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Abstract 

Quantitative structure-activity/property relationships are mathematical 

relationships linking chemical structure and activity/property in a quantitative 

manner. These in silico approaches are frequently used to reduce animal 

testing and risk-assessment, as well as to increase time- and cost-effectiveness 

in characterization and identification of active compounds. The aim of our 

study was to investigate the pattern of correlation coefficients distribution 

associated to simple linear relationships linking the compounds structure with 

their activities. A set of the most common ordnance compounds found at 

naval facilities with a limited data set with a range of toxicities on aquatic 

ecosystem and a set of seven properties was studied. Statistically significant 

models were selected and investigated. The probability density function of the 

correlation coefficients was investigated using a series of possible continuous 

distribution laws. Almost 48% of the correlation coefficients proved fit Beta 

distribution, 40% fit Generalized Pareto distribution, and 12% fit Pert 

distribution. 
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Introduction 

 
The probability density function of the correlation coefficient has previously been 

studied. Fisher studied the distribution law of correlation coefficient in samples drawn from 

large populations and obtained the exact sampling distribution of correlation coefficient [1]. 

Furthermore, Fisher proved that the correlation coefficient in the sample (abbreviated as 'r') is 

greater than the correlation coefficient in the population (abbreviated as 'ρ') [1]. Therefore, it 

is consider that the sample correlation coefficient is a biased estimator of the population 

correlation coefficient; the bias decreases as sample size increases and becomes 0 when the 

population correlation coefficient is 0 [2]. The use of unbiased estimators for population 

correlation coefficient is recommended in the specialty literature (for example the Fisher's 

formula: ρEst = r/[1+(1-r2)/2] [1] – where r2 is determination coefficient – or Olkin and Pratt 

formula ρEst = r/{1+(1-r2)/[2•(n-3)]} [3] – where n is the sample size. Pearson investigated the 

distribution frequency of correlation coefficients in sample sizes of 20 and 30 measurements 

[4]. Similar research studies were conducted on small sample sizes (< 20 observations) 

extracted from normal or non-normal populations and either good or bad agreement with 

theoretical distribution was identified or not [5-7]. 

Structure activity/property relationship approaches (statistical models able to link the 

compound structure with their activity/property) have been introduced as competent modeling 

methods able to reduce animal testing and risk-assessment, as well as to increase time- and 

cost-effectiveness by guiding the selection for compounds for in vivo testing [8]. Various 

approaches are available for identifying descriptors based on the structure of compounds, 

such as comparative molecular field analysis [9], Hansch analysis [10], quantitative 

neighborhoods of atoms [11], minimum topological difference [12], comparative molecular 

field analysis and comparative molecular similarity index analysis [13], bond-level molecular 

descriptors [14], conformational sample pharmacophore [15], linear expression by 

representative energy terms [16], Molecular Descriptors Family [17, 18] Molecular 
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Descriptors Family on Vertices [19,20], characteristic and/or counting polynomials [21], etc. 

The most frequently used statistical approaches used to identify the link between the structure 

of compounds and their activity/property include linear regression as complete search [22-24] 

or heuristic search [25-28], self-consistent regression [29], logistic regression [30,31], partial 

least squares [32,33], principal component analysis [33,34], cluster analysis [30,35], 

discriminant analysis [30,36]. 

Correlation coefficient and leave-one-out correlation coefficient are the most 

frequently empirical measures of the goodness-of-fit of any QSAR (quantitative structure-

activity relationship) or QSPR (quantitative structure-property relationship) model. The 

threshold value for correlation coefficient is 0.6 while the threshold value for leave-one-out 

correlation coefficient is 0.5 [37]. Any model with both correlation coefficient and leave-one-

out correlation coefficient that exceed these thresholds are considered good models. To date, 

we have found no studies that assess the probability density function of correlation 

coefficients. In consequence, we decide to look closer on this problem. 

The aim of our study was to investigate the pattern of the distribution law for 

correlation coefficient in simple linear regressions that was applied to the structure-

activity/property relationships for thirty-one activities/properties of a small sample data set of 

ordnance compounds. 

 

 

Material and Method 

 

Compounds and Toxicities 

A sample of eight ordnance compounds with a range of toxicities on Arbacia 

punctulata (sea urchin), Dinophilus gyrociliatus (polychaete), Sciaenops ocellatus (redfish), 

Opossum shrimp (mysid), and Ulva fasciata (macro-alga) species was included in the study. 

The measurements were taken from literature [38]. Nine half maximal effective 

concentrations (EC50), eight lowest observed effect concentrations (LOEC), seven no 

observed effect concentrations (NOEC), six energies, and dipole moment (computed with 

HyperChem - v. 8, Hypercube Inc., USA) were investigated (Table 1). 

The PubChem database was used to download the structure as structure data format 

file (*.sdf). A program made by authors was used to convert the *.sdf files into HyperChem 
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file (*.hin) to prepare the molecules for modeling. A logarithmic transformation was applied 

on observed/measured toxicities and calculated properties to assure the normality of data, 

criterion needed to conduct the linear regression analysis [39,40]. 

 

Table 1. Ordnance compounds and associated toxicities / properties. 
CID 

Act/Prop 8461a 11813b 8376c 7452d 7434e 8490f 10178g 6954h 

EC50SF 68.00 n.a. 258.00 84.00 n.a. n.a. 3.00 349.00 
EC50SED 51.40 6.70 12.00 92.00 1.30 n.a. 0.08 281.00 
EC50AS 2.50 6.70 2.50 0.85 0.08 12.00 0.67 415.00 
EC50AGL 1.70 2.90 0.76 0.41 0.05 8.10 0.34 94.00 
EC50AGCN 2.10 4.20 1.40 0.45 0.06 9.80 0.40 118.00 
EC50LS 21.00 13.00 7.70 15.00 2.10 n.a. 0.06 265.00 
EC50PL 5.70 2.10 1.80 3.70 0.60 26.00 0.02 155.00 
EC50RLs 48.00 34.00 8.20 46.00 1.40 n.a. 1.80 127.00 
EC50MS 5.40 5.60 0.98 7.10 1.30 n.a. 1.30 13.00 
NOECSF 39.00 23.00 103.00 84.00 35.00 n.a. 75.00 178.00 
NOECSED 18.00 n.a. 2.10 n.a. 0.24 75.00 0.04 178.00 
NOECSG 0.94 2.20 1.70 0.30 0.05 9.20 0.50 169.00 
NOECAS 9.50 14.60 6.10 9.70 1.20 49.00 0.03 199.00 
NOECAGL n.a. n.a. 1.40 2.40 0.35 11.90 0.02 108.00 
NOECRLs 34.60 13.70 6.30 25.20 0.99 68.00 1.20 97.00 
NOECMS 3.60 5.00 0.65 5.20 0.96 47.00 1.10 9.20 
LOECSF 75.00 45.00 n.a. 110.00 48.00 n.a. 0.60 352.00 
LOECSED 39.00 5.00 9.10 84.00 0.48 n.a. 0.08 352.00 
LOECSG 1.80 4.70 3.40 0.65 0.09 15.70 1.00 336.00 
LOECAGL 0.48 1.20 0.21 0.21 0.05 5.00 0.25 92.00 
LOECAS 19.00 29.60 11.60 19.60 2.40 n.a. 0.06 379.00 
LOECPL 2.40 1.80 2.80 4.40 0.61 23.70 0.03 198.00 
LOECRLs 66.80 32.00 10.80 49.60 2.00 n.a. 2.60 187.00 
LOECMS 6.80 9.80 1.34 9.70 1.88 n.a. 2.00 20.60 
OPLSSAE -59574 -59574 -78558 -56262 -75246 -81679 -102472 -82536 
OPLSSBE -1947 -1942 -2111 -1665 -1833 -1756 -2474 -1937 
OPLSSCE 226212 229560 324933 192456 282678 356017 465605 327194 
OPLSSEE -287733 -291075 -405601 -250382 -359757 -439452 -570551 -411667 
OPLS_DM 5.43 3.51 1.52 4.84 0.00 6.97 2.85 1.53 
OPLS_HF 25.97 31.15 42.38 32.95 44.67 104.87 23.79 0.96 
OPLS_TE -61521 -61516 -80668 -57927 -77079 -83435 -104947 -84472 
CID = Chemical IDentifier (PubChem, http://pubchem.ncbi.nlm.nih.gov/); Prop = property; 
IUPACs: a = 1-methyl-2,4-dinitrobenzene; b = 2-methyl-1,3-dinitrobenzene; c = 2-methyl-1,3,5-trinitrobenzene; d = 1,3-dinitrobenzene; e = 
1,3,5-trinitrobenzene; f = 1,3,5-trinitro-1,3,5-triazinane; g = N-methyl-N-(2,4,6-trinitrophenyl)nitramide; h = 2,4,6-trinitrophenol; 
EC50 (half maximal effective concentration) = the effective concentration of toxin in aqueous solution that produces a specific measurable 
effect in 50% of the test organisms within the stated study time; SF = Arbacia punctulata fertilization; SED = Arbacia punctulata 
embryological development; AS = Ulva fasciata survival; AGL = Ulva fasciata germling length; AGCN = Ulva fasciata germling cell 
number; LS = Sciaenops ocellatus larvae survival; PL = Dinophilus gyrociliatus laid eggs/female; RLs = Sciaenops ocellatus larvae 
survival; MS = Opossum shrimp juveniles survival; SG = Arbacia punctulata germination; 
NOEC (No Observed Effect Concentration) = highest concentration of toxicant to which organisms are exposed in a full or partial life-cycle 
test, that determine no observable adverse effects on the test organisms; LOEC (Lowest Observed Effect Concentration) = lowest 
concentration of toxicant to which organisms are exposed in a full or partial life-cycle test, which causes adverse effects on the test 
organisms; OPLSSAE = isolated atom energy from semi-empirical method; OPLSSBE = energy relative to isolated atoms; OPLSSCE = 
core-core interaction energy; OPLSSEE = electronic energy for a semi-empirical calculation; OPLS_DM = dipole-moment; OPLS_HF = 
heat-of-formation; OPLS_TE = total-energy; n.a. = not available. 
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Descriptor Calculations and Models Identification 

The workflow applied for compounds modeling and probability density function 

analysis is briefly presented in Figure 1. 

 
Figure 1. Workflow of analysis of probability density function of correlation coefficients 

(where InvCDF = inverse cumulative distribution function; D = descriptor; Y = observed 
activity / calculated property; JB = Jarque Berra statistic (Jarque and Bera, 1981); n = 

sample size; CV = coefficient of variation; r2 = determination coefficient; r = correlation 
coefficient; min = minimum value). 

 

Ordnance compounds modeling represented first step in our analysis. The 3D structure 

of the molecules was created and geometrically optimized using HyperChem. The geometry 

of compounds was optimized by applying the Austin method [41], Polak-Ribiere algorithm 
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using a program made by one of the authors [42]. 

Calculation of MDFV descriptors represented the second step conducted in our 

analysis. The structural information of investigated ordnance compounds was translated into 

molecular descriptors using the MDFV approach (Molecular Descriptors Family on Vertices 

cut, first reported in [19]). MDFV is a method based on vertices that implement 8 features as 

detailed in Table 2. 

 

Table 2. Feature of the MDFV descriptors. 
Feature No. Space Remarks / Values 
Distance metric 2 {T, G} Values: T (topological distance), G (geometric distance) 
Atomic property 7 {C, H, M, E, Q, L, A} Values: C (cardinality), H (number of hydrogen atoms adjacent to the 

investigated atom), M (relative atomic mass), E (electronegativity), Q 
(atomic partial charge, Extended Hückel energy [20]), L (melting 
point under normal temperature and pressure conditions), A 
(electronic affinity) 

Interaction operator 58 {J, j, O, o, P, p, Q, q, R, 
r, K, k, L, l, M, m, N, n, 
W, w, X, x, Y, y, Z, z, S, 
s, T, t, U, u, V, v, F, f, G, 
g, H, h, I, i, A, a, B, b, C, 
c, D, d, 0, 1, 2, 3, 4, 5, 6, 
7} 

Values: J=D, j=1/D, O=P1, o=1/P1, P=P2, p=1/P2, Q=P1P2, q=1/P1P2, 
R=√(P1P2), r=1/√(P1P2), K=P1D, k=(1/P1)D, L=P2D, l=(1/P2)D, 
M=P1P2D, m=(1/P1P2)D, N=√(P1P2)D, n=(1/√(P1P2))D, W=P1D2, 
w=(1/P1)D2, X=P2D2, x=(1/P2)D2, Y=P1P2D2, y=(1/P1P2)D2, 
Z=√(P1P2)D2, z=(1/√(P1P2))D2, S=P1/D, s=(1/P1)/D, T=P2/D, 
t=(1/P2)/D, U=P1P2/D, u=(1/P1P2)/D, V=√(P1P2)/D, v=(1/√(P1P2))/D, 
F=P1/D2, f=(1/P1)/D2, G=P2/D2, g=(1/P2)/D2, H=P1P2/D2, 
h=(1/P1P2)/D2, I=√(P1P2)/D2, i=(1/√(P1P2))/D2, A=P1/D3, a=(1/P1)/D3, 
B=P2/D3, b=(1/P2)/D3, C=P1P2/D3, c=(1/P1P2)/D3, D=√(P1P2)/D3, 
d=(1/√(P1P2))/D3, 0=P1/D4, 1=(1/P1)/D4, 2=P2/D4, 3=(1/P2)/D4, 
4=P1P2/D4, 5=(1/P1P2)/D4, 6=√(P1P2)/D4, 7=(1/√(P1P2))/D4, where D 
= distance operator and P = atomic property 

Overlapping 
interaction at 
fragment/vertices 
level 

7 {A, a, I, i, F, P, C } 

Overlapping 
interaction at 
molecule level 

7 {A, a, I, i, F, P, C } 

Values: A (maximum value), a (maximum value of the sum of 
squares on the X, Z, and Y projections), I (minimum value), i 
(minimum value of the sum of squares on the X, Z, and Y 
projections), F (projection overlaps on axes), P (mediate the unity 
value of the descriptor on the X, Z, or Y projections and overlap the 
descriptors values), C (aggregate value in the center of descriptor) 

Interaction for each 
overlap and per 
atom/fragment 

10 {f, F, c, C, p, P, a, A, i, I} Values: f (vectorial overlap of descriptors per fragment), F (vectorial 
overlap of descriptor per atom), c (aggregate in the center of 
descriptor per fragment), C (aggregate in the center of descriptor per 
atom), p (mediates the unity value of the descriptor on the X, Z, or Y 
projections and overlaps the descriptors values per fragments), P 
(mediates the unity value of the descriptor on the X, Z, or Y 
projections and overlaps the descriptors values per atom), a (absolute 
maximum value of descriptors - interactions in the fragment), A 
(absolute maximum value of descriptors - interaction of the fragment 
with the atom), i (absolute minimum value of descriptors - 
interactions in the fragment), I (absolute minimum value of 
descriptors - interaction of the fragment with the atom) 

Expression unit 2 {D, d} Values: D (value of molecular descriptor), d (value of the descriptor 
projection on the X, Z, and Y axes) 

Linearization 
operator 

3 {I, R, L} Values: I (identity), R (reciprocal), L (logarithm) 
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The MDFV family comprises 2387280 descriptors (2×7×58×7×7×10×2×3) for any 

sample of compounds [19,20]. Filtration of the MDFV descriptors in order to obtain the pool 

of adapted descriptors represented the third step in our analysis. The following properties 

defined an adapted descriptor: 

 (be "alive"): Real descriptor values for all compounds in the data set (the imposed range 

was from 10-14 to 1014). 

 (be "useful"): Variability-Determination-Normality. The variability was defined as CV(D) 

≥ 10%·CV(Y), where CV = coefficient of variation, D = value of descriptor, Y = value of 

observed/measured/calculated activity/property. Determination was defined as r2(D,Y) ≥ 

0.10, where r2 = determination coefficient, while normality was defined using the 

criterion - JB(D) ≥ JB(Y), where JB = Jarque Berra statistic. 

 (be "unique"): Distinct τc(D,Y) or r2(D1,D2) ≤ 0.9, where τc = Kendall tau c correlation 

coefficient [44]. 

All descriptors that accomplished simultaneously the above-presented criteria and had 

a high determination coefficient calculated between value of descriptor and activity/property 

were included in the pool of adapted descriptors. The search space was furthermore limited 

from adapted descriptors to probable descriptors. A probable descriptor was defined as that 

descriptor able to correlate enough with activity/property under the assumption of simple 

linear association hypothesis (non-zero correlation coefficient) at a significance level of 5%. 

Probable descriptors were obtained in the fourth step of our analysis. 

The obtained QSAR/QSPR linear models were stored in a database and were classified 

according to the value of correlation coefficient r(Y,Ŷ) (where , r=r(Y,Ŷ)=|r(Y,D)|, Y = 

measured activity / calculated property, Ŷ = estimated activity/property, Ŷ=a·D+b - D = value 

of MDFV descriptor, a and b = coefficient of the simple linear regression). The following data 

were stored for each model: value of correlation (r(Y,Ŷ)) and determination coefficient 

(r2(Y,Ŷ)), t-value associated to significance of regression coefficients (tmin = 

InvCDFStudent_t(5%, n-2), where InvCDF = inverse of cumulative distribution function; n = 

sample size), and the probability associated to t-value (p-value). 

 

Investigation of the Distribution Law 

Distribution function of the obtained correlation coefficients was conducted at a 

significance level of 1% in the fifth step of our analysis. A search for continuous distribution 
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functions was conducted on correlation coefficients (EasyFit Professional, version 5.1, 

MathWave Technologies). Kolmogorov-Smirnov [45] (abbreviated as K-S), Anderson-

Darling [46] (abbreviated as A-D) and/or Chi-Squared [47] (abbreviated C-S) statistics were 

used to measure the departure between observation and a theoretical probability density 

function (PDF). Fisher method (Fisher's Chi-Squared, abbreviated as F-C-S) was used to 

identify the most suitable distribution law [48]. 

 

 

Results and Discussion 

 
The population of adapted descriptors was obtained for the investigated ordnance 

compounds starting from the pool of the 2387280 MDFV descriptors. The number of adapted 

descriptors varied from 0.01% (for LOEC(PL) - lowest observed effect concentration of 

polychaete laid eggs/female) to 0.55% (for OPLSSBE - energy relative to isolated atoms) (see 

Table 3). 

 
Table 3. MDFV descriptors: from adapted descriptors to probable descriptors. 

Act/Prop No of adapted 
descriptors 

No of probable 
descriptors n Act/Prop No of adapted 

descriptors 
No of probable 
descriptors n

EC50AS 1778 218 8 LOECSG 1902 183 8
EC50AGCN 579 71 8 NOECAGL 1796 171 8
EC50AGL 824 102 8 NOECMS 2403 515 8
EC50LS 3754 546 7 NOECPL 382 43 6
EC50MS 5329 818 7 NOECAS 9417 1154 8
EC50PL 944 208 8 NOECRLs 4167 559 8
EC50RLs 4908 702 7 NOECSED 2550 275 6
EC50SED 3588 478 7 NOECSF 1255 37 7
EC50SF 2262 179 5 OPLSSAE 2466 800 8
LOECAGL 6447 647 8 OPLSSBE 13060 2801 8
LOECAS 5270 764 7 OPLSSCE 4847 1543 8
LOECMS 4444 637 7 OPLSSEE 4309 1403 8
LOECPL 165 38 8 OPLS_HF 1485 308 8
LOECRLs 3285 431 7 OPLS_TE 2484 781 8
LOECSED 2484 294 7 OPLS_DM 3917 722 8
LOECSF 7169 946 6     
EC50 (half maximal effective concentration) = the effective concentration of toxin in aqueous solution that produces a specific measurable 
effect in 50% of the test organisms within the stated study time;  
NOEC (No Observed Effect Concentration) = highest concentration of toxicant to which organisms are exposed in a full or partial life-cycle 
test, that determine no observable adverse effects on the test organisms; 
LOEC (Lowest Observed Effect Concentration) = lowest concentration of toxicant to which organisms are exposed in a full or partial life-
cycle test, which causes adverse effects on the test organisms; n = sample size; 
AS = Ulva fasciata survival; AGCN = Ulva fasciata germling cell number; AGL = Ulva fasciata germling length; LS = Sciaenops 
ocellatus larvae survival; MS = Opossum shrimp juveniles survival; PL = Dinophilus gyrociliatus laid eggs/female; RLs = Sciaenops 
ocellatus larvae survival; SED = Arbacia punctulata embryological development; SF = Arbacia punctulata fertilization; SG = Arbacia 
punctulata germination; OPLSSAE = isolated atom energy from semi-empirical method; OPLSSBE = energy relative to isolated atoms; 
OPLSSCE = core-core interaction energy; OPLSSEE = electronic energy for a semi-empirical calculation; OPLS_DM = dipole-moment; 
OPLS_HF = heat-of-formation; OPLS_TE = total-energy 
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The adapted descriptors (the sample containing all thirty-one investigated activities 

and properties) proved fit Fisher-Tippett (Figure 2), as this distribution law was neither 

rejected by any of the three used statistics nor by the overall statistic (Fisher's Chi-Squared 

statistic, Table 4). Fisher-Tippett distribution [49] is an extreme value distribution on 

independent and identically distributed random variables on large sample sizes (e.g. 

thousands observations). 

 

Table 4. Fisher-Tippett distribution fit the number of adapted descriptors? 
Statistic Statistic-value p-value 
Kolmogorov-Smirnov 0.0804 0.9786 
Anderson-Darling 0.1545 0.8750 
Chi-Squared 1.0324 0.9049 
Fisher's Chi-Squared 0.2551 0.9682 

 

 
Figure 2. Fisher-Tippett distribution for number of adapted descriptors (x = number of 
adapted descriptors; f(x) = probability density function; Avg = arithmetic mean; Min= 
minimum; Max = maximum; λ, β, and k = parameters of Fisher-Tippett distribution; 

LOECPL = Lowest Observed Effect Concentration - Dinophilus gyrociliatus laid 
eggs/female; OPLSSBE = energy relative to isolated atoms). 

 

The number of probable descriptors varied from 2.95% (for NOEC(SF) - no observed 

effect concentration of sea urcin fertilization) to 32.56% (for OPLSSEE - electronic energy 

for a semi-empirical calculation) relative to the number of adapted descriptors. Fisher-Tippet 

distribution law was identified the most suitable also for probable descriptors (Figure 3). The 

Fisher-Tippet distribution of probable descriptors was neither rejected by any of the three 
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used statistics nor by the Fisher's Chi-Squared statistic (Table 5). 

 

Table 5. Fisher-Tippett distribution fit the number of probable descriptors? 
Statistic Statistic-value p-value 
Kolmogorov-Smirnov 0.0831 0.9708 
Anderson-Darling 0.3105 0.7410 
Chi-Squared 2.7506 0.4317 
Fisher's Chi-Squared 1.1694 0.7604 

 

 
Figure 3. Fisher-Tippett distribution law for number of probable descriptors (x = number of 

probable descriptors; f(x) = probability density function; Avg = arithmetic mean, Min= 
minimum; Max = maximum; λ, β, and k = parameters of Fisher-Tippett distribution; 

NOECSF = No Observed Effect Concentration of Arbacia punctulata fertilization; OPLSSBE 
= energy relative to isolated atoms). 

 

The probability sub-space of probable descriptors was obtained from the probability 

distribution laws of both adapted and probable descriptors (coordinates: probability vs. 

number of descriptors, Figure 4). The probability sub-space of probable descriptors must be 

located under one of the Probable(x)/q curves (where q = a quantity that must be estimated) 

which is located under the probability curve of the adapted descriptors (Adapted(x)) (Figure 

4). Probable(x)/6, Probable(x)/9 and Probable(x)/12 curves were obtained taking into 

consideration that probable descriptors are a subset of adapted descriptors, which is also 

reflected in the probability space (Adapted(x)=CDFF-T(x) for PDFF-T(x) in Figure 2, and 

Adapted(x)=CDFF-T(x) for PDFF-T(x) in Figure 3). 
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Figure 4. Probability space of adapted and probable descriptors. 

 

The first probability density function lower than the probability density function of 

adapted descriptors is Probable(x)/9 as seen in Figure 4. The probability density function of 

Probable(x)/6 is over the probability density function of Adapted(x), which could be 

explained by Fisher’s rule regarding the correlation coefficient "r generally greater than ρ" 

[1]. Thus, almost 33% of correlation coefficients from "probable" descriptors had greater 

values than the threshold value while the ρ values (true correlation values in the population) 

were smaller than the threshold value (critical 0.05% value - Student t distribution). 

Therefore, almost 33% of regressions/correlations passed the Student t-test (statistically 

significant correlation coefficients). However, this does not mean that they are real models of 

associations (not statistically significant ρ values). 

Several distribution laws were identified as being most suitable for the correlation 

coefficients: Beta, Fisher-Tippett, Generalized Logistic, Generalized Pareto, Johnson SB, 

Kumaraswamy, Log-Pearson 3, Pert, Power Function, Reciprocal, Triangular, Uniform, and 

Wakeby. The analysis of suitability of above-presented distribution laws at a significance 

level of 0.1% are presented in Table 6 for investigated properties and in Table 7 for 

investigated activities. The properties were not further investigated with regard to the 

distribution of the correlation coefficients since no agreement was identified when 

distribution laws of correlation coefficient in structure-property models were analyzed (see 

Table 6). This was the reason why the properties were no further investigated. 
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Table 6. Distribution laws of correlation coefficient (α = 0.1%): properties of ordnance 

compounds. 
Prop 

PDF OPLSSAE OPLSSBE OPLSSCE OPLSSEE OPLS_DM OPLS_HF OPLS_TE

Beta 1 0 0 1 0 0 1 
Fisher-Tippett 0 0 0 0 0 0 0 
Gen. Logistic 0 0 0 0 0 0 0 
Gen. Pareto 0 0 0 0 0 0 0 
Johnson SB 0 1 0 0 0 0 0 
Kumaraswamy 0 0 1 1 1 0 1 
Log-Pearson 3 0 0 0 0 0 0 0 
Pert 0 0 0 0 0 0 0 
Power Function 0 0 0 0 0 0 0 
Reciprocal 0 0 0 0 0 0 0 
Triangular 0 1 0 0 0 0 0 
Uniform 0 0 0 0 0 0 0 
Wakeby 0 0 0 0 1 0 0 
1 = fit; 0 = not fit; PDF = probability density function; Gen. Logistic = Generalized Logistic; Gen. Pareto = 
Generalized Pareto;  
OPLSSAE = isolated atom energy from semi-empirical method; OPLSSBE = energy relative to isolated atoms;  
OPLSSCE = core-core interaction energy; OPLSSEE = electronic energy for a semi-empirical calculation;  
OPLS_DM = dipole-moment; OPLS_HF = heat-of-formation; OPLS_TE = total-energy; n.a. = not available 

 

Table 7. Distribution law of correlation coefficients: activities of ordnance compounds. 
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 ∑ 
Beta 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 0 16
Fisher-Tippett 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 12
Gen. Logistic 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 8 
Gen. Pareto 0 1 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1 0 1 1 14
Johnson SB 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 18
Kumaraswamy 1 0 1 0 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 10
Log-Pearson 3 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 11
Pert 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 15
Power Function 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 4 
Reciprocal 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 2 
Triangular 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 0 15
Uniform 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 
Wakeby 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 11
1 = fit; 0 = not fit;  
EC50 (half maximal effective concentration) = the effective concentration of toxin in aqueous solution that produces a 
specific measurable effect in 50% of the test organisms within the stated study time; SF = Arbacia punctulata fertilization; 
SED = Arbacia punctulata embryological development; AS = Ulva fasciata survival; AGL = Ulva fasciata germling length; 
AGCN = Ulva fasciata germling cell number; LS = Sciaenops ocellatus larvae survival; PL = Dinophilus gyrociliatus laid 
eggs/female; RLs = Sciaenops ocellatus larvae survival; MS = Opossum shrimp juveniles survival; SG = Arbacia 
punctulata germination; 
NOEC (No Observed Effect Concentration) = highest concentration of toxicant to which organisms are exposed in a full or 
partial life-cycle test, that determine no observable adverse effects on the test organisms; LOEC (Lowest Observed Effect 
Concentration) = lowest concentration of toxicant to which organisms are exposed in a full or partial life-cycle test, which 
causes adverse effects on the test organisms; 
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Nine distribution laws out of 13 proved to be suitable for defining the correlation 

coefficients for quantitative structure-activity models (Table 7). The following distribution 

laws were withdrawn from the analysis since their results in terms of fit were covered by 

other distribution laws: Uniform (Uniform ⊆ Triangular), Generalized logistic (Generalized 

Logistic ⊆ Fisher-Tippett), and Reciprocal and Power probability density functions 

(Reciprocal ⊆ Power Function ⊆ Generalized Pareto). 

The smallest set of distribution laws able to cover (maximum in convergence) the 

investigated activities of ordnance compounds was searched. No pairs of PDFs able to cover 

the distribution laws of correlation coefficients for QSARs models were identified. The 

largest coverage was provided by Generalized Pareto & Johnson SB; Generalized Pareto & 

Pert; Generalized Pareto & Beta; and Beta & Johnson SB, but in all cases at least two no fit 

were presented (Table 7). The following sets of three distribution laws could be suitable 

alternatives since they are able to cover the space of the investigated toxicities of ordnance 

compounds (Table 8): Beta & Fisher-Tippett & Generalized Pareto, Beta & Fisher-Tippett & 

Johnson SB, Beta & Generalized Pareto & Kumaraswamy, Beta & Generalized Pareto & 

Log-Pearson 3; and Beta & Generalized Pareto & Pert. A detailed analysis could be found in 

Supplementary Material. 

 

Table 8. Joined probability density functions (PDFs): summary statistic and overall 

probability. 

PDFs association Parameters
(Param) ∑ Agreements

(Agr) ∑ Agr/Param Joined F-C-S 
value (df=24)/p 

Beta & Fisher-Tippett & Generalized Pareto 4 3 3 10 16 12 14 42 4.20 5.486/0.999969 
Beta & Fisher-Tippett & Johnson SB 4 3 4 11 16 12 18 46 4.18 4.677/0.999993 
Beta & Generalized Pareto & Kumaraswamy 4 3 4 11 16 14 10 40 3.64 8.092/0.998993 
Beta & Generalized Pareto & Log-Pearson 3 4 3 3 10 16 14 11 41 4.10 5.933/0.999936 
Beta & Generalized Pareto & Pert 4 3 3 10 16 14 15 45 4.50 6.854/0.999760 
F-C-S = Fisher’s Chi-Squared; df = degrees of freedom; p = probability 
 

The analysis of the results presented in Table 8 reveals the following: 

 Beta & Generalized Pareto & Pert is the most suitable for correlation coefficients of 

QSAR models both in terms of agreements and parameters ratio (the ratio had the highest 

value). Therefore, the results presented in Table 8 reveal that Beta & Generalized Pareto 

& Pert association could comprise the distribution laws for the correlation coefficients of 

QSAR models. 
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 Beta & Generalized Pareto & Kumaraswamy is unacceptable in terms of 

agreements/parameters ratio (the ratio had the lowest value). Furthermore, this set of 

PDFs also has the lowest p-value associated to Fisher’s Chi-Squared joined statistic. 

 The Fisher’s Chi-Squared joined statistic was not able to discriminate between PDFs. 

Our analysis further investigated if the identified PDFs could also be used to partition 

the investigated activities. Total energy property was also included in this analysis since it 

was the only property that proved fit one out of 3 distribution laws from the most suitable 

association, Beta distribution (Table 6). 

The Kolmogorov-Smirnov, Anderson-Darling, and Chi-Squared probabilities were 

calculated for Beta, Generalized Pareto and Pert distribution laws and the results are presented 

in Table 9. 

 
Table 9. Beta, Generalized Pareto, and Pert distribution laws: statistical significance results. 

Distribution Beta Gen. Pareto Pert 
p-value pK-S pA-D pC-S pK-S pA-D pC-S pK-S pA-D pC-S 

EC50(SF) 0.997 0.008 0.000 0.998 0.870 0.991 0.679 0.413 0.633 
EC50(SED) 0.557 0.608 0.851 0.897 0.007 0.000 0.262 0.110 0.087 
EC50(AS) 0.268 0.176 0.136 0.487 0.000 0.000 0.254 0.183 0.166 
EC50(AGL) 0.567 0.354 0.277 0.791 0.343 0.251 0.535 0.249 0.041 
EC50(AGCN) 0.746 0.004 0.000 0.976 0.724 0.879 0.628 0.452 0.473 
EC50(LS) 0.976 0.665 0.931 0.955 0.006 0.000 0.020 0.009 0.002 
EC50(PL) 0.996 0.008 0.000 0.597 0.446 0.973 0.068 0.035 0.067 
EC50(RLs) 0.318 0.488 0.966 0.658 0.000 0.000 0.327 0.245 0.690 
EC50(MS) 0.911 0.741 0.627 0.965 0.716 0.689 0.014 0.005 0.005 
NOEC(SF) 0.895 0.390 0.794 0.458 0.292 0.200 0.159 0.112 0.018 
NOEC(SED) 0.993 0.758 0.934 0.999 0.806 0.957 0.110 0.090 0.130 
NOEC(AG) 0.262 0.002 0.000 0.668 0.000 0.000 0.748 0.616 0.360 
NOEC(AS) 0.970 0.007 0.000 0.927 0.474 0.945 0.030 0.016 0.061 
NOEC(PL) 0.993 0.575 0.838 0.947 0.593 0.945 0.182 0.126 0.342 
NOEC(RLs) 0.920 0.794 0.831 0.820 0.000 0.000 0.614 0.424 0.621 
NOEC(MS) 0.697 0.595 0.684 0.569 0.000 0.000 0.391 0.523 0.641 
LOEC(SF) 0.927 0.771 0.935 0.997 0.000 0.000 0.027 0.017 0.022 
LOEC(SED) 0.828 0.625 0.519 0.851 0.634 0.309 0.363 0.281 0.205 
LOEC(SG) 0.235 0.001 0.000 0.557 0.000 0.000 0.587 0.487 0.558 
LOEC(AGL) 0.902 0.652 0.948 0.992 0.000 0.000 0.290 0.221 0.233 
LOEC(AS) 0.624 0.641 0.698 0.712 0.533 0.399 0.001 0.003 0.021 
LOEC(PL) 0.984 0.414 0.933 0.950 0.658 0.958 0.431 0.445 0.396 
LOEC(RLs) 0.494 0.569 0.550 0.943 0.614 0.837 0.370 0.199 0.586 
LOEC(MS) 0.931 0.006 0.000 0.749 0.358 0.983 0.050 0.008 0.007 
OPLSSAE 0.384 0.175 0.057 0.986 0.000 0.000 0.001 0.000 0.000 
K-S = Kolmogorov-Smirnov statistic; A-D = Anderson-Darling statistic; C-S = Chi-Squared statistic; 
EC50 (half maximal effective concentration) = the effective concentration of toxin in aqueous solution that produces a specific measurable 
effect in 50% of the test organisms within the stated study time SF = sea urchin fertilization; SED = sea urchin embryological development; 
SG = sea urcin germination; AG = macro-alga survival; AGL = macro-alga germling length; AGCN = macro-alga germling cell number; 
LS = redfish larvae survival; PL = polychaete laid eggs/female; RLs = redfish larvae survival; MS = mysid juveniles survival; 
NOEC (No Observed Effect Concentration) = highest concentration of toxicant to which organisms are exposed in a full or partial life-
cycle test, that determine no observable adverse effects on the test organisms; 
LOEC (Lowest Observed Effect Concentration) = lowest concentration of toxicant to which organisms are exposed in a full or partial life-
cycle test, which causes adverse effects on the test organisms; OPLSSAE = isolated atom energy from semi-empirical method; 
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Classification of investigated activities and of total energy was conducted applying the 

maximum likelihood maximization criterion (pK-S×pA-D×pC-S = max). The result is plotted in 

Figure 5 while associated statistics are presented in Table 10. 

 

Table 10. Distribution laws of correlation coefficients for classification of investigated 

ordnance compounds according to the maximum likelihood criterion. 

     K-S A-D C-S 
Act/Prop Beta GPareto Pert   Beta GPareto Pert Beta GPareto Pert Beta GPareto Pert
EC50SF 0.006 0.000 0.008  0 1 0 0 1 0 0 1 0 
EC50SED 0.000 0.621 0.134  0 1 0 1 0 0 1 0 0 
EC50AG 0.056 0.068 0.005  0 1 0 0 0 1 0 0 1 
EC50AGL 0.604 0.000 0.000  0 1 0 1 0 0 1 0 0 
EC50AGCN 0.423 0.476 0.000  0 1 0 0 1 0 0 1 0 
EC50LS 0.000 0.259 0.000  1 0 0 1 0 0 1 0 0 
EC50PL 0.150 0.000 0.055  1 0 0 0 1 0 0 1 0 
EC50RLs 0.288 0.000 0.003  0 1 0 1 0 0 1 0 0 
EC50MS 0.000 0.860 0.178  0 1 0 1 0 0 0 1 0 
NOECSF 0.558 0.000 0.015  1 0 0 1 0 0 1 0 0 
NOECSED 0.279 0.151 0.000  0 1 0 0 1 0 0 1 0 
NOECSG 0.000 0.264 0.000  0 0 1 0 0 1 0 0 1 
NOECAS 0.380 0.599 0.076  1 0 0 0 1 0 0 1 0 
NOECPL 0.155 0.485 0.043  1 0 0 0 1 0 0 1 0 
NOECRLs 0.269 0.167 0.021  1 0 0 1 0 0 1 0 0 
NOECMS 0.668 0.000 0.000  1 0 0 1 0 0 1 0 0 
LOECSF 0.000 0.000 0.160  0 1 0 1 0 0 1 0 0 
LOECSED 0.000 0.000 0.166  0 1 0 0 1 0 1 0 0 
LOECSG 0.284 0.000 0.131  0 0 1 0 0 1 0 0 1 
LOECAGL 0.478 0.531 0.008  0 1 0 1 0 0 1 0 0 
LOECAS 0.000 0.415 0.000  0 1 0 1 0 0 1 0 0 
LOECPL 0.607 0.000 0.162  1 0 0 0 1 0 0 1 0 
LOECRLs 0.703 0.771 0.001  0 1 0 0 1 0 0 1 0 
LOECMS 0.277 0.027 0.000  1 0 0 0 1 0 0 1 0 
OPLSSAE 0.004 0.000 0.000  0 1 0 1 0 0 1 0 0 
GPareto = Generalized Pareto; K-S = Kolmogorov-Smirnov statistic; A-D = Anderson-Darling statistic; C-S = Chi-Squared 
statistic; 
EC50 (half maximal effective concentration) = the effective concentration of toxin in aqueous solution that produces a 
specific measurable effect in 50% of the test organisms within the stated study time SF = sea urchin fertilization; SED = sea 
urchin embryological development; SG = sea urcin germination; AG = macro-alga survival; AGL = macro-alga germling 
length; AGCN = macro-alga germling cell number; LS = redfish larvae survival; PL = polychaete laid eggs/female; RLs = 
redfish larvae survival; MS = mysid juveniles survival; 
NOEC (No Observed Effect Concentration) = highest concentration of toxicant to which organisms are exposed in a full or 
partial life-cycle test, that determine no observable adverse effects on the test organisms; 
LOEC (Lowest Observed Effect Concentration) = lowest concentration of toxicant to which organisms are exposed in a full 
or partial life-cycle test, which causes adverse effects on the test organisms; OPLSSAE = isolated atom energy from semi-
empirical method 
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Figure 5. Classification of activities and total energy according with maximum likelihood 

criterion on correlation coefficients for quantitative structure-activity/property relationships 

 

The analysis of Table 10 reveals the following: 

 Just one misclassification is observed for Chi-Squared statistic. This result suggests that 

Chi-Squared statistic should be used to partition activities of studied ordnance compounds 

in relation to the correlation coefficient distribution laws. This fact could probably be 

explained by the fact that the Chi-Squared statistic is exposed only to type I errors [50]. 

 Kolmogorov-Smirnov statistic misclassified the maximum likelihood 12 times, which 

suggests that it is not the proper statistic for partition activities of studied ordnance 

compounds. 

 The Agr/Param ratio proved able to discriminate with a high power using minimum of 

parameters according to principle of Occam's razor [51] (parsimony – recommends to 

select the hypothesis that makes the fewer assumptions when more hypotheses are 

probably equal [18,52]. 

The analysis of Figure 5 identified that almost 48% of correlation coefficients 

associated to simple linear regression models proved fit Beta distribution when MDFV 

descriptors were used to explain ordnance compounds toxicities and total energy. Moreover, 

40% proved fit Generalized Pareto distribution and 12% fit Pert distribution. 

The pattern distribution laws on correlation coefficient may classify the structure-

activity relationships. Identification of a certain distribution law of correlation coefficient 

allows calculation of the probability to obtain a structure-activity relationship with a certain 

(desired) correlation coefficient. For example, the probability to obtain a relationship with 

correlation above 0.99 for LOEC(SG) is 5.46‰ (1-CDFPert(x; 0.73539, 0.70693, 1.1102) - 

from Pert distribution law; data in Supplementary material). 

The distribution law of correlation coefficients in simple linear regression on 

quantitative structure-activity/property relationships was successfully analyzed and certain 
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pathways were identified. But, what does this study add to the field? Generally, there is no 

technique able to provide a best QSAR model other than selection of those descriptors from 

the pool of descriptors in such way to obtain a determination coefficient as far as possible to 

the right tail of the distribution of correlation coefficients from all possible QSAR models 

who to assure both internal and external validity. Valid results applied on investigated data 

were obtained but as expected our study has its limitations. Neither internal nor external 

validation of the identified QSAR/QSPR models was conducted since it was not the aim of 

present research; but just valid regression models were included in this analysis. The analysis 

of correlation coefficient distribution on QSAR/QSPR internally valid models could identify 

the differences between distribution laws of correlation coefficient and leave-one-out 

correlation coefficient, and this is a task that could be investigated. The results of our study 

can certainly be applied on the investigated sample of compounds and on the studied 

toxicities/properties. Further investigations will be carried out in our laboratory in order to 

assess whether the identified pathway of joined PDFs associated to the correlation coefficients 

of QSAR/QSPR models fit any set of compounds and any activities/properties. The toxicity 

investigated in this research is the main read-out for the ordnance compounds and the causes 

could be multiples and the identification of the linear model is used just to express 

quantitatively the link between ordnance compounds structure and their toxicity not to assess 

the toxicity pathways. This is what is knows as applicability domain of a quantitative 

structure-activity relationship. Thus, it is likely that a QSAR model with one descriptor to 

take into account one factor able to explain the link between compound structure and its 

toxicity, while a QSAR model with 2 descriptors to take into account two factors (able to 

explain the observed toxicity). Ongoing studies in our laboratory aim to demonstrate whether 

the results of this study reflect the distribution of both correlation coefficient and leave-one-

out correlation coefficient in QSARs. 

 

 

Conclusions 

 

The correlation coefficients of QSAR/QSPR models obtained on ordnance compounds 

proved not fit the same distribution law. 

Both number of adapted descriptors (that can be used in regressions) and number of 
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probable descriptors (that should be used in regression) fit Fisher-Tippett distribution. Even if 

1 out of 6 descriptors qualifies to be used in regression, only 1 out of 9 provides a clear 

distinction from the random effect. 

Three particular distribution laws were able to cover the whole space of the general 

distribution of the correlation coefficient on structure-activity relationships: Pert, Generalized 

Pareto and Beta distribution. Therefore, it is likely that depending on the investigated activity, 

the obtained correlation coefficient on a structure-activity relationship to be drawn from one 

of these distributions. This fact may become a useful tool for defining the applicability 

domain of a quantitative structure-activity relationship in probabilistic terms. 

Chi-Squared statistic proved the proper criterion for the partition of biological 

activities and total energy according to the distribution law of correlation coefficients 

obtained in simple linear regressions using MDFV descriptors. 

 

 

Acknowledgements 

 

This paper is dedicated to Professor Ante Graovac on his 65th birthday. 

The study was supported by POSDRU/89/1.5/S/62371 through a postdoctoral 

fellowship for L. Jäntschi. The funding source had no role in study design, data collection, 

analysis and or interpretation of data, in the writing of the report or in the decision to submit 

the article for publication. 

 

 

References 

 

1. Fisher R.A., Frequency distribution of the values of the correlation coefficient in 
samples from an indefinitely large population, Biometrika, 1915, 10, p. 507-21. 

2. Zimmerman D.W., Zumbo B.D., Williams R.H., Bias in Estimation and Hypothesis 
Testing of Correlation, Psicológica, 24, 2003, p. 133-58. 

3. Olkin I., Pratt J.W., Unbiased estimation of certain correlation coefficients, Annals of 
Mathematical Statistics, 1958, 29, p. 201-11. 

4. Pearson E.S., Adyanthāya N.K., The distribution of frequency constants in small 
samples from non-normal symmetrical and skew populations, Biometrika, 1929, 21, p. 



 

Leonardo Journal of Sciences 

ISSN 1583-0233 

 Issue 18, July-December 2011 

p. 27-48 
 

45 

259-86. 
5. Rider P.R., On the distribution of the correlation coefficient in small samples, 

Biometrika, 1932, 24, p. 382-403. 
6. Gayen A.K., The Frequency Distribution of the Product-Moment Correlation 

Coefficient in Random Samples of any Size Drawn from Non-Normal Universes, 
Biometrika, 1951, 38, p. 219-247. 

7. Tasker G.D., Approximate sampling distribution of the serial correlation coefficient for 
small samples, Water Resources Research, 1983, 19, p. 579-582. 

8. **EC2001. European Commission, Strategy for a Future Chemicals Policy. Brussels, 
Belgium: Commission of the European Communities. (2001). 
http://www.isopa.org/isopa/uploads/Documents/documents/White%20Paper.pdf 
(Accessed June 2010). 

9. Ferreira J.E.V., Figueiredo A.F., Barbosa J.P., Cristino M.G.G., Macedo W.J.C., Silva 
O.P.P., Malheiros B.V., Serra R.T.A., Ciriaco-Pinheiro J., A study of new antimalarial 
artemisinins through molecular modeling and multivariate analysis, Journal of the 
Serbian Chemical Society, 2010, 75, p. 1533-48. 

10. Hansch C., Maloney P.P., Fujita T., Muir R.M., Correlation of Biological Activity of 
Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients, 
Nature, 1962, 194, p. 178-180. 

11. Lagunin A.A., Zakharov A.V., Filimonov D.A., Poroikov V.V., A new approach to 
QSAR modelling of acute toxicity, SAR and QSAR in Environmental Research, 2007, 
18, p. 285-98. 

12. Borota A., Mracec M., Gruia A., Rad-Curpan R., Ostopovici-Halip L., Mracec M., A 
QSAR study using MTD method and Dragon descriptors for a series of selective ligands 
of alpha C-2 adrenoceptor, European Journal of Medicinal Chemistry, 2011, 46, p. 877-
84. 

13. Mercado J., Gomez H., Vivas-Reyes R., Comparative molecular field analysis and 
comparative molecular similarity indices analysis studies of alpha-ketothiazole arginine 
analogues inhibitors of coagulation factor XIa, New Journal of Chemistry, 2011, 35, p. 
820-32. 

14. Marrero-Ponce Y., Martinez E.R., Casanola-Martin G.M., Perez-Gimenez F., Diaz Y.E., 
Garcia-Domenech R., Brogues J.E.R., Bond-Extended Stochastic and Nonstochastic 
Bilinear Indices. I. QSPR/QSAR Applications to the Description of Properties/Activities 
of Small-Medium Size Organic Compounds, International Journal of Quantum 
Chemistry, 2011, 111, p. 8-34. 

15. Acharya C., Coop A., Polli J.E., MacKerell A.D., Recent Advances in Ligand-Based 



Distributing Correlation Coefficients of Linear Structure-Activity/Property Models 

Lorentz JÄNTSCHI and Sorana D. BOLBOACĂ 
 

46 

Drug Design: Relevance and Utility of the Conformationally Sampled Pharmacophore 
Approach, Current Computer-Aided Drug Design, 2011, 7, p. 10-22. 

16. Munei Y., Shimamoto K., Harada M., Yoshida T., Chuman H., Correlation analyses on 
binding affinity of substituted benzenesulfonamides with carbonic anhydrase using ab 
initio MO calculations on their complex structures (II), Bioorganic & Medicinal 
Chemistry Letters, 2011, 21, 141-4. 

17. Jäntschi L., Bolboacă S.D., Results from the use of molecular descriptors family on 
structure property/activity relationships, International Journal of Molecular Sciences, 
2007, 8, p. 189-203. 

18. Jäntschi L., Genetic Algorithms and their Application, PhD Thesis in Horticulture, 
completed at University of Agricultural Sciences and Veterinary Medicine Cluj-
Napoca, (PhD Advisor: Prof. Dr. Sestraş RE), 2010, p. 38. 

19. Bolboacă S.D., Jäntschi L., Comparison of QSAR Performances on Carboquinone 
Derivatives, TheScientificWorldJOURNAL, 2009, 9, p. 1148-66. 

20. Hoffmann R., An Extended Hückel Theory. I. Hydrocarbons, Journal of Chemical 
Physics, 1963, 39, p. 1397-412. 

21. Bolboacă S.D., Marta M.M., Jäntschi L., Binding affinity of triphenyl acrylonitriles to 
estrogen receptors: quantitative structure-activity relationships, Folia Medica, 2010, 
52, p. 37-45. 

22. Jäntschi L., Bolboacă S.D., Furdui C.M., Characteristic and counting polynomials: 
modelling nonane isomers properties, Molecular Simulation, 2009, 35, p. 220-7. 

23. Jäntschi L., Bolboacă S.D., Modeling the octanol-water partition coefficient of 
substituted phenols by the use of structure information, International Journal of 
Quantum Chemistry, 2007, 107, p. 1736-44. 

24. Bolboacă S.D., Jäntschi L., A Structural Informatics Study on Collagen, Chemical 
Biology & Drug Design, 2008, 71, p. 173-9. 

25. Zhang Y.M., Yang X.S., Sun C., Wang L.S.,. Quantitative structure-activity 
relationship of compounds binding to estrogen receptor beta based on heuristic method, 
Science China-Chemistry, 2011, 54, p. 237-43. 

26. Jäntschi L., Bolboacă S.D., Sestraş R.E., A Study of Genetic Algorithm Evolution on the 
Lipophilicity of Polychlorinated Biphenyls, Chemistry & Biodiversity, 2010, 7, p. 1978-
89. 

27. Jäntschi L., Bolboacă S.D., Sestraş R.E., Meta-heuristics on quantitative structure-
activity relationships: study on polychlorinated biphenyls. Journal of Molecular 
Modeling, 2010, 16, p. 377-86. 

28. Gupta V.K., Khani H., Ahmadi-Roudi B., Mirakhorli S., Fereyduni E., Agarwal S., 



 

Leonardo Journal of Sciences 

ISSN 1583-0233 

 Issue 18, July-December 2011 

p. 27-48 
 

47 

Prediction of capillary gas chromatographic retention times of fatty acid methyl esters 
in human blood using MLR, PLS and back-propagation artificial neural networks, 
Talanta, 2011, 83, p. 1014-22. 

29. Fjell C.D., Jenssen H., Chng W.A., Hancock R.E.W., Cherkasov A., Optimization of 
Antibacterial Peptides by Genetic Algorithms and Cheminformatics, Chemical Biology 
& Drug Design, 2011, 77, p. 48-56. 

30. Lagunin A., Zakharov A., Filimonov D., Poroikov V., QSAR Modelling of Rat Acute 
Toxicity on the Basis of PASS Prediction, Molecular Informatics, 2011, 30, p. 241-50. 

31. Le-Thi-Thu H., Cardoso G.C., Casanola-Martin G.M., Marrero-Ponce Y., Puris A., 
Torrens F., Rescigno A., Abad C., QSAR models for tyrosinase inhibitory activity 
description applying modern statistical classification techniques: A comparative study, 
Chemometrics and Intelligent Laboratory Systems, 2010, 104, p. 249-59. 

32. Oliveira K.M.G., Takahata Y., QSAR modeling of nucleosides against amastigotes of 
Leishmania donovani using logistic regression and classification tree, QSAR & 
Combinatorial Science, 2008, 27, p. 1020-7. 

33. Hattotuwagama C.K., Doytchinova I.A., Guan P., Flower D.R., In silico QSAR-based 
predictions of class I and class II MHC epitopes, In: Immunoinformatics, Editors, C. 
Schoenbach, S. Ranganathan, V. Brusic, Sprinder Science+Business Media, LLC, New 
York, 2007, pp. 63-89. 

34. Rodgers S.L., Davis A.M., Tomkinson N.P., van de Waterbeemd H., Predictivity of 
Simulated ADME AutoQSAR Models over Time, Molecular Informatics, 2011, 30, p. 
256-66. 

35. Ferreira L.G., Leitao A., Montanari C.A., Andricopulo A.D., Comparative Molecular 
Field Analysis of a Series of Inhibitors of HIV-1 Protease, Medicinal Chemistry, 2011, 
7, p. 71-9. 

36. Hemmateenejad B., Yousefinejad S., Mehdipour A.R., Novel amino acids indices based 
on quantum topological molecular similarity and their application to QSAR study of 
peptides, Amino Acids, 2011, 40, p. 1169-83. 

37. Luo X.C., Krumrine J.R., Shenvi A.B., Pierson M.E., Bernstein P.R., Calculation and 
application of activity discriminants in lead optimization, Journal of Molecular 
Graphics & Modelling, 2010, 29, p. 372-81. 

38. Golbraikh A., Shen M., Xiao Z., Xiao Y.-D., Lee K.-H., Tropsha A., Rational selection 
of training and test sets for the development of validated QSAR models, Journal of 
Computer-Aided Molecular Design, 2003, 17, p. 241-53. 

39. *** Development of marine sediment toxicity for ordnance compounds and toxicity 
identification evaluation studies at select naval facilities. [Online], 2000, Available at: 



Distributing Correlation Coefficients of Linear Structure-Activity/Property Models 

Lorentz JÄNTSCHI and Sorana D. BOLBOACĂ 
 

48 

http://web.ead.anl.gov/ecorisk/issue/pdf/tox_marine_sed.pdf. Accessed March 10, 2010.  
40. Sacks J., Ylvisaker D., Designs for Regression Problems with Correlated Errors III, 

Annals of Mathematical Statistics, 1970, 41, p. 2057-74. 
41. Jarque C.M., Bera A.K., Efficient tests for normality, homoscedasticity and serial 

independence of regression residuals: Monte Carlo evidence, Economics Letters, 1981, 
7, p. 313-18. 

42. Dewar M.J.S., Zoebisch E.G., Healy E.F., Stewart J.J.P., AM1: A New General Purpose 
Quantum Mechanical Molecular Model, Journal of the American Chemical Society, 
1985, 107, p. 3902-9. 

43. Jäntschi L., Computer Assisted Geometry Optimization for in silico Modeling, Applied 
Medical Informatics, 2011, 29(3), p. 11-8. 

44. Kendall M., A New Measure of Rank Correlation, Biometrika, 1938, 30, p. 81-9. 
45. Kolmogorov A., Confidence Limits for an Unknown Distribution Function, The Annals 

of Mathematical Statistics, 1941, 12, p. 461-3. 
46. Anderson T.W., Darling D.A., Asymptotic theory of certain "goodness-of-fit" criteria 

based on stochastic processes, Annals of Mathematical Statistics, 1952, 23, p. 193-212. 
47. Pearson K., On the criterion that a given system of deviations from the probable in the 

case of a correlated system of variables is such that it can be reasonably supposed to 
have arisen from random sampling, Philosophical Magazine, 1900, 50, p. 157-75. 

48. Fisher R.A., Combining independent tests of significance, American Statistician, 1948, 
2, p. 30. 

49. Fisher R.A., Tippett L.H.C., Limiting forms of the frequency distribution of the largest 
and smallest member of a sample, Proceedings of the Cambridge Philosophical Society, 
1928, 24, p. 180-90. 

50. Young R.L., Weinberg J., Vieira V., Ozonoff A., Webster T.F., Generalized Additive 
Models and Inflated Type I Error Rates of Smoother Significance Tests, Computational 
Statistics & Data Analysis, 2011, 55, p. 366-74. 

51. *** "Ockham’s razor". Encyclopædia Britannica. Encyclopædia Britannica Online. 
[Online] Available at: http://www.britannica.com/EBchecked/topic/424706/Ockhams-
razor. Accessed on 3 June 2010. 

52. Sober E., Parsimony in Systematics: Philosophical Issues, Annual Review of Ecology 
and Systematics, 1983, 14, p. 335-57. 


