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Abstract 22 

Quantitative Structure-Activity Relationship approaches have established as the main computational 23 
molecular modeling method. In spirit of reporting valid and reliable models the aim of our research was to 24 
assess how the analysis of leverage with Hat matrix (hi) and of the influential using Cook’s distance (Di) of 25 
QSAR models reflects in the model reliability and its characteristics. The datasets included in this research 26 
was collected from previously published manuscripts. Seven datasets accomplished the imposed inclusion 27 
criteria and were analyzed. Three models were obtained for each dataset (full-model, hi-model and Di-model) 28 
and several validation criteria (statistical criteria) were defined to assess and to compare the model. The 29 
analysis of the obtained results revealed that in 5 out of 7 sets the correlation coefficient increase when both 30 
compounds with hi and respectively Di higher than thresholds were removed. The number of withdrawn 31 
compounds varied from 2 to 4 for hi-model and from 1 to 13 for Di-model. The analysis of validation 32 
statistics showed that Di-models obtained systematically better results compared to both full-models and hi-33 
models. Identification of influential compound in data set could significantly improve the model and should 34 
be conducted any time when a regression analysis is desired. Cook’s distance approach is recommended to 35 
be used to identify influential compounds in dataset whenever the linear regression analysis for QSAR 36 
models is applied. 37 

 38 

Keywords: model sensitivity; quantitative structure-activity relationship (QSAR); leverage (hi); 39 

Cook’s distance (Di); model validation. 40 
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Introduction 43 

Translation of structural features of chemical compounds in the activity by incorporation of 44 

physico-chemical mechanisms into statistical models led to development of QSAR/QSPR 45 

(Quantitative Structure-Activity/Property Relationship) computational molecular modeling 46 

methodologies. In view of the fact that the capabilities of collecting and storing (such as PubChem) 47 

from one hand and analyzing of data from other hand due to rapid development of information and 48 

communication technologies have significant increased, QSAR modeling could be seen as an 49 

approach of statistical analyses as well as application of data-mining. 50 

Guidance regarding the correct procedures in QSAR development has been published in scientific 51 

literature [1-3].The detailed description of QSAR modeling techniques, methodologies and trends is 52 

beyond the aim of the present manuscript. It is well known that the main characteristic of a QSAR 53 

model is its predictivity, translated in how well the model is able to predict the activity on 54 

compounds not used to develop the model. Guidelines for validation of QSAR models have been 55 

developed by experts [4-6]. Beside good practice principles, other QSARs problems were addressed 56 

by researchers. Mekenyan and Veith [7] pointed out two general problems of QSAR: various 57 

environments used to study the property/activity and proliferation of molecular descriptors. Dearden 58 

and co-authors identified 21 types of errors in QSAR modeling, errors classified according to 59 

OECD principles [8]. From statistical point of view, the identified errors were as follow [8]: 60 

 Collinearity of molecular descriptors which is mainly reflected in the instability of the 61 

regression coefficients [1,2]. 62 

 Outlier detection and removal. Removal of a significant outlier led to a more significant model 63 

[9]. 64 

 Lack of/inadequate statistics. In most of published QSAR models, neither considerations of 65 

linear regression assumptions nor considerations of distribution of residuals are addressed 66 

[10,11]. Recommended statistics are as follow: n (sample size), r2 or R2 (determination 67 

coefficient), q2 or Q2 (determination coefficient in leave-one-out analysis); R2
adj (adjusted 68 

determination coefficient), s (standard error of estimate - measure of error) and F-statistics 69 

(including p-value) [8]. Moreover, other methods of error are recommended: standard deviation, 70 

root mean square error and mean absolute error (ignore the sign of an error – provide 71 

information about random error [12]), mean error (consider the sign of an error – very low value 72 

indicates the absence of systematic error [12]; similar mean error and absolute mean error 73 

indicate the presence of systematic errors).  74 

 Misuse/Misinterpretation of statistics. The application of linear regression technique without 75 

investigation of its assumption is one of most frequent misuse of statistics [13]. The inclusion in 76 

the model of additional independent variable(s) is another example [14]. 77 
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Staying in the field of statistics for QSAR/QSPR models the following was the hypothesis of the 78 

present research: Model sensitivity analysis translated through influential point(s) could identify a 79 

stable and reliable QSAR/QSPR. Our aim was to assess how the analysis of leverage and influential 80 

using Cook’s distance of QSAR models reflects in the model reliability and its characteristics. 81 

 82 

 83 

Materials and Methods 84 

Data sets 85 

Several datasets previously published in International Journal of Molecular Science (MDPI 86 

Publishing, Basel, Switzerland) were included in our analysis. The search was conducted on April 87 

2012 using the following search strategy: 88 

Where? (Field) What? 

Title/Keyword QSAR OR Quantitative Structure-Activity Relationship 

Journal IJMS 

Article Type Article OR Review 

Time period 2000 to date 

 89 

There were included in the study the dataset available in the previously published manuscripts 90 

that respected the following inclusion criteria:  quantitative continues dependent variable AND  91 

values of descriptors provided in manuscript or supplementary material(s) AND  sample size > 20 92 

AND  simple/multiple linear regression model with determination coefficient higher than or equal 93 

to 0.6. 94 

 95 

Analysis of Influential 96 

Model sensitivity in linear regression analysis refers to how estimates are affected by subgroups of 97 

the data. Three main issues could be used to assess the model sensitivity: residuals (large value 98 

identify the outliers), leverage (large value identify the point significantly far from the center point 99 

of the predictor space) and influential (large effect on an estimate) but just two of them are 100 

addressed in the present research. 101 

The following steps were applied to accomplish the aim of the research: 102 

 Step 1: Test the normality of observed/measured activity using Kolmogorov-Smirnov [15] 103 

and/or Chi-Square goodness-of-fit [16] → If data normal construct the SLM (Simple Linear 104 

Regression) / MLR (Multiple linear regression) 105 

 Step 2: Identify the bets SML / MLR model → If R2 < 0.5 STOP analysis. The dataset is 106 

removed from further analysis. 107 
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 Step 3: Identify the influential using: 108 

a. Hat matrix - leverage (hi). Leverage are “a measure of the geometric distance of the ith 109 

predictor point (Xi1, Xi2, ..., Xik) from the center point of the predictor space” [17]. The 110 

formula applied to identify the leverage was: hi = 1/n+(xi-xm)2/sum[(xi-xm)2], where hi = 111 

leverage of the ith compound, n = sample size, xi = the value of predictor variable for the 112 

ith compound, xm = the average mean for predictor x. The leverage indicates those 113 

compounds that may have potential influence in the model being used also as 114 

applicability domain of the QSAR models [18,19]. The leverage threshold (ht) was set to 115 

2*(k+1)/n for regression models with intercept and 2*k/n for models without intercept 116 

(where k= number of descriptors in the model; n=sample size) [17]. → If hi > ht 117 

withdrawn the influential till no leverage exceed the threshold value or no improvement 118 

in the determination coefficient is observed. 119 

b. Cook’s distance (Di). Cook's distance combines residual and leverage in one indicator to 120 

identify influential in regression models [20,21]. Any compound was considered as 121 

influential if Di > 4/n (where n = sample size) [22]. → If Di > 4/n withdrawn the 122 

influential till no exceed of the threshold value is observed or no increase in the 123 

determination coefficient is observed. 124 

 Step 4: Construct and evaluate the final SLM / MLR. The criteria used for assessment and 125 

validation of QSAR models are presented in Table 1. The correlated correlation analysis was 126 

apply to test if correlation coefficients obtained by full-model, hi-model and Di-model are 127 

statistically significant different at a significance level of 5% [23]. 128 

 Step 5: Take two sets of compounds and split the dataset in training (~2/3 compounds) and test 129 

set using a simple random approach [24] (leave-many-out analysis) in order to assess the 130 

behavior of the full-model and respectively model with higher correlation coefficient and 131 

smaller standard error. 132 

To test the overall performances of leverage and influential withdrawn on QSAR models compared 133 

to full-model the Fisher's Chi-Squared (abbreviated as F-C-S) was applied [32]. The F-C-S- text 134 

was applied to test the following null hypothesis "The correlation coefficient on a specific model 135 

(such as hi-model or Di-model) is statistically higher compared to another model (full-model or hi-136 

model when Di-model was compared to hi-model)". 137 

 138 
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Table 1. Criteria for validation of regression models. 139 

Criterion Interpretation/Remark 
Goodness-of-fit 
R2 = determination coefficient A descriptive measure. It does not measure the quality of the regression model. 

The higher the better 
R2

adj
 = adjusted determination 

coefficient 
Its value decrease if an added predictor does not reduce the unexplained 
variance 
Used as a measure of usefulness of introducing a new variable in the model 
Closeness to the R2 the better 

R2
loo = determination coefficient in 

leave-one-out analysis [25] 
Internal validity of the model 
Underestimates the true predictive error when small samples are used to 
develop the model [26] 
Closeness to the R2 the better 

s = standard error of estimate 
sloo = standard error of predicted 

Measure of the dispersion around the regression line of observed values 
Smaller the better 

F-value (p-value) 
Floo (p-value) 

Ration between explained and unexplained variance of a given number of df – 
degrees of freedom 
p-value associated to F-value as significance of the level of correlation [27] 
The higher the better 

t-value (p-value) Significance of the coefficients in the regression model 
t-value - the higher the better vs. p-value - the lower the better 

Validation statistics 
RMS = residual mean square Error variance 

The lower the better 
APV = average prediction variance 
[28] 

The lower the better 

TSE = total squared error [29] The lower the better 
APMSE = Average Prediction Mean 
Squared Error [30] 

The lower the better 

%PredErr = percentage prediction 
error [31] 

Defined as prediction error (module of the difference between observed and 
estimated) divided by the highest activity 

Predictive Power – Fisher’s approach 
(tPP - pPP) 

Evaluate if the mean of residuals is statistically different by the expected mean 
(where expected mean = 0); pPP: the lower the better 

RMSE = root-mean-square error Measures the average magnitude of the error 
The lower the better 

MAE = mean absolute error Measures the average magnitude of the errors 
Could be also used to compare two models - The lower the better 

MAPE = mean absolute percentage 
error 

The lower the better 

SEP = standard error of prediction The lower the better 
REP% = relative error of prediction The lower the better 
 140 

Results 141 

Sixty-four manuscripts were identified using the applied search strategy. Fifteen manuscripts 142 

provided the experimental/observed values as well as values of molecular descriptors. Seven 143 

manuscripts accomplished all inclusion criteria and their sets of compounds were included in the 144 

analysis. The main characteristics of the previously published models (not necessary linear models) 145 

are presented in Table 2. 146 

The identified sets of compounds were investigated in order to assess how the influential affect 147 

the model validity and characteristics. The best performing regression models for each set on the 148 

whole data set, on the sample after removal of compounds with leverage higher than threshold and 149 
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on the sample after removal of compounds with Cook's distance higher than threshold are presented 150 

in Table 3. 151 

 152 

Table 2. Datasets included in analysis and basic summary of previously reported models. 153 

Set [Ref] Model characteristics 
Set1 [33] R2=0.9992; s=0.929; F=3534; n=60; k=5 
Set2 [34] R2=0.7779; F=133; R2

loo=0.774; n=79; k=2 
Set3 [35] R2=0.820; R2

loo=0.716, s=0.440, F=22.805; n=31,k=5 (outliers: 5 & 15) 
Set4 [36] R2=0.9571; R2

cv=0.8521; s=0.2825; F=28.8207; n=29; k=5 
Set5 [37] R2=0.840; R2

cv=0.777; F=31.54; s=0.034; n=36; k=5 
Set6 [38] n.a. 
Set7 [39] Rtr=0.870; s=0.206; Rtest=0.835, stest=0.232; Rloo=0.925; sloo=0.198; n=46; k=5 
R=correlation coefficient; R2=determination coefficient; loo=leave-one-out analysis; s=standard error of estimate; F=Fisher’s 
statistics; n=sample size; k=number of independent variables used by the reported model; tr=training set; test=test set; n.a. = not 
available 
 154 

Table 3. Regression characteristics: full-model (whole dataset), hi-model (withdrawn of compounds 155 

with hi> ht) and Di-model (withdrawn of compounds with Di> 4/n, where n = sample size). 156 

Set1: ŶHF = a + b1×2χ + b2×H* + b3×J* 
where Ŷ = estimated heat of formation; 2χ = generalized connectivity index; H* = Harary index; J* = Balaban index; HF 
= heats of formation; a = intercept; bi = regression coefficients  
n=60 whole dataset R2=0.985; R2

adj=0.985;s=3.46; F=1256 (p=2.63·10-55); 
R2

loo=0.983; sloo=3.76, Floo=1061 (p=2.91·10-51); 
RMS=11.774; APV= 0.003; TSE= 4; APMSE= 0.210; %PredErr= 6.190;tPP=5.23·10-14 
(pPP=1);  
RMSE=3.462; MAE=2.881; MAPE=0.396; SEP=3.191; REP(%)=26.581 

n=56 hi>2*(k+1)/n 
withdrawn 
(1, 38, 39, 40) 

R2=0.987; R2
adj=0.986;s=3.35; F=1318 (p=5.08·10-49); 

R2
loo=0.986; sloo=3.54, Floo=882 (p =3.67·10-49); 

RMS= 10.980; APV= 0.003; TSE= 4; APMSE= 0.211; %PredErr= 5.529; tPP=2.71·10-13 
(pPP=1);  
RMSE=3.345; MAE=2.758; MAPE=0.354; SEP=3.253; REP(%)=27.928 

n=54 Di>4/n withdrawn  
(1, 2, 3, 16, 20, 23) 

R2=0.989; R2
adj=0.988; s=3.04; F=1441 (p=1.57·10-48); 

R2
loo=0.987; sloo=3.24; Floo=1268 (p=2.67·10-49); 

RMS= 9.059; APV= 0.003; TSE= 4; APMSE= 0.181; %PredErr= 4.866; tPP=-1.25·10-13 
(pPP=1); 
RMSE=3.040; MAE=2.517; MAPE=0.290; SEP=2.749; REP(%)=29.9702 

Set2: Ŷ(log(1/EC50)) = a + b1×logP + b2×MTD* 
where Ŷ(log(1/EC50)) = estimated log(1/EC50) - EC50 = level that produces a 50% protection of MT-4 cells against HIV-
1 cytopathic effect; logP = hydrophobicities; MTD* = minimal topological difference descriptor [34]; a = intercept; bi = 
regression coefficients 
n=79 whole dataset R2=0.754; R2

adj=0.747; s=0.68; F=116 (p=7.59·10-24); 
R2

loo=0.733; sloo=0.70; Floo=104 (p=9.75·10-23); 
RMS=0.4516; APV=0.4630; TSE=3; APMSE=0.0059; %PredErr= 4.636; tPP=1.74·10-14 
(pPP=1);  
RMSE=0.676; MAE=0.503; MAPE=0.083; SEP=0.668; REP(%)=10.546 

n=77 hi>2*(k+1)/n 
withdrawn 
(57, 61) 

R2=0.761; R2
adj=0.754; s=0.66; F=118 (p=1.01·10-23); 

R2
loo=0.714; sloo=0.68, Floo=106 (p=1.06·10-22); 

RMS=0.4275; APV=0.4386; TSE=3; APMSE=0.0058; %PredErr=4.636; tPP=-1.40·10-14 
(pPP=1);  
RMSE=0.658; MAE=0.482; MAPE=0.080; SEP=0.650; REP(%)=10.336 

n=66 Di>4/n withdrawn  
(14,34,50,51,57-
62,64,71,75) 

R2=0.899; R2
adj=0.895; s=0.41; F=279 (p=4.83·10-32) 

R2
loo=0.891; sloo=0.43, Floo=256 (p =1.45·10-31) 

RMS=0.1964; APV=0.2024; TSE=3; APMSE=0.0031; %PredErr=2.719; tPP=-2.66·10-1 
(pPP=0.7910); 
RMSE=0.412; MAE=0.353; MAPE=0.060; SEP=0.440; REP(%)=7.059 
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Set3: Ŷ(logKi) = a + b1×L + b2×B1 + b3×B3 + b4×FPSA3 + b5×ρ 
where Ŷ = estimated activity; Ki = binding affinity; L = sterimol parameter; B1, B3 = sterimol width parameters; FPSA3 
= fractional charged partial surface area; ρ = density; a = intercept; bi = regression coefficients 
n=33 whole dataset R2=0.524; R2

adj=0.436; s=0.69; F=6 (p = 0.001); 

R2
loo=0.287; sloo=0.88; Floo=1.52 (p =0.2155); 

RMS=0.4588; APV=0.5283; TSE=6; APMSE=0.0170; %PredErr=37.0833; tPP=-1.39·10-

14 (pPP=1); 
RMSE=0.690; MAE=0.494; MAPE=0.679; SEP=0.634; REP(%)=39.601 

n=31 hi>2*(k+1)/n 
withdrawn 
(1, 8) 

R2=0.555; R2
adj=0.466; s=0.65; F=6 (p=0.001); 

R2
loo=0.254; sloo=0.96; Floo=0.81 (p=0.5518); 

RMS=0.4993; APV=0.3267; TSE=5; APMSE=0.0192; %PredErr=34.5228; tPP=-1.35·10-

14 (pPP=1); 
RMSE=0.698; MAE=0.490; MAPE=0.680; SEP=0.660; REP(%)=41.023 

n=26 Di>4/n withdrawn  
(1, 2, 5, 13, 15, 21, 
30) 

R2=0.858; R2
adj=0.821; s=0.41; F=23 (p=1.87·10-7); 

R2
loo=0.767; sloo=0.52, F=13 (p=1.05·10-5); 

RMS=0.3267; APV=0.3831; TSE=3; APMSE=0.0192; %PredErr=17.0907; tPP=-2.48·10-

14 (pPP=1); 
RMSE=0.427; MAE=0.289; MAPE=0.294; SEP=0.529; REP(%)=32.175 

Set4: Ŷ(MPmg) = a + b1×RPCG+ b2×Q10 + b3×FH2O 
where Ŷ(MPmg) = estimated mutagenic potencies for M. gilvum; RPCG = (charge of the most positively charged atom) 
/ (sum of total positive charge); Q10 = charges on position 10; FH2O = desolvation free energy for waterA; a = intercept; 
bi = regression coefficients 
n=29 whole dataset R2=0.652; R2

adj=0.610; s=0.41; F=16 (p=6.38·10-6); 
R2

loo=0.477; sloo=0.51; F=7 (p=0.0013) 
RMS=0.1610; APV=0.1776; TSE=4; APMSE=0.0064; %PredErr=3.834; tPP=8.80·10-16 
(pPP=1); 
RMSE=0.4091; MAE=0.1443; MAPE=3.2906; SEP=0.3866; REP(%)=116.6703 

n=27 hi>2*(k+1)/n 
withdrawn 
(10, 26) 

R2=0.643; R2
adj=0.596; s=0.64; F=14 (p=2.34·10-5); 

R2
loo=0.495; sloo=0.46; F=7 (p=0.0016); 

RMS=0.1401; APV=0.1557; TSE=5; APMSE=0.0061; %PredErr=3.2149; tPP=3.25·10-14 
(pPP=1); 
RMSE=0.399; MAE=0.125; MAPE=1.228; SEP=0.360; REP(%)=89.281 

n=23 Di>4/n withdrawn  
(10,13,16,26) 

R2=0.568; R2
adj=0.506; s=0.34; F=9 (p=4.38·10-4); 

R2
loo=0.407; sloo=0.41; F=4 (p=0.0145); 

RMS=0.1104; APV=0.1236; TSE=4; APMSE=0.0053; %PredErr=2.6091; tPP=-2.62·10-15 
(pPP=1); 
RMSE=0.340; MAE=0.097; MAPE=2.390; SEP=0.318; REP(%)=102.864 

Set5: Ŷ(pKI) = b1×2AIC+ b2×NBR+ b3×NCA 
where Ŷ(pKi) = estimated inhibitory activity against CA II isozyme; 2AIC = average information content (order 2); 
NBR = number of benzene rings; NCA = number of C atoms; bi = regression coefficients 
n=38 whole dataset R2=0.586; R2

adj=0.533; s=0.29; F=16 (p=8.79·10-7); 
R2

loo=0.532; sloo=0.31; F=13 (p=8.99·10-6); 
RMS=0.0816; APV=0.0880; TSE=5; APMSE=0.0024; %PredErr=3.4285; tPP=-0.0453 
(pPP=0.9641); 
RMSE=0.2856; MAE=0.0751; MAPE=0.1334; SEP=0.2778; REP(%)=14.7242 

n=34 hi>2*k/n withdrawn 
(C23, C24, C25, 
C32) 
b2 - p=0.1093 

R2=0.448; R2
adj=0.380; s=0.29; F=8 (p=3.42·10-4); 

R2
loo=0.360; sloo=0.32; F=5 (p=4.12·10-3); 

RMS=0.0863; APV=0.0939; TSE=5; APMSE=0.0029; %PredErr=3.0648; tPP=0 (pPP=1); 
RMSE=0.2938; MAE=0.0787; MAPE=0.1307; SEP=0.2847; REP(%)=14.5028 

n=37 Di>4/n withdrawn  
(C8) 

R2=0.597; R2
adj=0.544; s=0.28; F=17 (p=8.60·10-7); 

R2
loo=0.541; sloo=0.31; F=13 (p=9.48·10-6); 

RMS=0.0810; APV=0.0875; TSE=5; APMSE=0.0025; %PredErr=3.3326; tPP=0 (pPP=1); 
RMSE=0.2845; MAE=0.0744; MAPE=0.1321; SEP=0.2765; REP(%)=14.5992 

Set6: Ŷ(HE-Mlog(1/MRC50)) = b1×logP+ b2×Etot 
where Ŷ(HE-Mlog(1/MRC50)) = estimated toxicity on Hydractinia echinata; logP = hydrophobicity; Etot = total 
optimized energy; bi = regression coefficients 
n=28 whole dataset R2=0.631; R2

adj=0.579; s=1.25; F=22 (p=2.81·10-6); 
R2

loo=0.550; sloo=1.42; Floo=15 (p=5.32·10-5); 
RMS=1.5644; APV=1.6761; TSE=4; APMSE=0.0626; %PredErr=3.4705; tPP=-0.0574 
(pPP=0.9546); 
RMSE=1.2507; MAE=1.4526; MAPE=2.4174; SEP=1.2274; REP(%)=35.2585 

n=26 hi>2*k/n withdrawn R2=0.692; R2
adj=0.638; s=1.19; F=27 (p=9.26·10-7); 
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(C8, C25) 
b1 - p > 0.05 

R2
loo=0.649; sloo=1.30; F=21 (p=6.28·10-6); 

RMS=1.4097; APV=1.5182; TSE=4; APMSE=0.0613; %PredErr=3.0244; tPP=0.7156 
(pPP=0.4804); 
RMSE=1.1873; MAE=1.3013; MAPE=2.3819; SEP=1.1633; REP(%)=32.9849 

n=23 Di>4/n withdrawn  
(C5, C8, C21, C25, 
C27) 
b1 - p > 0.05 

R2=0.674; R2
adj=0.611; s=1.13; F=22 (p=9.72·10-6); 

R2
loo=0.627; sloo=1.24; Floo=17 (p=5.51·10-5); 

RMS=1.2801; APV=1.3914; TSE=4; APMSE=0.0640; %PredErr=2.4588; tPP=1.5758 
(pPP=0.1267); 
RMSE=1.1314; MAE=1.1688; MAPE=3.1657; SEP=1.1054; REP(%)=31.6591 

Set7: Ŷ(logED50) = b×DCW3 
where Ŷ = estimated antiepileptic activities (dose at which 50% of individuals reach the desired effect); DCW3 = 
descriptor calculated with Monte Carlo simulation [39]; b = regression coefficient 
n=51 whole dataset R2=0.737; R2

adj=0.717; s=0.21; F=140 (p=5.65·10-16); 
R2

loo=0.729; sloo=0.21; Floo=131 (p=1.89·10-15); 
RMS=0.0427; APV=0.0435; TSE=3; APMSE=0.0009; %PredErr=3.2254; tPP=-0.1155 
(pPP=0.9085); 
RMSE=0.2066; MAE=0.0418; MAPE=0.1116; SEP=0.2066; REP(%)=12.9209 

n= hi>2*k/n withdrawn 
(none) 

no hi value higher than threshold was identified 

n=48 Di>4/n withdrawn  
(C2, C19, C26, 
C36, C46, C51) 

R2=0.838; R2
adj=0.816; s=0.15; F=228 (p=8.22·10-19); 

R2
loo=0.835; sloo=0.16; F=213 (p=1.75·10-18); 

RMS=0.0230; APV=0.0235; TSE=3; APMSE=0.0005; %PredErr=2.2033; tPP=-0.1733 
(pPP=0.8632); 
RMSE=0.1516; MAE=0.0225; MAPE=0.0892; SEP=0.1516; REP(%)=9.6954 

R2= determination coefficient; R2
adj= adjusted correlation coefficient; s= standard error of estimate; F=F-value (p= p-

valye); R2
loo= determination coefficient in leave-one-out analysis; sloo= standard error of predicted; Floo= Fisher's value 

and associated significance in leave-one-out analysis; RMS= residual mean square; APV= average prediction variance; 
TSE= total squared error; APMSE= average prediction mean squared error; %PredErr= prediction error; tPP, pPP= t-
statistics for intercept and regression coefficients; RMSE= root-mean-square error; ME= mean error; MAE= mean 
absolute error; MAPE= mean absolute percentage error; SEP= standard error of prediction; REP(%)=relative error of 
prediction 
 157 

Classification of QSAR models (full-model, model obtained after withdrawn of compound(s) with 158 

hi - hi-model and respectively with Di higher than thresholds - Di-model) according to applied 159 

validation statistics is presented in Figure 1. 160 
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Figure 1. Full model & hi-model & Di-model: classification according to validation criteria. 162 

 163 

The highest correlation coefficient was obtained in 5 cases out of 7 by the model after removal the 164 

compounds with the Cook's distance higher than threshold. The full model obtained the higher 165 
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correlation coefficient in the fourth set, while the model obtained after removal of the compounds 166 

with leverage higher than threshold obtained the higher correlation coefficient in the sixth set. The 167 

evolution of correlation coefficients is presented in Figure 2. 168 
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 169 
Figure 2. Full model - hi model - Di model: evolution of correlation coefficient 170 

 171 

Statistical significant increases in correlation coefficient have been identified in the second and 172 

third sets when both the full-model and the hi-model were compared to Di-model (Table 4). The 173 

Fisher's Chi-Square statistic (F-C-S) was applied to test if overall one model is better than other and 174 

the results are presented in Table 4. 175 

 176 

Table 4. Steiger's Z test for correlation coefficients comparisons and overall significance: results 177 

Set Full-model vs. hi-model
Z (p-value) 

Full-model vs. Di-model
Z (p-value) 

hi-model vs. Di-model
Z (p-value) 

set1 0.3760 (0.3535) 0.855 (0.1963) 0.4820 (0.3149) 
set2 0.1040 (0.4586) 2.861 (0.0021) 2.7450 (0.0030) 
set3 0.1740 (0.4309) 2.583 (0.0049) 2.3810 (0.0086) 
set4 0.0560 (0.4777) 0.465 (0.3210) 0.4040 (0.3431) 
set5 0.8100 (0.2090) 0.073 (0.4709) 0.8760 (0.1905) 
set6 0.3840 (0.3505) 0.255 (0.3994) 0.1130 (0.4550) 
set7 n.a. 1.312 (0.0948) n.a. 
    

F-C-S (p-value) 6.0139 (0.4216) 18.2757 (0.0108) 15.2359 (0.0185) 
F-C-S = Fisher's Chi-Square statistic; p-value = probability 

 178 

The leave-many-out analyses were conducted on set1 and set2 to assess the usefulness of influential 179 

identification and withdrawn on the QSARs abilities. Characteristics of the obtained models are 180 

presented in Table 5. 181 

 182 
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Table 5. Leave-many-out analysis: results. 183 

n R2 F pF n R2 F pF Set Split full-model Di-model 
Training  40 0.9875 950 2.59·10-34 38 0.9890 1020 2.32·10-33 set1 
Test 20 0.9802 223 2.89·10-13 16 0.9869 300 1.50·10-11 
Training 53 0.7539 77 5.55·10-16 45 0.9097 211 1.18·10-22 set2 
Test 26 0.7609 33 1.58·10-7 21 0.8810 67 4.77·10-9 

n = sample size; R2 = determination coefficient;  
F = Fisher's statistics; pF = significance of F statistics; 

 184 

The plot of full-model versus Di-model for set1 and set2 are presented in Figures 3 and 4. 185 
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Figure 3. Set1 full-model (left-hand) vs. Di-model (right-hand): observed/measured vs. 187 

estimated/predicted 188 
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Figure 4. Set2 full-model (left-hand) vs. Di-model (right-hand): observed/measured vs. 190 

estimated/predicted 191 
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 192 

The leave-one-out cross-validation determination coefficient for training set1 was of 0.9846 while 193 

for training set set2 was of 0.7208 when full-models were investigated. The leave-one-out cross-194 

validation determination coefficient for training set1 was of 0.9870 while for training set2 was of 195 

0.8975 when the Di-models were investigated. A statistically significant increase of correlation 196 

coefficient has been identified for the training set of the set2 in Di-model compared to full-model (Z 197 

= 2.609, p-value = 0.0045). 198 

 199 

Discussion 200 

The assessment of influential withdrawn using leverage and Cook’s distance has successfully 201 

accomplished. Seven data sets with sample sizes range from 28 (set6) to 79 (set2) were analyzed. 202 

Three linear regression models were investigated for each set included in analyzes whenever 203 

appropriate (full-model, hi-model and Di-model). The present study tried to answer to the following 204 

research question: “Hat-matrix approach is more appropriate than Cook’s distance approach to 205 

identify influential in regression analysis?”. 206 

The analysis of the obtained results revealed that in 5 out of 7 sets the correlation coefficient 207 

increase when both compounds with hi and respectively Di higher than thresholds were removed 208 

(Table 3). The number of withdrawn compounds varied from 2 to 4 for hi-model and from 1 to 13 209 

for Di-model (Table 3). In just few cases the same compound was identified as influential by both 210 

leverage and Cook’s methods: 1 compound (in set1, set2, and set3) and 2 compounds (in set set4 211 

and set6). 212 

Some independent variable proved not to have a statistically contribution to the model (see Table 213 

3): hi-model set5 (translated also to a lower determination coefficient compared to full-model) and 214 

set6 and Di-model set6 (the determination coefficient had a higher value for hi-model compared to 215 

Di-model for set6). In these cases, it is correct to construct the models without those descriptors 216 

identified with no statistically contribution to the model. With one exception represented by set4, 217 

determination coefficients for Di-models were higher than determination coefficients obtained in 218 

full-models (Table 3 and Figure 2). The highest increase of determination coefficient was observed 219 

in Di-model of set3. The difference between determination coefficient and adjusted determination 220 

coefficient varied from 0 to 0.088 (for full-model – set3), 0.089 (for hi-model – set3) and 0.063 (for 221 

Di-model – set6). The difference between determination coefficient and its corresponding value in 222 

leave-one-out analysis varied from 0.002 to 0.237 (full-model), 0.001 to 0.148 (hi-model), and from 223 

0.002 to 0.161 (Di-model). 224 

The analysis of validation statistics showed that Di-models obtained systematically better results 225 

compared to full-models (Table 3 and Figure 1). Furthermore, even if goodness-of-fit is not a good 226 
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statistics for model predictivity [40,41], no statistically significant differences between correlation 227 

coefficients obtained in full-model compared to those obtained in hi-models were identified (Table 228 

4). However, the correlation coefficients obtained by Di-models proved statistically significant 229 

higher compared to those obtained in both full-model and hi-model for set2 and set3 (Table 4). 230 

Furthermore, the F-C-S statistic showed that overall, the Di-model was better than both full-model 231 

and hi-model (p < 0.05, Table 4). The above-presented facts let to the conclusion that analysis of 232 

influential should be conducted by applying the Cook’s distance approach. 233 

The external validation of the Cook’s distance approach was furthermore assessed in leave-many-234 

out analysis on two datasets (set1 and set2), one with statistically increase of correlation coefficient 235 

(set2) and one without statistically increase of correlation coefficient (set1). Similar results are 236 

obtained when training and test sets are compared (Table 5). The significant increase of 237 

determination coefficient in both training and test sets is transmitted also in leave-many-out 238 

analyzes for the second dataset (set2), the increase being of 0.156 for training set and 0.120 for test 239 

set. The spread of point in the plots of full-model and Di-model is similar for set1 (Figure 3) but the 240 

difference are obvious when set2 is investigated (Figure 4). A reliable and valid regression model 241 

must look as set2 Di-model not as set2 full-model (Figure 4). 242 

Scientifically literature recommend not to trust a QSAR model when correlation coefficient is lower 243 

than 0.6, which known to be is an insufficient condition for assessment of predictive power of a 244 

model [42]. This analysis show that a determination coefficient < 0.6 could be significantly 245 

improved with analyses and withdrawn of influential in order to obtain a model with good 246 

performance in prediction (see Table 3, set3). In our opinion, the predictivity power of a model 247 

stands in correct application of statistical methods to identify the QSAR models. Identification of 248 

influential compound in data set could significantly improve the model and should be conducted 249 

any time when a regression analysis is desired. Fit the model with and without the influential 250 

compound(s) and look to the effect on regression characteristics (R2, R2
adj, F-value (p-value), s, 251 

regression coefficients and their significance, validation criteria presented in Table 1) as well as on 252 

the plot of the models. It is the task of a statistician to examine the influential compounds and to 253 

identify important cases before presentation of results but this task could be done by any researcher 254 

with experience in statistics. Based on the presented results, it is showed that Cook’s distance 255 

approach is more suitable to proper identification of influential in dataset and we recommend its 256 

application in linear regression analysis for QSAR models. The leverage approach could be used on 257 

the Di-model to analyze the membership of compounds in the model to the structural model domain 258 

[43]. 259 

Based on the results obtained in this study we recommend that either to accept (if leave-one-out, 260 

leave-many-out analyses and external validation sustain the model) or to reject the QSAR model 261 
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obtained after removal of influential(s) and never accept a model that contains influential 262 

compounds (their presence lead to instability of the QSAR model). 263 

 264 

 265 

Conclusion 266 

The use of leverage methodology led to improvement of QSAR models characteristic and 267 

performances. Better QSAR models were obtained when Cook’s distance approach was used 268 

compared to both full-model and hi-model. Cook’s distance approach is recommended to be used to 269 

identify influential compounds in dataset whenever the linear regression analysis for QSAR models 270 

is applied. 271 
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