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Nine selection-survival strategies were implemented in a genetic algorithm experiment, and differences in terms

of evolution were assessed. The moments of evolution (expressed as generation numbers) were recorded in a

contingency of three strategies (i.e., proportional, tournament, and deterministic) for two moments (i.e., selec-

tion for crossover and mutation and survival for replacement). The experiment was conducted for the first

20,000 generations in 46 independent runs. The relative moments of evolution (where evolution was defined as

a significant increase in the determination coefficient relative to the previous generation) when any selection-

survival strategy was used fit a Log-Pearson type III distribution. Moreover, when distributions were compared

to one another, functional relationships were identified between the population parameters, revealing a degen-

eration of the Log-Pearson type III distribution in a one-parametrical distribution that can be assigned to the

chosen variable—evolution strategy. The obtained theoretical population distribution allowed comparison of

the selection-survival strategies that were used. � 2012 Wiley Periodicals, Inc. Complexity 17: 52�63, 2012
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INTRODUCTION

T
he issue of optimizing quantitative structure�activity

relationships (QSARs) belongs to an interdisciplinary

field that includes chemistry, informatics, and biology.

The continuous accumulation of information and its orga-

nization into vast databases (e.g., PubMed, PubChem,

Genome, etc., which have been developed by the National

Institute of Health) has led to the need for efficient tech-

nologies capable of processing this huge amount of data.

Genetic algorithms (GAs) have evolved since their intro-

duction and have since become strong informatics tools

for solving difficult problems of decision, classification,

optimization, and simulation in different research areas

[1�6], including drug design [7�9] and especially QSAR

analyses [10�12]. Studies of the main operators associated

with GAs usually report only the algorithm effectiveness
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(expressed as the speed required to achieve the objective

and the closeness to the global maximum for optimiza-

tion) [13]. Therefore, different crossing operators [14],

mutation and cross operators [15], and dynamic parame-

ters [16] have been studied.

Researchers have often focused on identifying the op-

timum solution to a difficult problem using a GA [17, 18],

although the effectiveness of the GA (expressed as execu-

tion time and required memory resources) is also of in-

terest [19, 20]. New selection methods, such as combined

data-splitting feature selection [21], mirrored sampling

and/or sequential selection [22], three-dimensional fea-

ture vectors that integrate the value of the objective func-

tion, the degree and number of constraints violations

[23], and the keep-best reproduction strategy [24], have

been introduced and used to identify solutions to differ-

ent problems.

However, although it is recognized that selection plays a

central role in finding the optimal solution [23], few studies

have compared different selection strategies [25]. In the

studies that have, the efficiency of the various selection

strategies is different in different contexts. For example,

Roulette wheel selection worked more efficiently for the pro-

duction of feasible course timetables [25]. On the other hand,

rank selection proved more effective in hill-climbers experi-

ments [26], whereas the keep-best reproduction strategy per-

formed better at solving constrained ordering problems [24].

To date, we have found no studies that have compared the

different selection-survival strategies using GAs and con-

ducted comparisons for evolution on QSARs analyses.

Our research aimed to identify and assess the distribu-

tion law for the moments of evolution in multiple linear

regressions that was applied to the structure�activity rela-

tionship for the octan-1-ol/H2O partition coefficient of

polychlorinated biphenyls (PCBs). This article presents the

first comparison of different selection-survival strategies of

the distribution law for the moments of evolution using a

GA on a quantitative structure�activity problem.

MATERIALS AND METHODS

PCBs
The relationship between the octan-1-ol/H2O partition

coefficient (expressed as log Kow) and the structure of

PCBs was previously studied using two strategies to iden-

tify the number of molecular descriptor family (MDF)

descriptors that explain the link between the structure and

activity of the compounds [27]. The applied search strat-

egies were systematic (four descriptors [28]) and heuristic

(random search in i variables [29]).

QSAR and GA
We conducted an evolution experiment using a GA on

nine selection-survival strategies (TT, TD, TP, DT, DD, DP,

PT, PD, and PP, where T 5 tournament, D 5 deterministic,

and P 5 proportional to find the structure�activity rela-

tionship of the octan-1-ol/H2O partition coefficient on a

series of PCBs (Figure 1). The supervised evolution was

applied to a sample of molecular descriptors drawn from

the MDF. MDF individuals were obtained by applying a

sequence of operators (the family genome) to the molecu-

lar structures.

The molecular structures were topologically designed

and geometrically optimized using the OPLS (Orthogonal

Partial Least-Squares) molecular mechanics [30] and PM3

(Parameterized Model number 3) semiempirical methods

[31, 32] until convergence was assured less than a 1% gra-

dient. The values for the octanol/water partition coeffi-

cient of the PCBs were taken from the literature, whenever

valid measurements recorded in the same environmental

conditions were available. The supervised evolution analy-

sis was conducted using different selection-survival strat-

egies; therefore, we supplied our GA [33] with the same

input data for 46 repeated runs. The following criteria

were instituted for each selection-survival strategy: (1)

eight chromosomes were in the cultivar; (2) 20,000 was the

maximum number of generations; (3) the probability of

mutation was set to 0.05; (4) two genes were implied in

the mutation; (5) multilinear models had two variables; (6)

the determination coefficient was the parameter to be

optimized; and (7) maximum value of the determination

coefficient was the optimization objective. The moments

FIGURE 1

Workflow of the applied method.
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of evolution were recorded and further analyzed. The

results obtained after the 46 independent runs of the GA

were used to identify the distribution law of the relative

moments of evolution.

Assessment of the Distribution Law
The moments when the evolution occurred (defined as a

significant increase in the determination coefficient) were

transformed to relative data by dividing the difference

between the two consecutive generations when evolution

occurred by the time of evolution (the first of these two

generations; see Table 1 for example). The relative dura-

tions were obtained for each run (1. . .46) and for each of

the applied selection-survival strategies. A total of 11,347

moments of evolution were the input data for analyzing

the distribution law. The EasyFitXL (version 5.1) was used

to test the distribution law of the relative moments of evo-

lution as an intermediary step for the initial selection of

the probable distribution function. A total of 65 distribu-

tion laws for quantitative variables were applied in the

intermediary step. Specifically, the Kolmogorov�Smirnov

[34, 35], Anderson�Darling [36], and Chi-squared [37]

tests were used, and their associated probabilities were set

to a significance level of 5% to identify the most suitable

distribution law.

The identified probability distribution function was

validated by analyzing each pair of survival-selection strat-

egies. Furthermore, the parameters of the probability dis-

tribution function were investigated using the maximum

likelihood estimation (MLE) approach [38, 39]. This

approach was applied to reduce the inference of the pa-

rameters in the observed probabilities that were calculated

using the Kolmogorov�Smirnov [34, 35], Anderson�Darl-

ing [36], and Chi-Squared [37] statistics. Dedicated soft-

ware that controls for identified relationships among the

parameters of a probability distribution function using a

maximum likelihood approach was implemented in soft-

ware that was designed by the authors. The Pearson corre-

lation coefficient (r) [40] and the semiquantitative correla-

tion coefficient (k) [41] were used to test the association

between shape and location, which were two parameters

of the identified distribution law. The nonlinear associa-

tion between scale and location, as parameters of the

identified distribution law, was tested using the SlideWrite

software (Advanced Graphics Software, CA). Finally, a prin-

cipal components analysis (PCA) was used to isolate the

factors that can identify similarities between the statistical

parameters that are associated with the identified distribu-

tion law (Statistica software version 8, StatSoft, OK).

RESULTS AND DISCUSSION
The top three distribution laws that were identified as

being the most suitable for the relative moments of evolu-

tion are presented in Table 2.

The analysis of the results presented in Table 2 revealed

the following:

c One distribution law (Log-Pearson type III) out of 65

proved to be suitable for defining the relative moments

of evolution. The Log-Pearson type III distribution had a

risk of error greater than 1%, and in two out of three

cases, the errors exceeded 5% (see pKS and pAD, Table 2).

Therefore, the above-mentioned observation holds true

for the Log-Pearson type III distribution at a significance

level of 5.6% for the Anderson�Darling test, 7.7% for the

Kolmogorov�Smirnov test, and � 0.08% for the Chi-

Squared test.

c In accordance with the calculus method used, the Kol-

mogorov�Smirnov statistic measures the agreement

between the observation ranks, whereas the Chi-

Squared statistic measures the agreement between the

observed values.

c The agreement between the ranks of the observed rela-

tive moments of evolution and the ranks of the Log-

Pearson type III distribution is more probable than the

agreement between the observed values of the evolution

moments and the values of the Log-Pearson type III dis-

tribution. This result is expected, because the observa-

tions of all the investigated selection-survival strategies

were included in the analysis.

Therefore, the results presented in Table 2 reveal that

the Log-Pearson type III is the distribution law for the rel-

ative moments of evolution.

TABLE 1

Example Demonstrating the Transformation of the Evolution Value into a Relative Moment of Evolution

Generation number 0 15 136 188 246 528 5423 11887
Evolution moment 1 16 137 189 247 529 5424 11888
Duration until the next evolution 15 121 52 58 282 4895 6464
Relative duration according to evolution 15.0000a 7.5625b 0.3796 0.3069 1.1417 9.2533 1.1917 1.7 3 1024

a(16 2 1)/1 5 15.
b(137 2 16)/16 5 7.5625.
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The Pearson type III distribution is a particular case of

a family of distribution laws that were developed and clas-

sified in 1895 by Pearson [40]. The Pearson type III distri-

bution is a normal distribution when the parameters gov-

erning the skewness tend to infinity, making it possible to

analyze a family of processes that deviate from a normal

distribution. The Log-Pearson type III distribution is

obtained, when a log transformation is applied to popula-

tions of events that are positively skewed. Like the Fish-

er�Tippett distribution, the Log-Pearson type III distribu-

tion is defined by three continuous parameters [42]: form

(a > 0), scale (b = 0), and location (g [ R). The Log-Pear-

son type III distribution law not only found its usefulness

in environmental studies [43�50] but also has applications

in other research fields [51�55].

Our analysis further investigated all the applied selection-

survival strategies. These results are included in Table 3.

The results presented in Table3 supported the following

hypothesis: ‘‘Log-Pearson type III is the distribution law of

the relative moments of evolution regardless of selection-

survival strategies.’’ Accordingly, results presented in

Table 3 reveal that:

c The above hypothesis was not rejected at a significance

level �10%.

c The PD (Proportional-Deterministic) strategy and the TP

(Tournament-Proportional) strategy were rejected by the

Kolmogorov�Smirnov and Chi-squared tests at a signifi-

cance level �20%. This was expected, because 7.4%

error (2/27) was observed at a significance level of 20%.

c The Chi-squared statistic rejected the hypothesis with a

less than 0.08% risk of error in the overall assessment.

The risk of rejecting the null hypothesis increased dra-

matically when each selection-survival strategy was ana-

lyzed (minimum value 16%; mean value 53%).

Because a disagreement is observed in Table 2, and an

agreement is noted in Table 3, it could be concluded that

the parameters of a Log-Pearson type III distribution

depend on the selection-survival strategy. As a result, the

parameters of the Log-Pearson type III distribution were

further estimated.

The values for shape, scale, and location of the Log-

Pearson type III distribution that were applied to the rela-

tive moments of evolution are presented in Table 4.

The statistics presented in Table 5 were obtained based

on the values presented in Table4.

An association between shape and location was identi-

fied, when all the selection-survival strategies were investi-

gated (r 5 0.994, r 5 Pearson correlation coefficient). This

relationship could have been attenuated by the MLE

approach, as the strength of the relationship decreased

from 1 to 0.994. Starting with this hypothesis, the relation-

ship between shape and location was plotted for each

selection-survival strategy (Figure 2).

TABLE 2

Distribution Laws for Relative Moments of Evolution: Results

Dist

Stat

KS pKS Rank AD pAD Rank CSa pCS Rank

Log-Pearson type III 0.01197 0.07683 1 2.4264 0.05617 1 41.731 7.3 3 1025 1
Burr 0.01635 4.57 3 1023 3 6.7901 3.23 3 1024 3 46.345 1.25 3 1025 2
Burr-4P 0.01592 6.27 3 1023 2 6.0813 7.48 3 1024 2 51.408 1.71 3 1026 3

Dist 5 distribution law; Stat 5 statistics; Rank 5 the rank of statistics over all 65 alternatives; KS 5 Kolmogorov�Smirnov statistics; AD 5
Anderson�Darling statistics; CS 5 Chi-squared statistics; p 5 p-value associated with statistics.
aDegrees of freedom 5 13.

TABLE 3

The Agreement between Observations (Relative Moments of
Evolution) and the Theoretical Log-Pearson Type III Distribution

Stra

Stat

No. obs KS pKS AD pAD CS (df) pCS

TT 1379 0.02284 0.46 0.63251 0.47 12.3 (10) 0.27
TD 1429 0.01224 0.98 0.23477 0.75 3.3 (10) 0.97
TP 1318 0.02691 0.29 1.2118 0.24 14.7 (10) 0.16
DT 996 0.02845 0.39 0.73496 0.41 10.6 (9) 0.30
DD 1084 0.01919 0.81 0.34184 0.66 8.1 (10) 0.62
DP 851 0.02416 0.69 0.6234 0.47 6.9 (9) 0.65
PT 1463 0.02030 0.58 0.70531 0.43 12.5 (10) 0.25
PD 1474 0.03055 0.13 0.93998 0.33 8.7 (10) 0.56
PP 1353 0.01212 0.99 0.23201 0.75 3.6 (10) 0.97

Stra 5 survival-selection strategy; Stat 5 statistics; p 5 p-value
associated with statistics; df 5 degrees of freedom.
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The observed distributions of the relative moments of

evolution in the nine investigated selection-survival strat-

egies were compared using a series of alternative theoreti-

cal distributions. The hypothesis for the Log-Pearson type

III theoretical distribution cannot be rejected for any of

the nine selection-survival strategies. Figure 2 shows the

observed relationship established between two (shape and

location) of the three parameters (shape, location, and

scale), when the MLE method was applied to identify pop-

ulation parameters. Figure 2 illustrates the possibility of a

slight attenuation of linear dependence between the pa-

rameters in the process of maximization of the likelihood;

therefore, the points can be observed close to the line.

Two strategies, the Tournament-Tournament and the

Deterministic-Tournament, are over- and under-estimated,

respectively.

The semiquantitative correlation coefficient was also

calculated, and the results were as follows:

c For the {TP, PD, PP, PT, TD, DD, DP} selection-survival

strategies: k 5 0.998, t(7.2, k) 5 51, pt(t,5) 5 5 3 1028

(where t 5 statistics associated with the correlation

coefficient and pt 5 p-value).

c For the {TP, PD, PP, PT, TD, DD, DP, TT, DT} selection-

survival strategies: k 5 0.988, t(9,2, k) 5 17, pt(t,7) 5 5

3�1027.

The mathematical model of the linear regression analy-

sis for the data associated with the {TP, PD, PP, PT, TD,

DD, DP} selection-survival strategies (Table 4) [56] was:

b1 �aþb2 �g¼1 fromwhich b1¼SðaÞ �Sðg2Þ�SðgÞ �SðagÞ
Sða2Þ �Sðg2Þ�S2ðagÞ

b2¼SðgÞ �Sða2Þ�SðaÞ �SðagÞ
Sða2Þ �Sðg2Þ�S2ðagÞ ð1Þ

where a 5 shape of the distribution; g 5 location of the

distribution; b1 and b2 5 coefficients of the model; S 5

sum of values.

TABLE 4

Shape, Scale, and Location of the Log-Pearson Type III for the
Relative Moments of Evolution According to the MLE

SS Shape (a) Scale (b) Location (g)

TT 27.666 20.41137 9.0948
TD 140.850 20.18338 23.409
TP 37.404 20.37736 11.725
DT 81.525 20.26053 19.298
DD 211.900 20.16693 33.136
DP 294.760 20.14430 40.665
PT 92.711 20.22803 18.666
PD 48.108 20.31208 12.615
PP 73.500 20.25278 16.289

SS 5 selection-survival strategy.

TABLE 5

Statistics of the Log-Pearson Type III for the Relative Moments of
Evolution

SS l l̂ ~l r g1 g2

TT 0.645 7.18 3 1025 0.117 2.11 15.6 6.31 3 1012

TD 0.736 3.37 3 1024 0.095 4.01 74.6 3.98 3 1014

TP 0.778 3.24 3 1025 0.104 3.26 26.8 2.32 3 1013

DT 1.526 1.15 3 1024 0.156 8.91 69.6 2.78 3 1014

DD 1.528 1.09 3 1024 0.113 13.57 258.1 9.22 3 1015

DP 2.543 1.40 3 1024 0.162 26.88 443.6 3.94 3 1016

PT 0.685 2.19 3 1024 0.091 3.42 53.3 1.55 3 1014

PD 0.636 1.58 3 1024 0.101 2.50 26.5 2.44 3 1013

PP 0.759 2.65 3 1024 0.110 3.41 39.8 7.22 3 1013

Mean
l ¼ Reg

0
LP3PDFðzÞzdz

Mode @LP3PDFðl̂Þ
@l̂ ¼ 0

Median LP3CDFð~lÞ ¼ 0:5
~l ¼ LP3InvCDFð0:5Þ

Standard deviation
r ¼ Reg

0
ðz� lÞ2LP3PDFðzÞdz

Skewness g1 ¼ l3
l23=2

where

lk ¼
Reg
0
ðz� lÞkLP3PDFðzÞdz,

k > 1
Kurtosis excess g2 ¼ l4

l22
� 3

PDF 5 probability density function; CDF 5 cumulative distribution
function.

FIGURE 2

Association between shape (a) and location (g) in the family of
Log-Pearson type III curves.

56 C O M P L E X I T Y Q 2012 Wiley Periodicals, Inc.
DOI 10.1002/cplx



The statistical significance of the b1 and b2 coefficients

was calculated using Fisher’s formula [57]:

D ¼ Sða2Þ SðagÞ
SðagÞ Sðg2Þ

����
����; tðb1Þ ¼ b1ffiffiffiffiffiffiffiffiffi

SðeÞp
ffiffiffiffi
D

p
ffiffiffiffiffiffiffiffi
D11

p ;

tðb2Þ ¼ b2ffiffiffiffiffiffiffiffiffi
SðeÞp

ffiffiffiffi
D

p
ffiffiffiffiffiffiffiffi
D22

p ; D11 ¼ Sðg2Þ; D22 ¼ Sða2Þ ð2Þ

where e 5 1 2 b1 � a 2 b2 � g; t 5 Student’s statistic.

The following regression model was identified for the

shape and location of the Log-Pearson type III distribu-

tion:

Equation :�1:436310�2aþ 1:285310�1 �g¼ 1

Statistics : tð�1:436310�2Þ ¼�4:98 : tð1:285310�1Þ ¼ 6:89

p� values : ptð4:98;5Þ ¼ 4%;ptð6:89;5Þ ¼ 1%

(3)

The location parameter could be extracted from Eq. (3)

and was used to align the parameters of the Log-Pearson

type III distribution according to the MLE for each range

of observations, SSj [ {TP, PD, PP, PT, TD, DD, DP, TT, DT}

[Eq. (4)]:

XnSS j

i¼1

log LP3PDFðx;aj;bj;0:11386aj þ7:7824Þ
� �

!max :

(4)

The obtained results and the associated statistics are

presented in Table 6.

The results presented in Table 6 revealed that there was

no reason to reject the hypothesis of a linear association

between the shape and location (the parameters of the Log-

Pearson type III distribution) for the relative moments of

evolution in the series of investigated evolutions (DD, DP,

DT, PD, PP, PT, TD, TP, and TT). Moreover, the location (g)

and scale (b) proved to be associated with a power function

(see Figure 3). Consequently, the relationship presented in

Figure 3 was embedded into the Log-Pearson type III theo-

retical distribution laws, and the distribution became

degenerated with one independent statistical parameter.

The equations illustrating the association between shape

and location and between scale and location of the Log-

Pearson type III distribution parameters for the relative

moments of evolutions were obtained based on a nonlinear

regression analysis (Figure 3), as well as a linear association

(Figure 2). The obtained results are presented in Eq. (5):

a ¼ 8:77g� 68:3 b ¼ �0:14� 144g�2:57 (5)

TABLE 6

Shape, Scale, and Location of the Log-Pearson Type III for the Relative Moments of Evolution under the Assumption of a Linear Association between
the Shape and Location and the Results of Agreement

SS (n)

LP3(x; aj, bj, 0.011386a j 1 7.7824)

KS (p) AD (p) CS/df (p)Shape (a) Scale (b) Location (g) MLE

TT (n 5 1379) 58.463 20.28599 14.439 147.2 0.02991 (0.17) 1.14190 (0.26) 14.3/10 (0.16)
TD (n 5 1429) 135.98 20.18892 23.265 323.7 0.01108 (0.99) 0.19340 (0.79) 1.5/10 (1.00)
TP (n 5 1318) 41.507 20.35880 12.508 192.5 0.02707 (0.28) 1.24890 (0.23) 14.2/10 (0.16)
DT (n 5 996) 33.879 20.40104 11.640 2335.4 0.02688 (0.46) 0.52884 (0.53) 7.6/9 (0.58)
DD (n 5 1084) 249.43 20.15403 36.183 272.80 0.01865 (0.84) 0.34461 (0.66) 7.9/10 (0.64)
DP (n 5 851) 277.43 20.14866 39.370 2387.4 0.02449 (0.68) 0.61738 (0.48) 7.2/9 (0.62)
PT (n 5 1463) 83.812 20.23611 17.325 400.9 0.02255 (0.44) 0.94039 (0.33) 16.3/10 (0.09)
PD (n 5 1474) 62.578 20.27655 14.907 316.9 0.02962 (0.15) 0.98832 (0.31) 11.5/10 (0.32)
PP (n 5 1353) 73.132 20.25152 16.109 140.3 0.01343 (0.96) 0.27687 (0.71) 3.7/10 (0.96)

n 5 sample size; p 5 p-value associated with statistics.

FIGURE 3

The association between location and scale in the Log-Pearson
type III curves of evolution.
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where a 5 shape parameter; b 5 scale parameter; and g 5

location parameter.

The above-referenced equations were included in the

MLE procedure. The parameters associated with the Log-

Pearson type III distribution and their corresponding sig-

nificances are presented in Table 7.

The results presented in Table 7 revealed no justifica-

tion for rejecting the hypothesis of a linear association

between shape and location or of a nonlinear association

between scale and location. Because the hypotheses for

the above-mentioned associations were accepted, the val-

ues presented in Table 5 were subsequently modified, and

the new values are presented in Table 8.

The results presented in Table8 revealed that different

selection-survival strategies had similar statistical values.

To identify these similarities, a PCA was conducted, and

the results associated with the two main components are

presented in Figure 4. For the degenerated Log-Pearson

type III theoretical distribution (one independent param-

eter), a MLE approach was applied. The locations were

then identified, and a series of population statistics were

computed (i.e., mean, mode, median, standard deviation,

skewness, and kurtosis excess). A PCA was then con-

ducted on these population statistics, and Figure 4

depicts the analysis results. The first two factors split the

evolution strategies into four or five groups. Based on

comparisons of these population statistics, some of the

more closely related strategies are the PP (Proportional-

Proportional) and PT (Proportional-Tournament) strat-

egies, which have statistics that almost overlap, as well as

the TD (Tournament-Deterministic) and PD (Propor-

tional-Deterministic) strategies, which have statistics that

are quite similar. Paired values for location, mean, stand-

ard deviation, skewness, and kurtosis excess were identi-

fied for the DP (Deterministic-Proportional) and DD

(Deterministic-Deterministic) strategies. Likewise, paired

values for location and mode were observed for the DT

(Deterministic-Tournament) and TP (Tournament-Propor-

tional) strategies.

TABLE 7

Shape, Scale, and Location of the Log-Pearson Type III for the Relative Moments of Evolution under the Assumption of a Linear Association between
Shape and Location and a Nonlinear Association between Scale and Location, Including the Corresponding Significances

SS (n)

LP3 (x; 8.77�g j 2 68.3, 20.14 2
144�g j

22.57, g j) ? max. Significance

Shape (a) Scale (b) Location (g) MLE pKS pAD pCS

TT (n 5 1379) 82.293 20.23659 17.171 146.3 0.46a 0.09b 0.47a 0.17b 0.27 0.12b

TD (n 5 1429) 72.113 20.25562 16.011 323.9 0.98 0.98 0.75 0.74 0.97 0.77
TP (n 5 1318) 43.589 20.34725 12.758 192.4 0.29 0.30 0.24 0.19 0.16 0.10
DT (n 5 996) 33.783 20.40234 11.640 2335.3 0.39 0.47 0.41 0.52 0.3 0.55
DD (n 5 1084) 250.61 20.15404 36.364 272.80 0.81 0.88 0.66 0.66 0.62 0.47
DP (n 5 851) 222.51 20.15780 33.160 2390.5 0.69 0.14 0.47 0.15 0.65 0.21
PT (n 5 1463) 66.295 20.26890 15.347 401.3 0.58 0.68 0.43 0.46 0.25 0.36
PD (n 5 1474) 73.919 20.25189 16.216 316.8 0.13 0.08 0.33 0.24 0.56 0.44
PP (n 5 1353) 82.373 20.23645 17.180 140.2 0.99 0.90 0.75 0.64 0.97 0.80

p 5 probabilities of a random observation for KS, AD, and CS tests.
aFrom MLE independent parameters.
bFrom MLE with an independent parameter 2 g.

TABLE 8

Statistics Associated with the Log-Pearson Type III for the Relative
Moments of Evolution under the Assumption of Two Associations
between the Distribution Parameters

SS g l l̂ ~l r g 1 g 2

TT 17.171 0.737 3.28 3 1024 0.109 3.34 42.1 8.53 3 1013

TD 16.011 0.668 2.23 3 1024 0.097 3.00 39.4 7.01 3 1013

TP 12.758 0.791 5.03 3 1025 0.104 3.45 30.6 3.32 3 1013

DT 11.640 1.242 2.96 3 1025 0.162 5.15 25.3 1.97 3 1013

DD 36.364 1.583 1.13 3 1024 0.112 14.98 319.9 1.66 3 1016

DP 33.160 1.746 2.38 3 1024 0.150 13.95 206.9 5.51 3 1015

PT 15.347 0.643 1.72 3 1024 0.092 2.88 38.0 6.25 3 1013

PD 16.216 0.677 2.40 3 1024 0.098 3.04 39.9 7.27 3 1013

PP 17.180 0.738 3.29 3 1024 0.109 3.34 42.1 8.54 3 1013

g 5 location; l 5 mean; l̂ 5 mode; ~l 5 median; r 5 standard
deviation; g 1 5 skewness; and g 2 5 kurtosis excess.
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Analyses from Figure 4 reveal the following:

c The DD (Deterministic-Deterministic) and DP (Deter-

ministic-Proportional) strategies were projected along

one of the principal factors (one accounted for 68.25%

of the variance), because the values of all the statistics

were high (see Table 8).

c The DT (Deterministic-Tournament) strategy was pro-

jected along one of the principal factors that

accounted for 19.6% of the variance; the location,

mean, and standard deviation had relatively high val-

ues compared to the other investigated strategies,

whereas the values for skewness and kurtosis excess

were low.

c A group of strategies—PP (Proportional-Proportional),

TT (Tournament-Tournament), TD (Tournament-Deter-

ministic), PD (Proportional-Deterministic), and PT (Pro-

portional-Tournament)—had similar values with only

small differences among them (see Figure 4).

c The TP (Tournament-Proportional) strategy was

located with the second principal factor at a relatively

equal distance from the compact group (PP 5 Propor-

tional-Proportional, TT 5 Tournament-Tournament,

TD 5 Tournament-Deterministic, PD 5 Proportional-

Deterministic, and PT 5 Proportional-Tournament)

and the DT (Deterministic-Tournament) strategy, but

the TP strategy was in the same quadrant as the DT

strategy.

The observed probabilities were used to measure the

differences among the Log-Pearson type III curves of the

relative moments of evolution for the different selection-

survival strategies using Eq. (6):

LP3iðxÞ ¼ LP3ðx; 8:77 � gi � 68:3;�0:14� 144 � gi�2:57; giÞ
(6)

where TT 5 Tournament-Tournament (i 5 1), TD 5 Tour-

nament-Deterministic (i 5 2), TP 5 Tournament-Propor-

tional (i 5 3), DT 5 Deterministic-Tournament (i 5 4),

DD 5 Deterministic-Deterministic (i 5 5), DP 5 Deter-

ministic-Proportional (i 5 6), PT 5 Proportional-Tourna-

ment (i 5 7), PD 5 Proportional-Deterministic (i 5 8),

and PP 5 Proportional-Proportional (i 5 9).

The difference in probabilities is given by Eq. (7):

diff i;jðxÞ ¼ max 0;LP3iðxÞ � LP3jðxÞ
� �

;

Diff i;j ¼
Zminðegi ;egjÞ

0

diff i;jðxÞdx ð7Þ

where diffi,j(x) indicates that an evolution was observed at

the ‘‘x’’ relative moment of evolution for the ‘‘i’’ selection-

survival strategy, but the evolution was not observed for

the ‘‘j’’ selection-survival strategy. In other words, diffi,j(x)

is the probability of observing (during an undefined period

of time, from 0 to 8) two evolutions: one for the ‘‘ith"

selection-survival strategy, and the other for the ‘‘jth"

selection-survival strategy.

The calculated values for the diffi,j(x) function are pre-

sented in Table 9.

The results presented in Table 9 illustrate the following:

c An evolution following the Tournament-Tournament

strategy was less likely to occur if an evolution process

following the Proportional-Proportional strategy did not

occur in the same relative moment, and vice versa. The

probability of this event was less than 1% (DiffTT,PP 5

FIGURE 4

Projections of the first two factors in the PCA of similar behaviors
in the different selection-survival strategies.

TABLE 9

Differences in the Observed Probabilities of Evolutions Using the
Different Selection-Survival Strategies

Diffi,j(x) TT TD TP DT DD DP PT PD PP

TT 0.021 0.030 0.083 0.063 0.070 0.031 0.018 0.000
TD 0.020 0.030 0.099 0.061 0.084 0.010 0.003 0.020
TP 0.021 0.023 0.075 0.034 0.058 0.027 0.022 0.021
DT 0.070 0.087 0.070 0.068 0.024 0.095 0.084 0.069
DD 0.042 0.042 0.021 0.060 0.043 0.042 0.041 0.042
DP 0.052 0.068 0.049 0.020 0.047 0.075 0.065 0.052
PT 0.028 0.008 0.033 0.106 0.061 0.090 0.011 0.028
PD 0.017 0.003 0.030 0.097 0.062 0.082 0.013 0.017
PP 0.000 0.021 0.030 0.083 0.063 0.070 0.031 0.018

Diffi,j(x) 5 function defined in Eq. (7).
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DiffPP,TT 5 0.000) as shown in Figure 4 (the events

almost overlap in the compact group of the selection-

survival strategies).

c An evolution process following the Proportional-Tourna-

ment strategy was more likely to occur, if an evolution

process following the Deterministic-Tournament strat-

egy did not generate evolutions in the same relative

moments. The probability of this event was 10.6%

(DiffPT,DT 5 0.106, Table 9). As shown in Figure 4, the

Proportional-Tournament had the highest value for the

first principal component. The Deterministic-Tourna-

ment had the lowest value for the first principal compo-

nent, and the opposite event had a 9.5% probability

(DiffPT,DT 5 0.095, Table 9).

Graphical representations of the probability distribution

function (left-hand image) and of the cumulative distribu-

tion function (right-hand image) of the relative moments

of evolution for the Deterministic-Tournament and Pro-

portional-Tournament strategies are presented in Figure 5.

The Deterministic-Tournament strategy is characterized by

the lowest value for the principal component of the popu-

lation statistics, whereas the Proportional-Tournament

strategy yielded the highest positive value for the first

component. The figure reveals a shift in the probability to

induce evolution near to the relative moment of evolution

of 0.00036.

The representation of the cumulative distribution func-

tion for the Deterministic-Tournament and Proportional-

Tournament strategies on a larger relative time scale (from

0 to 1) is presented in Figure 6. As shown in Figure 6, the

Deterministic-Tournament strategy is characterized by the

lowest values (in both absolute and positive values) for the

principal component of the population statistics, whereas

the Proportional-Tournament strategy is characterized by

the highest positive value of the first component. The fig-

ure reveals a significant difference between the strategies

(approximately a 10% greater probability of the Propor-

tional-Tournament strategy relative to the Deterministic-

Tournament strategy) for lower values of the relative

moments of evolution (<1).

The difference in the occurrence of the relative

moments of evolution between the Deterministic-Tourna-

ment and Proportional-Tournament strategies based on

the results presented in Table 9 could be explained by ana-

lyzing the graphical representations of the distribution

laws (Figures 5 and 6). A 10.6% difference (DiffPT,DT 5

0.106, Table 9) in favor of the Proportional-Tournament

strategy over the Deterministic-Tournament strategy was

observed for the following event: ‘‘an evolution process by

Proportional-Tournament strategy occurred while an

evolution process by Deterministic-Tournament strategy

failed to occur in the same relative moment of time.’’ This

difference could be explained by the values for the

locations (gPT 5 15.347 and gDT 5 11.640; Table 8).

The opposite event had a probability of 9.5%

(DiffPT,DT 5 0.095, Table 9) that could be explained by

the graphical representation of the probability density

function (PDF; the Deterministic-Tournament strategy is

more productive at lower relative moments). In addition,

the Proportional-Tournament and Deterministic-Tourna-

ment strategies generated an equal number of evolutions

up to the relative moment of evolution equal to 0.00038

(Figure 5, cumulative probability function). From that

moment on, the Proportional-Tournament strategy was

likely to generate more evolutions than the Deterministic-

Tournament strategy, thus producing evolutions more

slowly than the Deterministic-Tournament strategy.

FIGURE 5

Probabilities of the relative moments of evolution: Deterministic-Tournament (DT) and Proportional-Tournament (PT) strategies expressed as a Probability
Density Function (left-hand graph) and a Cumulative Density Function (right-hand graph).
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In summary, we achieved our primary research aim by

identifying the distribution law of the relative moments of

evolution. These moments fit degeneration with one pa-

rameter of the Log-Pearson type III distribution for which

selection and survival strategies of a GA are influential fac-

tors. There are important ramifications of this finding.

First, knowing the probability distribution function makes

it possible to calculate the probability associated with a

random observation. Moreover, given the statistical param-

eter of a probability distribution function, it can then be

determined with high confidence whether an observation

is random. The results of this study show that the relative

moments of evolution follow a natural process; therefore,

their probability distribution function can be defined by

estimating one unknown parameter. Another question

arises here: ‘‘Could the investigated QSAR problem be rep-

resentative of QSAR-building in general?’’ Both selection

and survival are measures of overall survival and are cal-

culated using functions that influence the entire genetic

code. The median quality depended not only on the total

number of experimental observations but also on the

number of statistical replications that were performed (45

runs were performed for this study); therefore, our ‘‘narrow

and unique’’ problem (e.g., investigation of the probability

distribution function for just one set of compounds and

one activity) should not influence the obtained results. It

is thus expected that the moments of evolution in the

QSAR analysis will hold, even if we were to change the

descriptors. This study showed that one factor that can

change is the value of the unknown parameter of the

degenerated Log-Pearson type III probability distribution

law that characterized the evolution. Ongoing studies in

our laboratory aim to demonstrate whether the results of

this study reflect the probability distribution function of

the relative moments of evolution in other QSARs.

CONCLUSIONS
The relative moments of evolution followed the Log-Pear-

son type III law when all pairs of the selection-survival

strategies were investigated. The Log-Pearson type III dis-

tribution could not be rejected when each selection-sur-

vival strategy was analyzed separately. Furthermore,

changing the evolution strategy (i.e., selection-survival

strategy) has only one degree of freedom, as indicated by

the two dependencies given in the three degrees of free-

dom of the Log-Pearson type III distribution for the rela-

tive moments of evolution. These findings suggest that

permitting one degree of freedom (e.g., one change in the

evolution strategy) under the same environmental con-

straints will parameterize the changes to the evolution

outcome.
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FIGURE 6

Cumulative probability function of the relative moments of evolution: the Deterministic-Tournament (DT) and Proportional-Tournament (PT) strategies.
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