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Abstract: 
The aim of the present paper is to present the methodology of the molecular descriptors family (MDF) as an integrative 
tool in molecular modeling and its abilities as a multivariate QSAR/QSPR modeling tool. An algorithm for extracting 
useful information from the topological and geometrical representation of chemical compounds was developed and 
integrated to calculate MDF members. The MDF methodology was implemented and software is available online at the 
AcademicDirect gateway – Chemistry – SARs – MDS_SARs 
(http://l.academicdirect.org/Chemistry/SARs/MDF_SARs/). This integrative tool was developed in order to maximize 
performance, functionality, efficiency and portability. The MDF methodology is able to provide reliable and valid 
multiple linear regression models. Furthermore, in many cases, the MDF models were better than the results in the 
literature in terms of correlation coefficients (statistically significant Steiger’s Z test at a significance level of 5%) 
and/or in terms of values of information criteria and Kubinyi function. The MDF methodology developed and 
implemented as a platform for investigating and characterizing quantitative relationships between the chemical structure 
and the activity/property of active compounds was used on more than 50 study cases. In almost all cases, the 
methodology allowed obtaining of QSAR/QSPR models improved in explanatory power of structure - activity / 
property relationship. The algorithms applied in the computation of geometric and topological descriptors (useful in 
modeling physical-chemical or biological properties of molecules) and those used in searching for reliable and valid 
multiple linear regression models certain enrich the pool of low-cost low-time drug design tools. 
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Introduction 
 
Crum-Brown and Fraser conjectured, in 1868, that the biological activity of a compound is a function of its structure 
and chemical composition [1]. A few years later, Richet showed that the cytotoxicity of a set of organic compounds was 
inversely related to their water solubility [2]. Since then, many researchers have investigated the link, between the 
chemical structure and its activity or property [3-6]. 
Hammett introduced free energy relationship (a type of QSAR/QSPR for chemical kinetics) in the 19th century [7]. The 
concept of quantitative structure-activity/property relationships (QSAR/QSPR), a mathematical tool able to 
quantitatively describe the link between chemical structure and biological activity/property for a given set of 
compounds was introduced in 1937 [8]. 
Therefore, since the 1960's, the QSAR/QSPR paradigm found its usefulness in agro-chemistry, pharmaceutical 
chemistry, toxicology and other related research fields [9]. To date, the scientific literature contains many research 
reports on various methodologies of QSARS/QSPRS such as use of NMR chemical shifts [10], reliability and 
uncertainty assessment of regressors [11], integration of high-throughput screening [12], design via alignment of 
molecules [13]. In this respect, two monographs [14, 15] comprehend and can be use as guidelines for details of 
different approaches. 
Quantitative structure-activity/property relationships, mathematical approaches able to identify and characterize the link 
between chemical structure and activity/property [9], are applied when the activity/property is a quantitative (linear 
models) or qualitative (non-linear models [16]) variable. The structural information is collected by various molecular 
descriptors (2D descriptors [17-22]). 
The following methods were introduced in order to include structural 3D information in QSARs/QSPRs: CoMFA - 
comparative molecular field analysis and its variants CoMSIA (MSIA - molecular similarity indices Analysis) [23]; ▪ 
WHIM - weighted holistic invariant molecular (and its variant MS-WHIM - molecular surface WHIM) [24];▪ MTD - 
minimal topological distance (and its variant MSD, S - steric) [25]; ▪ FPIF - fragmental property index family [26]; ▪ 
MDF - molecular descriptors family [27]; ▪ MDFV - molecular descriptors family on vertices [28-30]; ▪ TOPS-MODE - 
topological sub-structural molecular design [31-35], ▪ other approaches [36-39]. 
The selection of descriptors [40] is as important in QSAR/QSPR analysis as the statistical method (regression method 
[41, 42], factor analysis [43], discriminant analysis [44], principal component analysis [45], cluster analysis [46] applied 
using genetic algorithms (GAs) [47] and/or neural network [48]) applied to identify the structure-activity/property 
relationship. Furthermore, internal and external validation methods are used to characterize QSAR/QSPR models. 
Cross-validation [49], randomization [50] and the assessment of QSAR/QSPR equations [51-53] represent the most 
frequently used methods. 
The MDF approach has already been applied in more than fifty activities/properties on various classes of active 
compounds. The aim of the present review is to present the methodology of the molecular descriptors family (MDF) as 
an integrative tool in molecular modeling and its abilities as a multivariate QSAR/QSPR modeling tool. 
 
 
Material and Method 
 
Methodology of the molecular descriptors family 
The MDF methodology is an original approach used to translate the complex topological and geometrical information 
obtained from the structure of chemical compounds into the so-called “molecular descriptors family” [27].  
The input data are the topological and geometrical information provided by the HyperChem (v. 8.0/2007) software. The 
molecular structures were optimized by two molecular mechanics procedures (AMBER - assisted model building with 
energy refinement [54] and Polak-Ribiere optimization algorithm [55]). The energy calculations were performed at the 
semi-empirical AM1 [56] level of theory. 
The MDF methodology [27, 57] works with molecular fragments and the input/output of the descriptors characteristics 
below: 
 Two distance operators (DM): geometric distance (g), topological distance (t). The distance operator implements 

both the topological and the geometric feature of the molecule. 
 Seven atomic properties (AP): relative atomic mass (M), atomic partial charge, Extended Hückel energy (Q), 

cardinality (C), atomic electronegativity (E), group electronegativity (G), number of hydrogen atoms adjacent to 
the investigated atom (H).  

 Twenty-four interaction descriptors (PD): D=d, d=1/d, O=p1, o=1/p1, P=p1p2, p=1/p1p2, Q=√p1p2, q=1/√(p1p2), 
J=p1d, j=1/p1d, K=p1p2d, k=1/p1p2d, L=d√(p1p2), l=1/d√(p1p2), V=p1/d, E=p1/d2, W=p1

2/d, w=p1p2/d, F=p1
2/d2, 

f=p1p2/d2, S=p1
2/d3, s=p1p2/d3, T=p1

2/d4, t=p1p2/d4; where d = distance operator and p = atomic property. This 
implements a series of descriptors of some physical entities (e.g., force, field, energy, potential), as they occur in 
magnetism, electrostatics, gravity or quantum mechanics.  

 Six overlapping interactions IM: models for sporadic and remote interactions (R, r), models for frequent and remote 
interactions (M, m), models for frequent and closed interactions (D, d). The overlapping interaction models provide 
either scalar or vectorial description of the interactions at fragment level.  

 Four algorithms of molecular fragmentation applied to atomic pairs (FC): fragmentation based on paths (Cluj [27]) 
(P) or on distances (Szeged [58]) (D); fragmentation in maximal fragments (M) or in minimal fragments (m). Note 



that some parts of a molecule are more active than others and explain most of the activity/property of a molecule, 
as Hammet observed in the first SAR study [7]. 

 Nineteen algebraic operations based on the four fragmentation methods (SM) below: ▪ group of values: minimum 
value (m), maximum value (M), lowest absolute value (n), highest absolute value (N); ▪ arithmetic group: sum (S), 
arithmetic mean of the number of fragment properties (A), arithmetic mean of the number of fragments (a), 
arithmetic mean of the number of atoms (B), arithmetic mean of the number of bonds (b); ▪ geometric group: 
multiplication (P), geometric mean of the number of fragment properties (G), geometric mean of the number of 
fragments (g), geometric mean of the number of atoms (F), geometric mean of the number of bonds (f); ▪ harmonic 
group: harmonic sum (s), harmonic mean of the number of fragments properties (H), harmonic mean of the number 
of fragments (h), harmonic mean of the number of atoms (I), harmonic mean of the number of bonds (i).  

 Six linearization operators (LO): identity (I), inverse (i), absolute value (A), inverse of absolute value (a), logarithm 
(L), logarithm of absolute value (l).  

 The above-described functions are found in the descriptors name (in descending order). The number of members in 
the molecular descriptors family ( MDF) is obtained by multiplying all the above operators: 

MDF = DM×AP×PD×IM×FC×SM×LO = 2 × 6 × 6 × 24 × 4 × 19 × 6 = 787968 (descriptors) 
The number of MDF members depends on the set of studied molecules. In the pool of descriptors, there are neither 
descriptors without a physical meaning (e.g. the logarithm of a negative number) nor descriptors with infinite value (e.g. 
those resulting from the division by zero). Finally, the degenerated values (e.g., a descriptor has the same value for two 
different molecules in the set) are removed from the descriptors pool by a bias procedure. 
Using dG(i,j) for distances in the graph G between vertices i and j, we may recall the following definitions: 
÷ Cluj distance fragments are sets of vertices obeying the relation [14, 59]: 

[CJi,j,p(G) = {v | v∈V(G), dG\p(i,v)<dG\p(j,v)}, for any p∈D(G) 
where V(G) is the set of vertices in G, D(G) is the set of all the shortest paths in G while dG|p(i,j) refers to the 
distance between vertices i and j measured in the graph G from which the path p was subtracted. The entries in the 
Cluj matrix are considered the maximum of all such fragments: [UCJ]i,j = maxp|CJi,j,p|. The half sum of elements in 
the unsymmetrical Cluj matrix [UCJ] provides the hyper-Cluj index CJp while the half sum of [UCJ]·[A] provides 
the CJe index (where [A] is the adjacency matrix). 

÷ The Szeged index was proposed by Gutman [60] in an attempt to expand the Wiener index calculation in cycle-
containing graphs:  

[SZ(G)]i,j = |SZi,j|·|SZj,i| 
SZi,j = {v∈V(G), dG(i,v)<dG(j,v)} 

The half sum of elements in the Szeged matrix [SZ] provides the hyper-Szeged index SZp while the half sum of 
[SZ]·[A] provides the Szeged index SZ. 

÷ A minimal subgraph of G can be defined in order to always contain at least one vertex,  i: 
MinF(G)i,j = ({i},∅) 

÷ A maximal (connected) subgraph of G [61], containing the vertex i but not the vertex j, abbreviated as MaxF(G)i,j 
can be defined both by vertex and edge: 

V(MaxF(G)i,j) = {s∈VTemp(G)i,j |D(VTemp(G)i,j)s,i < ∞} 
E(MaxF(G)i,j) = {(s,t)∈E(G)|s,t ∈V(MaxF(G)i,j)} 

÷ Temporary graphs (VTemp(G)i,j, ETemp(G)i,j) are disconnected graphs, whose sets are defined as: 
VTemp(G)i,j = {s ∈ V(G) | s ≠ j}, ETemp(G)i,j = {(u,v) ∈ E(G) | u,v ≠ j} 

The online resource http://l.academicdirect.org/Chemistry/SARs/MDF_SARs/j_mdf_demo.php could be used to 
calculate any MDF descriptors by providing the structure as *.hin file upon request.  
-  calculate the MDF descriptors and the modality of calculus may be followed there. 
 
 
MDF software 
The PHP (Pre Hypertext Processor) - MySQL database - FreeBSD server triad was used to implement the MDF 
methodology.  
Three databases (one temporary `MDFSARtmp` for the set in work, one permanent `MDFSARs` for the final data and a 
dedicated one, `MDFSAR15aa`, for the set of amino-acids) were stored on a FreeBSD server using MySQL database. 
Four separate programs were designed to assist the users for applying MDF methodology based on the schedule of the 
operations: preparation of the database structure (0_mdf_prepare.php), generating of the descriptors 
(1_mdf_generate.php), adaptation of the descriptors to the observed measures via a list of six alternatives 
(2_mdf_linearize.php), reducing the descriptors pool size based on explanatory power (3_mdf_bias.php) and 
hierarchizing of descriptors based on explaining amount (4_mdf_order.php). 
As long as MDF methodology was exclusively built on a search space encoded in respect of all rigors of a genetic code 
sequence, the creation of a genetic algorithm to search the performing models was the natural way forward in 
development of fast and efficient searching application [62-64]. The genetic algorithm (GA) [65] for QSAR/QSPR 
modeling was implemented to act as follows (details could be found on [66-68]: 
 Inheritance and mutation. The six operators described above (the linearization operator was excluded) represent the 

solution domain of the 131328 size (2 × 6 × 6 × 24 × 4 × 19). An offspring is obtained from a parent (inheritance) 



through a transformation (mutation). The number of obtained offspring’s is six time higher than the number of 
parents. A fitness function was defined in order to obtain offspring with real and distinct values. Nearly half of 
offspring died during this step due to mutation. About 300000 offspring with a seven letters genetic representation 
were valid at the end of this step. 

 Selection. A bias procedure (selection) was applied to the valid offspring obtained in the previous step. A 
determination coefficient with distinct first nine digits was defined as the first fitness function in this step. About 
100000 members were obtained by applying the first fitness function. The second fitness function was applied to 
the valid members in order to identify the descriptors with the highest performances in terms of correlation with the 
measured activity/property. 

 Crossover. Pairs of valid offspring (MDF members) identified after selection were crossed over in order to obtain 
models with two MDF members. Two fitness functions were defined and applied during this step: the highest value 
of the determination coefficient, its adjusted value, and the highest value of the cross-validation leave-one-out 
score. 

Two different approaches were implemented in order to identify simple and multiple linear regressions. 
The first approach refers to a series of programs implemented as FreePascal client-server programs able to identify, 
withdraw degenerated and correlated MDF members, and search for simple and multiple linear regressions [63, 69]. 
Our programs used the MySQL dynamic libraries to connect to the databases and implement five search strategies: four 
systematic searches (two descriptors, three descriptors, two pairs of descriptors, more than two pairs of descriptors) and 
one heuristic (random search in i variables). 
The second approach implemented the search strategy using a genetic algorithm [68] also implemented as a FreePascal 
program. The parameters and ranges of genetic algorithm are specific to the investigated set of molecules and details for 
some sets could be found in [70, 71]. The genetic algorithm evolved as follows [64, 67]: 
1. Read the configuration file (connection to database) 
2. Read the genetic code of MDF 
3. Allocates the memory space for the genetic code 
4. Creates the translation functions between storage address and genetic code 
5. Connects to the database and selects the experimental data (also provides the sample size) 
6. Allocates the memory space for experimental data and for MDF values; reads the experimental values from the 
database 
7. Displays the sample size of the MDF population (based on genetic code calculation) and the number of molecules in 
the set 
8. Read and select the values of descriptors for all molecules in the set 
9. Read the cultivar configuration file 
10. Creates the output files 
11. Iterate 
11.1. Initiate the values of global minimum and global maximum 
11.2. Create the first generation of evolution 
11.3. Iterate 

1st step:  
 Selects pairs of MDF members using the selection operator. 

2nd step:  
 Calculates selection and survival scores for the selected descriptors 
 Calculates the objected function for the set of molecules 
 Identifies the group of descriptors from the sample which meets the objective in its generation and 

automatically includes the descriptors belonging to this group in the next generation  
3rd step:  

 Identifies (with a low probability and using a discrete uniform probability function) the segment to be 
mutated and applies the mutation to the selected descriptors 

4th step:  
 Identifies (using a discrete uniform probability function) the segment to be crossed over and produces 

offspring through cross-over 
5th step:  

 Identifies (with a low probability and using a discrete uniform probability function) the segment to be 
mutated in offspring and applies the mutation to the offspring descriptors 

6th step: 
 Uses the survival operator to replace some parent descriptors with offspring descriptors. 

12. Repeat until an imposed condition of the objective function is met (e.g. a value of the determination coefficient) or 
the required number of iterations occurs. 
The performances of the MDF methodology have been tested on various sets of chemical (bioactive) compounds. The 
following criteria were used to test the model [51, 72, 73]: 
 Goodness-to-fit of the model (highest and significant value of correlation coefficient and lowest difference related 

to the adjusted value (min(r2-radj
2)) and leave-one-out score (min(r2-rloo

2))).  



 Statistically significant regression model (at a significance level of 5%) with the smallest possible number of 
descriptors. 

 Absence of co-linearity between descriptors (correlation coefficient not statistically significant when applying all 
correlation methods (Pearson (r), semi-Quantitative (rsQ), Spearman (ρ), Kendall’s (τa, τb, τc) and Gamma (Γ)) [74]. 

 Internal valid models (cross-validation leave-one-out analysis) [75]. 
 Information criteria used to compare performances of two different models (the lowest values indicate the best 

model [76, 77]): corrected Akaike information criteria (AICc) / AIC based on the determination coefficient (AICR2) 
/ McQuarrie and Tsai corrected AIC (AICu) [78, 79], Schwarz (or Bayesian) Information Criterion (BIC) [80], 
Amemiya Prediction Criterion (APC) [81], Hannan-Quinn Criterion (HQC) [82]. 

 Kubinyi function (FIT) [83, 84] (the highest value indicates the best model). 
Whenever possible, a correlation-correlated analysis was also conducted in order to compare the QSAR/QSPR model 
with previously reported models using the Steiger’s test at a significance level of 5% [53]. 
The representations of the main steps involved on the MDF-based QSAR/QSPR modeling approach are presented in 
Figure 1. 

 
[Figure 1 comes about here] 

 
The estimation and prediction abilities of the MDF were also evaluated and the results are presented in the Results and 
Discussion section in order to support the usefulness of the MDF modeling approach. 
 
Results and Discussion 
 
The MDF methodology was successfully implemented as a tool for QSAR/QSPR modeling. The software is available 
online at the AcademicDirect gateway – Chemistry – SARs – MDS_SARs 
(http://l.academicdirect.org/Chemistry/SARs/MDF_SARs/). The main data-interfaces and their characteristics are 
presented in Figure 2. The MDF computer-based system did not include programs to draw molecules or to convert them 
into different formats. Various stand-alone programs were developed to prepare molecules for modeling (conversion of 
*.sdf files into *.hin files, conversion of *.mol files as *.hin files, geometry optimization by HyperChem [85], etc.). 

 
[Figure 2 comes about here] 

 
Although the MDF integrative system was created as an Intranet system, it also has some features for Internet users 
(e.g. MDF members can be calculated as both Intranet and Internet networks). The value of MDF members for one 
*.hin file molecule can be calculated by using the `BorQ SARs by Sets`. External users are able to analyze the internal 
validation of already investigated sets of compounds in both leave-one-out (`LOO Analysis (LOO: Leave-One-Out)`) 
and leave-many-out (`TvT Experiment (TvT: Training vs. Test)`) analyses. The system also allows the prediction of 
activity/property of new compounds from the studied sets of compounds, based on a previously found MDF 
QSAR/QSPR model (`SARs (SAR: Structure-Activity Relationships)`). The ` Investigator` tool was created for the 
management of current jobs (last set in the `MDFSARtmp` temporary database). 
The values of calculated MDF descriptors proved reliable since identical values are obtained if the computations are 
done more than once. The time needed to calculate the MDF descriptors is linearly related to the complexity of 
molecules in the investigated set. The time needed to search for multiple linear regressions using complete search 
approach is most time-consuming step (over 90% of the total time needed to analyze a set of active compounds) but was 
significantly reduced by introduction of GA search approach [68, 86-89]. The developed system proved able to function 
properly on any type of chemical structures if the molecules are of small or medium size (100 atoms). Unfortunately, 
we were not able to figure out to date how to surpass the problem of exponential increase of execution time related to 
molecule complexity general problem for all programs that analyze complex chemical structure, but we work on this 
problem. Moreover, the most time-expensive parts of the implemented system were translated into executable programs 
able to run under Windows and using computer resources at maximum. 
The value of the MDF methodology and of the MDF integrative system can be analyzed in terms of ability to identify 
accurate and valid MDF QSAR/QSPR models. More than fifty various activities / properties on different sets of 
compounds were already investigated. A summary of MLR MDF QSAR/QSPR models is presented Table 1. 

 
[Table 1 comes about here] 

 
The number of adapted to measured properties/activities MDF members ranged in investigated datasets from 62712 to 
111477, with an average of 82702±13580 members (95% confidence interval [78622; 86781]). A number of one 
hundred and thirty two descriptors proved able to explain the structure-property/activity and were used in the best 
models. Only two MDF descriptors were identified in more than one model: inPRlQg (the MLR of 408461 set & 
408464 set – the same set of compounds but different investigated property) and lAmrfEt (the MLR of MR10 set & the 
MLR of DevMTOp00 set – different sets and different property/activity). The most frequent MDF descriptors 
(identified according to the letters in their name) used in the MDF QSAR/QSPR models are listed in Table 2. 

 

http://l.academicdirect.org/Chemistry/SARs/MDF_SARs/


[Table 2 comes about here] 
 

In most cases, the studied property/activity correlated with MDF descriptors of both geometric and topological nature 
(~53%) while 31% of cases proved to be only of geometric nature. The top three atomic properties related to the studied 
property/activity were: atomic partial charge, total molecular energy (51% of descriptors in the models), number of 
hydrogen atoms adjacent to the focused atom (17% of descriptors in the models), and relative atomic mass (11% of 
descriptors in the models). Only 13 out of 24 interaction descriptors occurred in the best MDF QSAR/QSPR models 
(the most frequently identified was K=p1p2d – 17% of descriptors). The most useful algorithm for molecular 
fragmentation proved to be the fragmentation in maximal fragments (identified in 39% of descriptors used in the best 
models) closely followed by fragmentation based on distances (identified in 34% of cases). Almost 53% of possible 
global overlapping of fragment interactions could be identified in the studied MDF QSAR/QSPR models along with 
50% of possible linearization operators. 
The analysis of the MDF QSAR/QSPR in terms of goodness-of-fit revealed that all models had significantly higher 
correlation coefficients provided by statistically significant regression models at a significance level of 5% (p ≤ 
0.00035, see Table 2). The smallest difference, either for the difference between the determination coefficient and its 
adjusted value or for the difference between the determination coefficient and the r2

loo score, proved to be below 
1.20·10-6. 
In 98% of the models, both differences were below 0.05; 67% and 47% were below 0.01 and 40%, and 13% were below 
0.0005. Therefore, the MDF methodology proved able to provide valid and reliable MDF QSAR/QSPR models. 
Furthermore, the MDF models demonstrated statistically significant higher goodness-of-fit compared to previous 
models reported in the literature (confirmed by the correlated correlation analysis: Steiger’s test [53], significance level 
of 5%) (19654 set [115], 22583 set [116], 23159 set [117], 26449 set [118], IChr10 set [27], MR10 set [119], PCB_rrf 
set [120], PCB_lkow set [121], RRC_lkow set [122], Tax385 & Tox395 [123], 41521 set [124], Triazines [125], 52344 
set [126], 23151 set [127], 408462 set [128], 408464 set [129], 52730 set [130], cqdmdfv set [28]). The metaheuristic 
search was as good as the complete search and had the advantage of smaller costs in terms of resources and time [66, 
68, 70]. 
The values of information criteria were used to compare the MLR models obtained by using different approaches on the 
same dataset of compounds. The lowest values of information criteria and the highest FIT function obtained for MDF 
QSAR/QSPR models compared to previously reported models showed the performances of the MDF approach [28, 29, 
30]. 
The MDF methodology opens a new low-cost pathway in understanding the link between the chemical structure of 
compounds and their property/activity, the investigation of already known compounds as well as in the discovery of 
new compounds. 
 
Conclusions 
The molecular descriptors family methodology, developed and implemented as a platform for investigating and 
characterizing quantitative relationships between the chemical structure and the activity/property of active compounds, 
proved successful. 
The MDF methodology showed estimation and prediction abilities through valid and reliable MLR QSAR/QSPR 
models. Its implementation provides a risk-free environment for molecular modeling and could be used as a valid and 
reliable tool in the investigation of structure-activity/property relationships. Daily computer and Internet skills, besides 
strong knowledge of QSAR/QSPR models, are needed for using the implemented MDF system.  
 
List of abbreviations 
2D descriptors = descriptors derived from a two-dimensional graph representation of a molecule 
3D = three dimensional 
CoMFA = Comparative Molecular Field Analysis 
CoMSIA = Comparative Molecular Similarity Indices Analysis 
FPIF = Fragmental Property Index Family 
FreeBSD = Free Berkeley Systems Distribution 
GA = genetic algorithm 
MDF = Molecular Descriptors Family 
MDFV = Molecular Descriptors Family on Vertices 
MLR = multiple linear regression 
MSD = Minimal Steric Distance 
MS-WHIM = Molecular Surface Weighted Holistic Invariant Molecular 
MTD = Minimal Topological Distance 
MySQL = My Structured Query Language 
PHP = Pre Hypertext Processor 
QSARs = Quantitative Structure-Activity Relationships 
QSPRs = Quantitative Structure-Property Relationships 
SAR = Structure-Activity Relationship 
SPR = Structure-Property Relationship 



TOPS-MODE = TOPological Sub-structural MOlecular DEsign 
WHIM = Weighted Holistic Invariant Molecular 
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Figures/illustrations 

 
 
Figure 1. Process flow of the main steps involved on the MDF-based QSAR/QSPR modeling. 

Molecular modeling 

MDF calculation for data set 
→ 131000 descriptors 

Adaptation 
 → xval & yval tables 

qSA(P)R search as MLR 

Complete and semi-
complete search [68]: 

home-made programs for 
MLRs 

Observed/measured 
activity/property 

Statistical analysis: 
normality & outliers 

Heuristic search - Genetic 
Algorithms [68]: home-
made program for MLRs 

qSA(P)Rs models storage for further investigations 

qSA(P)R models validation and comparison



 

BBoorrQQ  SSAARRss  bbyy  SSeettss  
└ http://l.academicdirect.org/Chemistry/SARs/MDF_SARs/k_browse_or_query.php 
  └ Browse (MDF-qSPR/MDF-qSAR equations) – take information from `0_MDFSARRes` 
  └ Query (MDF-qSPR/MDF-qSAR characteristics: MDF size, equation, sample size, number of  
      descriptors in eq., value of descriptors, etc.) – take information from `0_MDFSARRes` 

Server 
└ Database 
  └ `***_data` - experimental measurements 
  └ `***_tmpx` - calculated descriptors 
  └ `***_valx` - values of valid descriptors 
  └ `***_valy` - results of regressions 
  └ `0_MDFSARRes` - valid MDF qSARs/qSPRs

Workstations 
└ FreePascal client-server programs 
  └ Complete search 
  └ Genetic Algorithm 

TTvvTT  EExxppeerriimmeenntt  ((TTvvTT::  TTrraaiinniinngg  vvss..  TTeesstt))  
└ http://l.academicdirect.org/Chemistry/SARs/MDF_SARs/qsar_qspr_s/ 
  └ Conduct the internal validation of the MDF qSAR/qSPR model through leave-many-out analysis 
  └ Take a previously identify model → Split randomly the sent in training and test sets (the no. of  
      compounds in training set could be imposed by the user) → Identify the MLR on training set and 
      apply the model on test set → Display statistical characteristics for models on both sets 

LLOOOO  AAnnaallyyssiiss  ((LLOOOO::  LLeeaavvee--OOnnee--OOuutt))  
└ http://l.academicdirect.org/Chemistry/SARs/MDF_SARs/loo/ 
  └ Conduct the internal validation of the MDF qSAR/qSPR model through leave-one-out analysis 
  └ Display the estimated and predicted value for the following parameters: standard error, standard  
      deviation, determination coefficient, Fisher’s statistics and associated significance 

SSAARRss  ((SSAARR::  SSttrruuccttuurree--AAccttiivviittyy  RReellaattiioonnsshhiipp))  
└ http://l.academicdirect.org/Chemistry/SARs/MDF_SARs/sar/ 
  └ Predict the activity/property of a compound from the same class as a previously investigated class 
  └ Choose the `Learning set` → Choose the MDF-qSAR/qSPR Eq. & the *.hin file of an external  
      compound → Compute: ▪ the value of MDF descriptor(s) used in predictor Eq. & ▪ predicted 
      activity/property 

IInnvveessttiiggaattoorr  
└ http://l.academicdirect.org/Chemistry/SARs/MDF_SARs/inv/ 
  └ Provide the interface for management of the set that is currently analyzed

PPrreeddiiccttoorr  bbyy  DDeessccrriippttoorr  
└ http://l.academicdirect.org/Chemistry/SARs/MDF_SARs/mdf_predict.php 
  └ Allows calculation the value of MDF for a molecule uploaded as *.hin file (no hydrogen atoms) 

 
Figure 2. The main data-interfaces of MDF tools. 
 



Tables and captions 
 
Table 1. Most important characteristics of MDF QSAR/QSPR models. 

Set [ref] n k r2 r2
adj SErr F (p) r2

loo AICc AICR2 AICu BIC APC HQC FIT 
19654 [90] 23 4 0.9979 0.9974 0.06 2089 (9.78·10-24) 0.9840 -122 1 -4 -115 0.004 -125 164
22583 [91] 57 5 0.9175 0.9094 0.45 113 (2.14·10-26) 0.8997 -83 5 0 -66 0.226 -80 6
23110 [92] 69 3 0.9011 0.8965 0.24 197 (1.38·10-32) 0.8904 -190 1 -2 -177 0.063 -187 7
23159 [63] 8 2 0.9505 0.7755 0.15 58 (3.54·10-4) 0.8989 -21 1 0 -23 0.037 -28 5
23167 [94] 31 3 0.9394 0.9327 0.15 140 (1.51·10-16) 0.9240 -114 2 -2 -105 0.024 -114 9
26449 [95] 10 2 0.9974 0.9966 0.03 1330 (9.25·10-10) 0.9948 -63 -2 -4 -63 0.001 -68 120
31572 [96] 24 4 0.9583 0.9495 0.14 109 (7.85·10-13) 0.9353 -87 4 -2 -79 0.024 -89 8
3300 [97] 34 5 0.9758 0.9715 0.21 226 (1.00·10-21) 0.9654 -99 5 -2 -86 0.050 -99 16
33504 [98] 73 2 0.9982 0.9981 1.75 1.9·104 (9.38·10-97) 0.9980 85 -5 2 94 3.171 87 465
34121 [99] 76 4 0.7147 0.6986 0.62 44 (1.21·10-18) 0.6811 -68 4 0 -52 0.405 -64 2
36638 [100] 16 3 0.9950 0.9938 0.03 799 (4.47·10-14) 0.9812 -108 0 -5 -104 0.001 -112 69
408461 [101] 40 4 0.9175 0.9081 0.16 97 (1.84·10-18) 0.8911 -139 4 -2 -127 0.030 -138 6
408462 [101] 40 4 0.9037 0.8927 0.17 82 (2.74·10-17) 0.8804 -135 4 -2 -123 0.033 -134 5
408464 [101] 40 4 0.9202 0.9111 0.16 101 (1.04·10-18) 0.9034 -140 4 -2 -128 0.029 -139 6
41521 [102] 8 2 0.9987 0.9981 0.05 1889 (6.35·10-8) 0.9981 -38 -3 -2 -40 0.004 -46 178
52344 [103] 8 2 0.9998 0.9997 0.01 1.3·104 (5.49·10-10) 0.9994 -65 -5 -5 -67 0.000 -72 1191
52730 [104] 10 2 0.9976 0.9970 0.06 1473 (6.49·10-10) 0.9959 -51 -2 -3 -51 0.004 -56 133
a_acids [105] 12 2 0.9871 0.9842 0.27 344 (3.15·10-9) 0.9777 -26 -1 0 -24 0.090 -30 29
cqdmdfv [106] 37 5 0.9368 0.9266 0.17 92 (1.22·10-17) 0.9015 -122 6 -2 -109 0.034 -121 6
DevMTOp00 [107] 8 2 1.0000 1.0000 12.53 9.1·105 (1.26·10-14) 1.0000 49 -9 9 47 216 41 85370
DevMTOp03 [107] 8 2 0.9992 0.9988 0.04 2946 (2.09·10-8) 0.9977 -44 -3 -3 -46 0.002 -52 277
DevMTOp04 [107] 8 2 0.9998 0.9997 0.02 1.1·104 (7.21·10-10) 0.9985 -57 -4 -4 -59 0.000 -64 1067
DevMTOp05 [107] 8 2 0.9992 0.9989 0.03 3134 (1.79·10-8) 0.9985 -46 -3 -3 -48 0.002 -54 295
DevMTOp07 [107] 8 2 0.9996 0.9994 0.03 6314 (3.12·10-9) 0.9991 -50 -4 -4 -52 0.001 -57 594
DevMTOp12 [107] 8 2 0.9991 0.9987 0.04 2644 (2.74·10-8) 0.9980 -44 -3 -3 -46 0.002 -51 249
DevMTOp14 [107] 8 2 0.9996 0.9994 0.03 5941 (3.63·10-9) 0.9988 -49 -4 -3 -51 0.001 -56 559
DevMTOp16 [107] 8 2 0.9989 0.9985 0.03 2374 (3.59·10-8) 0.9975 -48 -3 -3 -50 0.001 -56 223
DevMTOp17 [107] 8 2 0.9995 0.9994 0.02 5437 (4.53·10-9) 0.9986 -58 -4 -5 -60 0.000 -66 512
DevMTOp20 [107] 8 2 0.9992 0.9988 0.04 3013 (1.98·10-8) 0.9983 -45 -3 -3 -47 0.002 -53 284
DevMTOp21 [107] 8 2 0.9990 0.9986 0.04 2539 (3.03·10-8) 0.9980 -44 -3 -3 -46 0.002 -52 239
DevMTOp23 [107] 8 2 0.9999 0.9998 0.01 2.2·104 (1.39·10-10) 0.9997 -60 -5 -5 -62 0.000 -67 2063
DHFR [108] 67 4 0.9058 0.8997 0.19 149 (4.60·10-31) 0.8932 -215 3 -2 -200 0.040 -212 6
Dipeptides [14] 58 4 0.9036 0.8963 0.32 124 (3.02·10-26) 0.8831 -125 4 -1 -111 0.113 -123 6
IChr10 [109] 10 2 0.9992 0.9990 0.10 4369 (1.45·10-11) 0.9985 -40 -3 -2 -39 0.013 -45 394
JCCS2001 [110] 47 4 0.9403 0.9346 0.16 165 (4.06·10-25) 0.9238 -165 3 -2 -152 0.029 -163 9
MR10 [109] 10 2 1.0000 0.9999 0.07 8.3·104 (4.87·10-16) 0.9999 -46 -6 -3 -45 0.007 -51 7490
PCB_lkow [111] 206 4 0.9168 0.9151 0.24 554 (2.75·10-107) 0.9093 -579 2 -2 -558 0.060 -573 10
PCB_rrf [111] 209 4 0.7367 0.7316 0.18 143 (5.77·10-58) 0.7169 -705 3 -2 -684 0.034 -699 2
PCB_rrt [111] 209 2 0.9972 0.9972 0.01 3.7·104 (1.13·10-263) 0.9971 -1939 -5 -8 -1926 0.000 -1935 335
RRC_lbr [112] 30 4 0.9737 0.9695 0.12 231 (2.35·10-19) 0.9650 -118 3 -3 -108 0.018 -119 16
RRC_lkow [112] 30 4 0.9781 0.9745 0.17 279 (2.44·10-20) 0.9680 -98 3 -2 -88 0.035 -98 19
RRC_pka [112] 30 4 0.9638 0.9580 0.19 166 (1.27·10-17) 0.9474 -92 3 -2 -82 0.044 -92 12
Ta395 [113] 15 2 0.9766 0.9727 0.17 250 (1.65·10-10) 0.9614 -48 0 -2 -45 0.035 -51 19
Tox395 [113] 14 2 0.9568 0.9490 0.18 122 (3.11·10-8) 0.9343 -43 0 -2 -41 0.038 -46 10
Triazines [114] 30 4 0.9885 0.9867 0.08 537 (7.63·10-24) 0.9850 -144 2 -4 -134 0.008 -144 38
Abbreviations: 
Set = abbreviation of the set; [ref] = reference for the experimental data source; 
n = number of compounds in the set; k = number of independent variables in qSAR/qSPR equation; 
r2 = determination coefficient; r2

adj = adjusted determination coefficient; 
SErr = standard error of estimate; F = Fisher’s statistics; 
p = significance of Fisher’s statistics; r2

loo = determination coefficient in leave-one-out analysis; 
AICc = corrected Akaike information criteria; AICR2 = AIC based on the determination coefficient 
AICu = McQuarrie and Tsai corrected AIC; BIC = Schwarz (or Bayesian) Information Criterion 
APC = Amemiya Prediction Criterion; HQC = Hannan-Quinn Criterion; FIT = Kubinyi function 
 



Table 2. The characteristics of the MDF models according to descriptors. 
Set (va) 7th letter (freq) 6th letter (freq) 4th letter (freq) 1st letter (freq) 

19654 (4) g(3)-t(1) C(1)-E(1)-M(1)-Q(1) D(1)-r(3) i(3)-l(1) 
22583 (5) g(2)-t(3) E(1)-H(1)-M(1)-Q(2) D(2)-m(2)-r(1) A(1)-i(2)-l(2) 
23110 (3) g(1)-t(2) H(1)-Q(2) m(1)-r(2) A(1)-i(2) 
23159 (2) t(2) E(1)-H(1) m(1)-r(1) i(1)-l(1) 
23167 (3) g(2)-t(1) Q(3) r(3) i(2)-l(1) 
26449 (2) t(2)  G(1)-Q(1) D(1)-r(1) i(1)-l(1) 
31572 (4) g(1)-t(3) H(1)-Q(3) r(4) i(3)-l(1) 
3300 (5) g(3)-t(2) C(1)-H(1)-Q(3) D(1)-m(1)-r(3) i(3)-l(2) 
33504 (2) t(2) G(1)-H(1) r(2) i(1)-l(1) 
34121 (4) g(4) Q(4) D(3)-r(1) i(3)-l(1) 
36638 (3) g(2)-t(1) H(1)-Q(2) D(1)-m(2) i(2)-l(1) 
408461 (4) g(3)-t(1) M(1)-Q(3) m(1)-r(3) i(3)-l(1) 
408462 (4) g(4) C(1)-G(1)-Q(2) D(2)-r(2) i(3)-l(1) 
408464 (4) g(3)-t(1) Q(4) D(2)-m(1)-r(1) i(4) 
41521 (2) g(2) H(1)-Q(1) m(1)-r(1) i(1)-l(1) 
52344 (2) g(1)-t(1) G(1)-H(1) m(1)-r(1) i(1)-l(1) 
52730 (2) g(2) M(1)-Q(1) m(1)-r(1) i(1)-l(1) 
a_acids (2) g(2) G(1)-H(1) D(1)-r(1) i(2) 
cqdmdfv (5) g(5) G(1)-H(2)-M(1)-Q(1) D(1)-m(4) i(5) 
DevMTOp00 (2) g(1)-t(1) E(1)-Q(1) m(1)-r(1) i(1)-l(1) 
DevMTOp03 (2) g(2) M(1)-Q(1) r(2) i(2) 
DevMTOp04 (2) g(2) H(1)-Q(1) D(1)-r(1) i(1)-l(1) 
DevMTOp05 (2) g(2) Q(2) D(1)-m(1) A(1)-i(1) 
DevMTOp07 (2) t(2) C(1)-Q(1) m(1)-r(1) A(1)-i(1) 
DevMTOp12 (2) g(1)-t(1) G(1)-M(1) m(1)-r(1) l(2) 
DevMTOp14 (2) g(1)-t(1) E(1)-Q(1) m(1)-r(1) i(2) 
DevMTOp16 (2) g(1)-t(1) H(1)-Q(1) m(2) A(2)-i(2) 
DevMTOp17 (2) g(2) C(1)-Q(1) D(1)-r(1) i(2) 
DevMTOp20 (2) g(1)-t(1) G(1)-M(1) m(1)-r(1) i(1)-l(1) 
DevMTOp21 (2) t(2) E(2) r(2) i(2) 
DevMTOp23 (2) g(1)-t(1) E(1)-G(1) m(1)-r(1) l(2) 
DHFR (4) g(2)-t(2) H(2)-Q(2) D(1)-m(1)-r(2) i(2)-l(2) 
Dipeptides (4) g(1)-t(3) E(2)-H(1)-M(1) D(1)-m(2)-r(1) i(4) 
IChr10 (2) g(1)-t(1) M(1)-Q(1) D(1)-m(1) i(1)-l(1) 
JCCS2001 (4) g(4) M(2)-Q(2) D(2)-r(2) i(3)-l(1) 
MR10 (2) t(2) E(1)-M(1) m(1)-r(1) l(2) 
PCB_lkow (4) g(3)-t(1) E(1)-G(1)-Q(2) D(1)-m(2)-r(1) A(2)-i(2) 
PCB_rrf (4) g(3)-t(1) H(2)-Q(2) D(1)-m(1)-r(2) i(4) 
PCB_rrt (2) g(1)-t(1) H(2) m(1)-r(1) i(1)-l(1) 
RRC_lbr (4) g(3)-t(1) Q(4) D(1)-m(2)-r(1) A(1)-i(1)-l(2) 
RRC_lkow (4) g(4) G(1)-Q(3) D(2)-m(1)-r(1) i(2)-l(2) 
RRC_pka (4) g(4) H(1)-Q(3) m(3)-r(1) A(2)-i(1)-l(1) 
Ta395 (2) t(2) M(1)-Q(1) m(1)-r(1) i(1)-l(1) 
Tox395 (2) g(2) Q(2) r(2) A(1)-l(1) 
Triazines (4) g(2)-t(2) H(1)-Q(1) m(3)-r(1) i(3)-l(1) 
Abbreviations: 
a v = number of descriptors in the model; freq = absolute frequency; 
7th letter - interaction via: g = geometric distance, t = topological distance. 
6th letter - dominant atomic property: M = relative atomic mass,  
Q = atomic partial charge, semi-empirical Extended Hückel model, single point approach, C = cardinality, E = 
atomic electronegativity, G = group electronegativity, H = number of hydrogen atoms adjacent to the 
investigated atom. 
4th letter - overlapping interaction: M, m = frequent and distant interactions, D, d = frequent and closed 
interactions, R, r = sporadic and distant interactions. 
1st letter - structure on activity scale: A = absolute value, i = inverse of identity, l = logarithm of absolute value. 

 


