in Training Set (QF1

2) ∑
∑

=

=

−

−
−=

TS

TS

1 n

1i
2

TRi

n

1i
2

ii2
F

)yy(

)yŷ(
1Q  [56] 

Predictive Squared Correlation Coefficient 
in Test Set (QF2

2) ∑
∑

=

=

−

−
−=

TS

TS

2 n

1i
2

TSi

n

1i
2

ii2
F

)yy(

)yŷ(
1Q  [58] 

External Predictive Ability (QF3
2) 

TR
n

1i
2

TRi

TS
n

1i
2

ii2
F

n/)yy(

n/)yŷ(
1Q

TS

TS

3 ∑
∑

=

=

−

−
−=  [59] 

Prediction is considered accurate if the 
predictive power of the model is > 0.6 [57] 

Predictive Power (PP): Fisher's approach TSTS

TS

n/)res(stdev
0rest −

=  [60] 

p = TDIST(abs(t),nTS-1,1) 

Evaluate if the mean of residual is statistically 
different by the expected value (0)  

n = sample size; v = number of independent variables in the model; y = the mean of estimated/predicted activity/property; 
iŷ  = 

predicted value of the ith compound in the sample; yi = observed/measured activity/property of ith compound; res= mean of residuals; 
stdev = standard deviation; TR = training set; TS = test set; EXT = external set; abs = absolute value 

 
The diagnosis of a linear regression model could be 

conducted using a series of statistical parameters 
calculated on contingency table [61] whenever 
classification of compounds activity is useful. The total 
fraction of compounds correctly classified (parameter 
called concordance / accuracy / non-error rate) is one 
parameter that could bring useful information in choosing 
which model to be applied. 

III. PRACTICAL CONSIDERATIONS 
Three data sets of endocrine disrupting chemicals with 

experimental values of relative binding affinity expressed 
in logarithmic scale (logRBA) [62] were used for 
exemplification. The investigated compounds could be 
classified according to their logRBA values as weak 
binders (logRBA < -2.0), moderate binders (-2.0 ≤ 
logRBA ≤ 0) and strong binders (logRBA > 0) [63]. The 
following descriptors were previously calculated on the 
investigated structures [62] and were used here to illustrate 
how linear regression analysis works: TIE = E-state 
topological parameter; TIC1 = Total information content 
index (neighbourhood symmetry of 1-order); ATS4m = 
Broto-Moreau autocorrelation of a topological structure - 
lag 4 / weighted by atomic masses; EEig02d = Eigenvalue 
02 from edge adj. matrix weighted by dipole moments;  
E1s = 1st component accessibility directional WHIM 
index / weighted by atomic electrotopological states; and 
Dv = total accessibility index / weighted by atomic van der 
Waals volumes.  

The first set was used to identify the model and 
comprised 132 compounds (training set; 1 withdrawn, 60 
weak binders, 41 moderate binders and 30 strong binders). 
The second dataset was used to test the performances of 
the model (test set) and comprised 23 compounds (3 weak 

binders, 16 moderate binders and 4 strong binders). The 
third dataset was used as external validation set and 
consists of 9 compounds (4 weak binders and 5 moderate 
binders).  

A. MLR in Training Sets 
The first step in the linear regression analysis was to 

investigate the distribution of independent variable 
(logRBA) in training set. One out of three tests rejected 
the null hypothesis of normality (Chi-Squared statistics 
= 14.862, p-value = 0.03781). No outlier had been 
identified when the Grubb’s test was applied but there 
was one compound with studentized residuals higher 
than 3 standard deviations, compound which was 
withdrawn. The experimental data in training test 
proved not normal distributed according to Chi-
Squared test, the normality test that is known to be 
affected by the presence of outlier(s) [22], even if in 
this example no outlier has been identified. The 
normality was not achieved even by withdrawing that 
compounds but the correlation coefficient increased 
from 0.810 to 0.837. The studentized residuals, hat 
matrix and Cook's distance values were plotted against 
logRBA to identify how data were distributed (Figure 
1). 

The Cook's distance and hat matrix approaches 
were applied to withdrawn compounds of the training 
sample until two criteria were accomplished: logRBA 
proved normal distributed and withdrawing the 
compound(s) did not led to an improvement in 
determination coefficient. The characteristics of the 
obtained models are presented in Table 5.  
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Figure 1.  Studentized residuals (a), Cook's distance (b) and hat matrix values (c) versus logRBA in model with all 

compounds in training set (n=132). 

The analysis of the models (Table 5) revealed that 
none model proved collinearity (the highest correlation 
coefficient did not exceeded 0.8). As an overall 
classification, it could be say that the Di-model is the 
first best model and it is followed by the hi-model. The 
Di-model is twice better in terms of internal validity 
when the |R2-Q2| difference is evaluated compared to 
hi-model and three times better compared to the full-

model. The Mallows’ Cp-statistic did not found its 
applicability in our example because the same 
descriptors are used in all models. The classification of 
the models according to information criteria led to the 
same order as previous: Di-mode as the first best, hi-
model as the second best and full-model as the last 
best.  

 

TABLE V.  MLR IN TRAINING SETS: MODELS CHARACTERISTICS. 

Statistical parameter Full-model (n=132) Di-model (n=115)a hi-model (n=123)b 
Normality tests: KS-AD-CS 0.116* - 2.409* - 14.862** 0.124* - 2.432* - 12.613* 0.120* - 2.428* - 12.083* 
Durbin-Watson 1.275 1.292 1.263 
Collinearity: highest R  
higher VIF & lower T 

0.7700 
TIE: 3.367& 0.297 

0.7889 
ATS4m: 4.082&0.245 

0.7752 
ATS4m: 4.516&0.221 

R2 0.6559 0.7797 0.6928 
R2

adj 0.6394 0.7675 0.6769 
sest 1.0701 0.8293 0.9977 
F-value (p-value) 39.711 (9.89·10-27) 63.721 (3.12·10-33) 43.59 (1.62·10-27) 
Q2 0.5832 0.7543 0.6497 
sloo 1.1827 0.8764 1.0668 
Floo-value (p-value) 28.74 (9.49·10-22) 55.17 (1.85·10-31) (1.62·10-27) 
|R2-Q2| 0.0727 0.0254 0.0431 
Cp-statistic 7.00 7.00 7.00 
AIC (wi-AIC) 18.9639 (0.2856) 18.3078 (0.3965) 18.7490 (0.3180) 
AICR2 (wi- AICR2) 8.0504 (0.3137) 7.7421 (0.3659) 8.0077 (0.3204) 
AICc (wi- AICc) 1.2657 (0.2990) 0.7766 (0.3819) 1.1358 (0.3191) 
BIC 52.0750 9.8317† 33.1255 
HQC 26.2887 34.7113† 7.8043 
FIT 1.3058 2.3097 1.5076 
* p ≥0.05; ** p = 0.0378; † = absolute values; KS = Kolmogorow-Smirnov; AD = Anderson Darling; CS = Chi-Squared; R = correlation coefficient; VIF = 
Variance Inflation Factor; T = tolerance;  R2 = determination coefficient; R2

adj = adjusted determination coefficient; sest = standard error of the estimate; F-value = 
Fisher's statistics; Q2 = determination coefficient in leave-one-out analysis; sloo = standard error of the predict; Cp-statistic = Mallows’ statistic; AIC = Akaike’s 
information criterion; AICR2 = AIC based on the determination coefficient; AICc = AIC corrected by McQuarrie and Tsai; BIC = Bayesian Information Criterion; 
HQC = Hannan-Quinn Criterion; FIT = Kubinyi's function; 
a 56 weak binders, 35 moderate binders, and 24 strong binders; withdrawn (16 compounds): 4 weak binders, 6 moderate binders and 6 strong binders; 
b 57 weak binders, 38 moderate binders, and 28 strong binders; withdrawn (8 compounds): 3 weak binders, 3 moderate binders and 2 strong binders; 

 



Looking to the weights of Akaike's information 
criteria, which can be interpreted as probability that a 
certain model is the best model, it could not be identify 
any model with robust inference (none of the model 
had the values of weights higher than 0.9 [64]). The 
first best model had the weights around 0.37 that is far 
away from 0.90 but are a little higher than those 
obtained by the full model where the weights are 
around 0.30 or by those obtained by the hi-model 
which are around 0.32. Recall that the Di-model is the 
preferred model and from the inspection of the Akaike 
weights in Table 5, this model is 1.2 (wi-AICR2) to 1.4 

(wi-AICc) times more likely the best model in terms of 
Kullback-Leible discrepancy, a measure of distance 
between the probability generated by the model and 
reality [65], that is the second-best model hi. 

Significant differences between models could also 
been observed if the BIC and HQC parameters are 
analyzed; the smallest value of BIG identified the Di-
model as first best while the smallest value of HQC 
sustain the hi-model as the first best model. 

The plots of residuals versus predicted values for 
the investigated models are presented in Figure 2.

 

  

  

  
Figure 2.  Scatter plots of residuals versus estimated logRBA by full model, Cook's distance (Di) model and hat 

matrix leverage (hi) model and associated normal probability plots. 



The analyses of residuals allow to identify if the 
assumptions of the regression appear to have been met 
or not (specifically linearity and homoscedascity) - the 
residual plot look like a horizontal band. Thus, 
according to the pattern of the residuals, the most 
appropriate model is the Di-model since the distribution 
indicates an unbiased and homoscedastic model. 
Furthermore, both full-model and hi-model showed 
clear evidence of heteroscedascity, the error in 
estimating logRBA increasing as the value of logRBA 
increase. However, even if both models showed 
heteroscedascity could be accepted because none of 
them show the presence of systematic errors or 
inadequacy. If assumption of linearity and/or of 
homoscedascity is violated, the residual plots show an 
increasing and narrow pattern if systematic error exists 
or depict a Gaussian trend when the model is 
inadequate [66]. Other proposed plot methods, such as 
linear residual plots, show to be useful in identification 
of non-linearity while squared residual plots proved 
utility in detection of non-constant variances [67]. 

As far as the normality is concern, in none of the 
cases the normal probability plot is far away from a 
straight line but the hi-model fit better a straight line 
compared to both full-model and Di-model. 

The results obtained on our data associated to the 
statistical parameters useful in model diagnosis 
introduced in Table 3 are presented in Table 6. 

The total square error is the single parameter that 
has the same value for all models and in all cases is 
equal to the sum between number of independent 
variables in the model (in our example 6) and 1, 
indicating that none of the models were not over-
specified or did not contain bias due to incompletely 
specified model. The classification of our models based 
on parameters presented in Table 6 led to the 
classification obtained according to the parameters 
presented in Table 5: Di-model the first best, hi-model 
the second best and full model the last. 

Four parameters were used to assess the predictive 
power of the models and their results are presented in 
Table 7. The analysis of results presented in Table 7 
revealed the followings: 

• External predictive ability parameter (QF3
2) [59] 

systematically took negative values for both 
external and withdrawn sets. At least for the 
external set, this result could be explained by 
the distribution of logRBA values (min=-3.3, 
max=-0.6) compared to training (min=-4.5, 
max=2.6) and test (min=-2.51, max=1.41) sets. 
It could be also of interest to analyze how 
different are the compounds containing in 
external and withdrawn data sets compared to 
the compounds from training set. 

TABLE VI.  MLR IN TRAINING SETS: OTHER STATISTICAL PARAMETERS FOR DIAGNOSIS OF LRM 
Parameter (Abbreviation) Full-model (n=132) Di-model (n=115) hi-model (n=123)
Residual Mean Square (RMS) 1.1361 0.6815 0.9870 
Average Prediction Variance (APV) 1.1877 0.7170 1.0351 
Total Squared Error (TSE)  7.0000 7.0000 7.0000 
Average Prediction Mean Squared Error (APMSE) 0.0091 0.0063 0.0085 
Mean Absolute Error (MAE) 0.8356 0.6812 0.7827 
Root Mean Square Error (RMSE): 1.0414 0.8037 0.9689 
Mean Absolute Percentage Error (MAPE) 1.3033 1.0797 1.1649 
Standard Error of Prediction (SEP) 1.0453 0.8072 0.9729 
Relative Error of Prediction (REP%) 73.9756 58.0395 70.9144 

 

TABLE VII.  RESULTS REGARDING THE PREDICTIVE POWER OF THE MODELS 
Full-model (n=132) Di-model (n=115) hi-model (n=123) Criterion testa externalb testa externalb withdrawnc testa externalb withdrawnd 

QF1
2 0.5498 -0.1890 0.4796 -0.4581 0.2009 0.6476 -0.4444 0.7434

QF2
2 0.4804 0.2010 0.3875 0.1450 0.0443 0.5738 0.1112 0.7431

QF3
2 0.5527 -16.3066 0.7809 -17.6311 -4.4056 0.7813 -18.5792 -2.9125

PP (p) -1.7852 
(0.0440) 

-2.8228 
(0.0112) 

-2.0961
(0.0239)

-3.0020
(0.0085)

0.1039
(0.4593)

-0.4239
(0.3379)

-2.9139 
(0.0097) 

0.0489
(0.4812)

Q2
F1 = predicted squared correlation coefficient in training set; 

Q2
F2 = predicted squared correlation coefficient in test set; Q2

F3 = external predictivity ability; PP = predictive power;
PP = Predictive Power: Fisher's approach; a n=23; b n = 9; c n = 16; d n = 8 



• Di-model achieve the criterion of exceeding 0.6 
[58] in just one of case out 6 possible while the 
hi-model reach this criterion in four out of 6 
cases. The hi-model accomplished more 
frequently the criteria of having values higher 
than 0.6 while the full-model did not 
accomplished at all this criterion. Thus, it seems 
that the compounds in test and external sets are 
uniformly distributed over the range of training 
set at least in hi-model, in view of the fact that 
otherwise the QF1

2 and the QF2
2 suffer from 

drawbacks [68]. 
• The residual of the models proved significantly 

different by zero in test set for full-model and 
Di-model and in external set for all models. 
Both Di- and hi-models proved to have residual 
not significantly different by zero in samples 
that contain the withdrawn compounds. 
According to this criterion, just hi-model proved 
prediction power. 

The classification of the models according to results 
presented in Table 7 is as follows: hi-model the first 

best, Di-model the second best and full-model the last 
best. 

One remark about the parameters used to assess the 
predictive power, namely QF1

2, QF2
2 and QF3

2, can be 
made. Even the symbols contain "square", these 
parameters could take both positive and negative 
values according to their formula (see Table IV). it is 
not a definition for quantities with just positive values. 
Furthermore, a correlation coefficient is expected to 
take values between -1 and 1 while a determination 
coefficient is expected to take values from 0 to 1, but 
for example the QF3

2 parameter took values that 
exceeded these ranges. Therefore, these statistical 
parameters should be considered as biased estimators 
of the determination. 

Other statistics were introduced to test the external 
predictivity of QSAR. One example is the rm

2, a 
parameter computed by forcing the regression through 
origin [69] with certain applicability like as the line 
slopes not near to 1 [70]. 
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Figure 3.  Scatter plots of measured logRBA versus estimated/predicted logRBA by full model (estimated), Cook's 
distance (Di) model (predicted), and hat matrix leverage (hi) model (predicted) on training (estimated), test (predicted), 

external (predicted), and withdrawn (predicted) sets. 

Regarding the r2
m parameter, the main differences 

between a model without and with intercept could be 
summarized as: the degrees of freedom for residuals 
are not the same, the formula for sum of squares is 
different, and the coefficient of determination can be 
absurdly large even for weak correlation between X(s) 
and Y. Basically, regression through the origin should 
not be used in the absence of a strong reason (such as 
data of X(s) in the vicinity of zero). 

The best way to see the abilities of a MLR model is 
to plot the measured values against the estimated / 
predicted values to visualize how well each model 
works (see Figure 3). With one exception, represented 
by hi-model in external set (p-value=0.0632), all other 
correlation coefficients proved statistically significant 
(p < 0.04). 

The analysis of models presented in Figure 3 
revealed the followings: 

• The distribution of compounds in training set is 
narrower in Di-model compared to both full-
model and hi-model. 

• Di-model obtained higher determination 
coefficients in training and external sets while 
the hi-model obtained the higher determination 
coefficients in training and withdrawn sets. 

• The hi-model in more stable compared to Di-
model if the difference in determination 
between training and test set is concerned. 

• Both Di-model and hi-model performed better in 
training and test sets compared to full-model. 

Whenever applicable, the accuracy of a model will 
show its ability in correct classification of compounds. 
The overall accuracy as well as the accuracy on each 
class (weak binder, moderate binder and strong binder) 
were computed and the obtained results are presented 
in Figure 4. 

The analysis of Figure 4 revealed the followings: 
• The accuracy of all three models was identical 

for strong binders in test set (75%) and weak 
binders in external set (25%). Overall, out of 16 
possibilities, all models (full-model, Di-model, 
and hi-model) proved highest accuracy in 
almost 38% of cases. 

• Full-model proved highest overall accuracy in 
both test and external sets, and highest accuracy 
for moderate binders in test and external sets. 

• Di-model proved highest overall accuracy in 
training set, highest accuracy for strong binders 
in training set, highest accuracy for weak 
binders in training set, and highest accuracy of 
moderate binders in training set. 

• hi-model proved highest overall accuracy, as 
well as higher accuracy for weak binders, 
moderate binders and strong binders for 
withdrawn compounds. 

• No model proved abilities in correct 
classification of weak binders in test set or of 
strong binders in external set. 
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Figure 4.  Accuracy of full-, Di- and hi- models on training, test, external and withdrawn sets. 

Regarding the accuracy of investigated models it is 
impossible to classify them since their performances 
are generally the same (38%). It could be observed that 
models had abilities to accurately identify the 
compounds on average of two sets out of three or four. 
The absence of accurate classification of weak binders 
in test set and strong binders in externals set could be 
explained by differences in the chemical structure or 
measured logRBA of compounds included in these 
sets. 

IV. SUMMARY AND FURHER WORK 
Choosing a proper linear model is crucial in QSAR 

analysis because a model able to predict accurately the 
activity of interest of new chemical compounds is 
desired under the hypothesis that changes in molecular 
structure directly reflect in the compound 
activity/property. Input data and data preparation for 
regression analysis are of great importance but these 
subjects were beyond the aim of the present paper. 

Linear regression analyses identify in QSAR 
analysis the linearity between compound's activity and 
calculated descriptors based on chemical structure. 
Regression analysis answer to the following questions: 
Does the biological activity depend on structural 
information? If so, the nature of the relationship is 
linear? If yes, how good is the model in prediction of 
the biological activity of new compounds? 

In this manuscript, some rules had been presented: 
 test the assumption of linear regression (normality, 

linearity, independence, homoscedascity, and/or 
collinearity);  construct the model(s) if assumptions 
are accomplished - analyze the data (choose the best 
performing model);  assess and diagnose the 
alternative models - analyze the MLR;  decide which 
model fit best to your objectives. 

Following these steps in linear regression analysis 
certainly led to a performing estimation model but the 
prediction power of the model will always depend on 
the structure of compounds and their biological activity 
on which the model is used to predict; in other words, 
will be dependent by similarity in terms of structure 
and activity. 

Researches on linear regression analysis are of 
general interest since MLR found its applicability in 
many research fields. The classical approach 
implemented in available dedicated software deal with 
maximization of correlation coefficient. Maximization 
of the observed probability under assumption of 
random error affecting all variables in the model is 
under implementation and assessment is our lab. It is 
known that the classical method is exposed to type I 
errors (to accept a regression model obtained by 
maximization of determination correlation even if it 
does not exist) while this new approach does not 
because it maximize just the observation chance having 
as hypothesis that the errors between observed value 
and value obtained by the model is random and depend 
just by the observed/measured value (therefore being 
symmetric relative to its arithmetic mean). 
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