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Abstract

Genetic algorithms are built as abstract populations of a number of candidate solutions, each of it being evaluated for accomplish a 
desired performance. Populations evolve from one generation to another through mutation, crossover and selection in order to obtain 
an acceptable solution. Genetic algorithms applications cover the subject of decision, classification, optimization and simulation of hard 
problems. The quality of a genetic algorithm is evaluated in terms of speed, accuracy and domain of applicability. The use of all genetic 
operators could assure the convergence towards the optimum solution for a specific hard problem. The approaches used to construct 
the search space and the objective function (survival of the fittest, natural selection) assure the diversity of genetic algorithms. Studies 
on the development and use of genetic algorithms in solving hard problems in the field of agricultural systems were identified, analyzed 
and are presented here.
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Hard Problems and Meta-Heuristics

Daily life and scientific research require working with 
problems. In informatics and informatics-related fields 
(such as bioinformatics and chemoinformatics) a prob-
lem has precise meaning, close to that of an algorithm. 
An algorithm is a recipe that indicates what must be done 
in certain situations in order to meet a certain objective. 
Two resources are necessary in order to solve a problem: 
time (execution time, correlated with the number of basic 
instructions) and space (for storing entry data and vari-
ables).

Different problems have different complexity. Some 
problems for example have exponential complexity, which 
means that the best algorithm solves the problem over an 
execution time that increases exponentially with the size 
(volume, amount) of the entry data. These problems are 
known as hard since even the best algorithm (which exists 
or could exist) will probably be useless in the real world 
(Falkenauer, 1998). The following is an example of a hard 
problem (in which the exploration time of the search space 
is exponential): A number of harvesting machines, a num-
ber or harvesting fields and a number of drivers (and even a 
number of storage spaces) are given. The best way to organize 

harvesting on a farm should be found when each harvesting 
machine implies a field and a driver. 

Searching for the optimum solution when the prob-
lem is hard exceeds the time available for existing real ap-
plications. However, in practice several problems do not 
require an optimum and in most cases a good solution is 
enough for this kind of problems. Let us assume again that 
organizing harvesting on a farm is the hard problem. Thus, 
an algorithm that allows a reduction of harvesting costs 
from $40000 /week to $10000/ week is useful for the 
farm, although an optimal algorithm (that finds the global 
minimum) could reduce the costs to $8000 /week. More-
over, the algorithm that reduces the costs to $10000 /week 
is preferred over the one that reduces the costs to $8000 /
week if the execution time of the latter is excessively high, 
for instance higher than the time available for harvesting. 

In conclusion, the search for good approximation algo-
rithms is perfectly legitimate: these algorithms do not en-
sure the global optimum for any instance with which they 
are fed, but they are able to produce solutions close to the 
optimum solution.

Because most hard problems have existed for many 
years, one or more heuristics had already been created for 
some hard problems. Heuristics are sets of rules designed 
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idly debated in the 19th century (Fisher, 1954), are all the 
pieces of a puzzle that is today’s modern genetics (Ayala 
et al., 1994). They are also inspiration sources for genetic 
algorithms.

The first simulations of evolution were found in the 
studies of Nils Aall Barricelli (Barricelli, 1954; Barricelli, 
1957). Later, Alex Fraser published a series of papers on 
the simulated artificial selection of organisms with mul-
tiple loci that controlled a measurable trait (Fraser, 1957a; 
Fraser, 1957b; Fraser, 1957c; Fraser, 1960a; Fraser, 1960b; 
Fraser, 1960c; Fraser, 1962; Fraser and Hansche, 1965; 
Fraser et al., 1966; Fraser and Burnell, 1967a; Fraser and 
Burnell, 1967b; Fraser and Burnell, 1970) that included 
all the essential elements of modern genetic algorithms. 

Although the first studies that included genetic al-
gorithm elements were published as early as 1954, com-
prehensive studies in this field were only published after 
1970 (Bosworth et al., 1972; Holland, 1975). Genetic 
algorithms were reinvented ten years later, after the intro-
duction of the first Personal Computer (Davis, 1991, Hol-
land, 1992).

Three criteria should be taken into account when the 
quality of a heuristic algorithm is evaluated:
■ Speed: how fast the solution is obtained;
■ Precision: how far from the global optimum the so-
lution is;
■ Aim: how large the entry data subset is compared 
with the set of all possible values for which the algorithm 
performs according to the previous two criteria;

The No Free Lunch Theorem (Wolpert and Macready, 
1995; Wolpert and Macready, 1997) is connected with the 
algorithmic complexity. This theorem shows, by using the 
above-mentioned criteria, that all algorithms are strictly 
equivalent, which means that for Φ and Ψ (algorithms) 
and A input data, for which Φ is better than Ψ, there is B 
input data for which Ψ is better than Φ. To conclude that 
the effort to improve one’s algorithms is useless, because 
they will perform just like any other algorithm, is a simple 
but wrong interpretation. What the theorem really states 
is that if performance is averaged on all possible data, then 
the algorithms will perform the same. The trick is not to 
attempt to feed all the algorithms with all possible data 
but rather to dedicate an algorithm to an applicability 
domain and to implement any special structure present 
in the data with which the algorithm is going to be fed. 
Therefore, the aim of the algorithm that performs well 
must be restricted to the data set that presents the special 
structures identified in the data set.

The following categories of problems may be solved by 
genetic algorithms:
■ Decision problems

• A decision problem is defined for a closed question 
(that can be answered with yes/ no) on an infinite set of 
entry data. That is why decision problems are equal with 
obtaining the entry data set for which ‘yes’ is the answer to 
the problem. Decision problems are connected with op-

to solve a certain problem. They usually rely on common 
sense (as far as the expected solution is concerned) by 
avoiding obvious mistakes. However, they are frequently 
designed to produce a solution as close as possible to the 
optimum solution and since they are not able to produce 
a solution for any entry values they offer a solution just for 
the problem for which was been created. Although, most 
heuristics are ad-hoc and depend on the given problem, 
the development of informatics allowed researchers to for-
mulate some general heuristics suitable to a large variety 
of hard problems. They have been called meta-heuristics 
due to their general nature. All three meta-heuristics: SA 
- Simulated Annealing (van Laarhoven and Aarts, 1987; 
Davis, 1987), TS - Tabu Search (Glover, 1977; Glover, 
1986; Glover et al., 1993) and GA- Genetic Algorithms 
have stochastic nature. Two of them (SA and GA) are 
based on the natural processes that have always been tak-
ing place around us.

Genetic Algorithms

Genetics and Genetic Algorithms

Observational studies, as well as the design and veri-
fication of model hypotheses, grounded the development 
of genetic algorithms until Fraser’s papers (Fraser, 1957a; 
Fraser, 1957b). Thus, Lamarck (Lamarck, 1809), after 
striving to classify living organisms, supplied arguments 
that the classification of animals (especially invertebrates) 
and plants into species and varieties is more or less arbi-
trary. According to modern taxonomy, organisms are clas-
sified using a tree further divided into domains, kingdoms, 
phylums, classes, orders, families, genera, and species. De-
spite the fact that Lamarck’s explanation, which was based 
on superstitions according to which the gaps in the spe-
cies classification scheme were due to species disappear-
ance, was later contradicted by Darwin’s studies (Darwin, 
1859). Even if, Lamarck’s studies on species still are of ut-
most importance. 

Even Darwin was influenced by Lamarck’s conclusions, 
as Fisher noted in 1954 (Fisher, 1954). The main achieve-
ments in early genetics were completed by Mendel’s studies 
on plant hybridization (Mendel, 1866), that led to what is 
currently known as Mendel’s laws. The theory of hard in-
heritance (Weismann, 1893) completed past theories. Fi-
nally, Morgan’s studies on the common fruit fly (Morgan 
et al., 1915) led to the chromosome theory of inheritance 
that still constitutes that basis of modern genetics. Last 
but not least, Fisher’s extremely valuable studies should 
be mentioned, since he supplied undeniable scientific ar-
guments regarding the origin of species and the theory of 
evolution (Fisher, 1918; Fisher, 1922).

To sum up, the hard (Weismann, 1893) and the soft 
(Lamarck, 1809) inheritance, selection and survival (Dar-
win, 1859), character crossover (Mendel, 1866), genes 
and gene crossover (Morgan et al., 1915), which were viv-
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timization problems as long as the best answer could be 
obtain.
■ Classification problems

• A classification problem for objects from a given 
domain consists of dividing these objects into smaller 
classes and using determination criteria to establish if a 
certain object belongs or not to a certain class. One of the 
most famous classification problems is the one formulated 
by Carl LINNAEUS (23 May 1707 - 10 January 1778) 
regarding the classification of living organisms according 
to classes, orders, genera and species (Linnaei, 1735).
■ Optimization problems 

• An optimization problem deals with finding the 
best solution out of all possible solutions. Formally an op-
timization problem is a quadruple (I,f,m,g) where: I = set 
of instances; f(∙) = set of feasible solutions defined on I; 
m(∙,∙) = measure defined on the product of possible solu-
tions and instances; g = min or max - goal function; and 
the goal is to find the optimum for x: m(x,f(x))=g{m(y,f(y), 
y∈I}.

• For each optimization problem there is an associ-
ated decision problem whose question is whether there is 
a possible solution for a certain measure m0.
■ Simulation problems

• Simulation imitates a real fact, state of fact or pro-
cess. It implies the representation of certain key character-
istics or behaviours of a physical or abstract system. It is 
used in many contexts including the modelling of natural 
systems and their functionality. The key elements in simu-
lation include the acquisition of a valid information source 
on the studied subject, the selection of key characteristics 
and behaviours, the use of approximation and simplifying 
suppositions within the simulation and the evaluation of 
the accuracy and validity of the simulation results.

Genetic Algorithms and Genetic Operators

Genetic algorithms are adaptive heuristic search algo-
rithms based on the theory of evolution. The concepts of 
natural and genetic selection are brought into mathemati-
cal simulation with the use of computers. The mimic of 
processes in the natural evolution of organic matter gener-
ally serves as instrument for genetic algorithms in order to 
solve decision, classification, optimization and simulation 
problems. The key elements of genetic algorithms are:
■ The genetic model (genotype - phenotype dualism) 
as formulated and explained since the beginning of genet-
ics (Morgan et al., 1915; Fisher, 1918);
■ Mapping (characters - gene dualism) as observed by 
the precursors of modern genetics (Lamarck, 1830; Men-
del, 1866; Weismann, 1893);
■ Mutation, as observed since the precursors of mod-
ern genetics:

• Random (De Veies, 1902);
• Deliberate by exposure to certain conditions (Pat-

terson, 1928; Auerbach et al., 1947);

• Under the pressure of environmental factors: 
(Cairns et al., 1988);
■ Natural selection or “survival of the fittest” (Darwin, 
1859).

Genetic algorithms take the form of evolutionary pro-
grams and are computer simulations in which:

  (search space)

■ The operation is done on a population of abstract 
representations (Figure 1) named (according to the genet-
ic elements based on which they were imagined) chromo-
somes or genotypes of a genome, in its turn each abstract 
representation of a chromosome is made of genes.

Each generation is made of a population of strings (or 
other abstract representations) analogous with DNA chro-
mosomes. Each element of the population is a point in the 
search space and at the same time a possible solution.

Figure 1 represents the search space of a genetic al-
gorithm. This may have several implementation variants. 
Three of these are presented below:
• If the genetic algorithm must solve a hard problem 
formulated in S-system formalism (Savageau, 1976), which 
is a type of formalism derived from the process model of 
stoichiometric reactions with preequilibrium (ΣiRi ←→ ΣjIj 
→ ΣkPk, where Ri reactants, Ij intermediaries, Pk products of 
a reaction in which the process constants: speed constants 
and partial reaction orders – are unknown and must be 
determined), then the following is a possible implementa-
tion:

■ A gene: a constant (a partial order or a reaction 
speed constant) subject of the finding (optimization);

■ A chromosome: a possible development of the reac-
tion with specified partial orders and speed constants;

■ Genome: all developments of a reaction presented 
in an iteration of the genetic algorithm.
• If the genetic algorithm must solve a hard problem of 
DNA, RNA or protein gene sequence alignment (Notre-
dame et al., 1996) in order to identify the similarity regions 
that may generate structural, functional or developmental 
relations among sequences, then the following is a possible 
implementation:

■  A gene: two (or more) positions corresponding to 
two (or more) aligned sub-sequences (pseudo-aligned) 
and the length of their alignment; 

■ A chromosome: a possible alignment for the two 
(or more) sequences;

■ Genome: all the possible alignments of sequences 
stored in an iteration of the genetic algorithm;

Fig. 1. Search space of a genetic algorithm
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• If the genetic algorithm aims to solve a setting prob-
lem for maximizing the outcome of field productivity (Liu 
et al., 2001), in which it is hard to set the controllable (or 
sometimes predictable) parameters for maximum produc-
tivity, then the following is a possible implementation:

■ A gene: one of the following: soil pH, amount of N, 
P and K in fertilizers, amount of organic matter in the soil, 
degree of daily temperature increase (an average of highest 
and lowest temperatures), genetic potential (expressed in 
terms of the productivity obtained with optimum weather, 
soil and fertility), amount of precipitations for May, June, 
July and August, plantation density and the rotation fac-
tor;

■ A chromosome: a state of fact that may occur in the 
working field;

■ Genome: all states of fact stored in an iteration of 
the genetic algorithm.

  (selection and survival)

■ A score or survival chance of each solution is cal-
culated (Figure 2) for each genotype using an objective 
function. The value of this function is associated with the 
ability of the individual to survive. Thus, it defines the 
phenotype associated with the genotype.

■ If each genotype represents a point in the search 
space and at the same time a possible solution, selection 
turns a genotype into a phenotype (operation that iterates 
the representation of possible solutions in the space of so-
lutions and evaluates their value). The principle of natural 
selection is described as follows:

• The individuals (phenotypes) in the population 
compete for survival (selection).

• The genes of the selected individuals propagate 
from a generation to another (due to selection);

• Each generation matches its environment better 
(due to the elimination of individuals that fail to survive). 
■ The score associated with each phenotype (solution) 
represents the phenotype’s ability to compete for environ-
mental resources, therefore for survival. The aim of the ge-
netic algorithm is to apply selective phenotype crossover 
and mutation (by decoding them into the genotypes they 
come from) in order to produce better offspring. 
■ The genetic algorithm maintains a cultivar (popula-

tion sample) of a given (or sometimes variable) number 
of genotypes, which may be selected by applying the same 
operator. Thus, selection and survival are two associated 
concepts.  Selection occurs in crossover and mutation, as 
well as in survival in populations limited by genotypes.
■ During evolution, some part of the population in-
dividuals die and are replaced by others. In this way, bet-
ter solutions will hopefully arise in the future while the 
weaker solutions will be eliminated. The passing from one 
generation to another will bring about increasingly better 
solutions as compared with previous generations. 
■ Table 1 presents the link between the score (ex-
pressed in the table by the Fitness (∙) function) and the 
selection rule according to the method used (as known in 
the literature).
■ Figure 2 presents the selection and survival of pheno-

types, which could have several implementation options. 
Three of these options are presented below: 
• If the genetic algorithm must solve a hard problem 
formulated in the S system (Savageau, 1976), then the fol-
lowing is a possible implementation: 

■ The row corresponding to a phenotype: a list of 
constant values that are subject to optimization and are as-
sociated with a virtual experiment; 

■ The solution corresponding to the genotype (and 
chromosome in Figure 1): time series of the virtual experi-
ment elements (in a chemical reaction the solution repre-

 

genotype phenotype survival 

DNA plant cultivar 

string solution value 

decoding 

coding 

environment 

decoding 
 

coding 
 

objective 

function 

Fig. 2. Selection: genotype, phenotype and survival
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(in series of previous experiments) and the estimated (by 
the phenotype) productivity.

  (crossover and mutation)

■ Crossover represents the breeding of phenotypes. 
The phenotypes (usually two) are selected from the popu-
lation using the selection operator; an area for crossover 
is selected (randomly or deterministically) across the gene 
row of the genotypes associated to the phenotypes and the 
values of the two areas of rows are exchanged (Figure 3). 
Thus two descendants are selected to be part of the new 
generation; the crossover is made in the hope that if two 
areas of genotypes are successfully recombined, this pro-
cess is likely to produce better offspring.

■ Mutation is the operator that introduces new chang-
es (nonexistent in the population for a generation). The 
mutation, and its operator implicitly, has low probability 
of occurrence and is therefore applied with low probabil-
ity (for instance a 1/8 probability in Figure 4). The muta-
tion operator may implement a mutation which could be:

•	 Random:	 when	 part	 of	 a	 selected	 individual	 will	
have the values stored in its genes replaced with other val-
ues existing in the generic material of the population. Its 
role is to maintain diversity in the population in order to 
prevent the population from presenting premature con-
vergence;

•	 Deliberate:	 when	 exposure	 to	 certain	 conditions	
turns into the use of a predetermined rule for changing 
gene values; 

• Under the pressure of environmental factors: when 
gene values change in comparison with the phenotype 
score undergoing genetic change.

sents the time series of reactant concentrations, intermedi-
aries and reaction products during the reaction); 

■ The value corresponding to the score: the squared 
sum of the differences between the observed values (as se-
ries or time series) and the estimated (by the phenotype) 
values of one (or more) observables (such as concentration 
or intermediary concentrations); 
• If the genetic algorithm must solve a hard problem 
such as the alignment of amino acid sequences (Notre-
dame et al., 1996; Jäntschi et al., 2009), then the following 
is a possible implementation: 

■ The row corresponding to a genotype: a list of pair 
positions of aligned subsequences followed by the length 
of each subsequence; 

■ The solution corresponding to the phenotype (and 
genotype in Figure 1): a series of values containing gap po-
sitions and shift lengths required to align the sequences; 

■ The value, corresponding to the score: a score func-
tion (usually in the form of a sum) that identifies the total 
cost for all gaps and shifts required to align the sequences, 
using predefined costs for a gap and shift of a unit in the 
sequence;
• If the genetic algorithm must set the parameters 
needed to obtain good field productivity (Liu et al, 2001), 
then the following is a possible implementation: 

■ The row corresponding to a genotype: a list of val-
ues that correspond to a virtual experiment and are subject 
to optimization. The values in the row may be: soil pH, 
amount of  N, P and K in fertilizers, amount of organic 
matter in the soil, degree of daily temperature increase 
(an average of highest and lowest temperatures), genetic 
potential (expressed in terms of the productivity obtained 
with optimum weather, soil and fertility), amount of pre-
cipitations for May, June, July and August, plantation den-
sity and the rotation factor;

■ The solution corresponding to the phenotype (and 
genotype in Figure 1): a row of values that characterize 
the solution, containing values obtained by applying func-
tions that express: soil quality, weather conditions, cultiva-
tion management, genetic potential and the consequence 
of random events;

■ The value corresponding to the score: the squared 
sum of the differences between the observed productivity 

Tab. 1. Score and selection in genetic algorithms

Method Score function expression Selection Comments/ observations

Proportional

fi=Fitness(Chromosome_i)

pi=fi/Σifi

The selection chance is proportional to the score 
(the pi probability is used in/ for selection)

Deterministic i | fi = max. 
or min. The strongest (or weakest) individual is selected (elitism)

Turnir (fi,fj)
max. or min.

Pairs of individuals compete for selection 
(again the fittest or the weakest)

Normalization gi=(fi-N0)(fmax.-fmin.)/(N1-N0) pi=gi/Σigi

A fixed scale [N0,N1] normalizes the phenotype 
scores among different generations

Ranks hi=Rank(fi)(fmax.-fmin.)/Size pi=hi/Σihi

The chance is proportional with the score rank 
where: Rank(∙): rank; Size: genome volume

Fig. 3. Double crossover involving the splitting and rejoining of 
parent chromosomes

.. .. .. → .. ..

.. .. .. .. ..

parents           crossover site                     recombining                       crossover site     descendants
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■ Step 2: Crossover two parents and create their 
descendants (Figure 3) using a discrete probability func-
tion for choosing the section to be crossed over;

■ Step 3: Mutate a genotype (Figure 4), maybe 
a crossover descendant from the previous step with low 
probability and using a discreet probability function for 
choosing the area to be mutated;

■ Step 4: Initialize a new population with the 
new phenotypes (from steps 2 and 3);

■ Step 5: Use the selection operator applied to 
the population of parents to complete the new population 
with phenotypes (at least until the initial number of mem-
bers is restored); 

■ Step 6: Rebuild the values of the score func-
tion of the new population according to its new content;

• Until the best phenotype of the population meets an 
imposed condition (the end condition of the algorithm).

Approaches Derived from Genetic Algorithm 
Formalism

There are many variations and adaptations of genetic 
algorithms created to improve performance for a certain 
type of problems.

The following is a list of techniques derived and/or 
based on genetic algorithms: ■ Ant colony optimization 
(Bouktir and Slimani, 2005); ■ Bacteriologic algorithms 

(Benoit et al., 2005); ■ Cross-entropy method (de Boer et 
al., 2005); ■ Cultural algorithms (Kobti et al., 2004); ■Evo-
lution strategies (Schwefel, 1993); ■ Evolutionary pro-
gramming (Fogel, 1999); ■ Extremal optimization (Bak 
and Sneppen, 1993); ■ Gaussian adaptation (Kjellström, 
1991); ■ Genetic programming (Banzhaf et al., 1997); ■ 
Memetic algorithm (Smith, 2007); ■ Other variations col-
lected in Davis (1991).

Other approaches conjugate genetic algorithms with 
other concepts. The following may be mentioned: ■ Sup-

(evolution)

■ By using only the selection, evolution will only be 
able to copy (clone) the best individual (phenotype) exist-
ing in the entire population;
■ By using only the mutation, evolution will only man-
age to induce the random walking of the search space;
■ By using crossover and selection, evolution will man-
age to converge towards a good solution that is however 
not suboptimal (close to optimal);
■ Evolution through mutation and selection (without 
crossover) creates parallel algorithms, tolerant to distur-
bances in the search for hill-climbing
■ The use of all operators (mutation, crossover and se-
lection) ensure that the evolution has all the characteristics 
that define a genetic algorithm (Figure 5); 

■ In a classical genetic algorithm (like the one in Figure 
5), in order to solve a problem, a population of genotypes 
of a given size (Figure 1) is randomly generated or initi-
ated with predefined values. The preliminary requirement 
of the genetic algorithm is the presence of the objective 
function that evaluates the score of a phenotype in the 
population; the genetic algorithm iterates as follows:
•	 Repeat:

■  Step 1: Select two chromosomes using the se-
lection operator (Figure 2);

 

     ···                   ···        

     ···                   ···        

mutant 

parent 

offspring 

Fig. 4. Mutation

 

the best phenotype 

t 

t+1 

t+1 

t+1 

crossover 
mutation 

score 
selection 

selection score 

Fig. 5. Classical genetic algorithm workflow
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with the parsimony option in the PAUP program (Fink, 
1986).

An extended study of the early evolution and diversi-
fication of ants was reported by Brady et al. (2006). An 
important part of this study was the creation of the study 
methods used, which were described in the appendix of 
the above-mentioned paper. Thus, the authors used a series 
of programs operating with genetic algorithms:
■ For sequence alignment: Clustal X (Larkin et al., 
2006);
■ For divergence dating (estimation of ramification 
length) and the phylogenetic interference (parsimony 
analysis; maximum likelihood trees of inferences; com-
parison of alternate placements of the outgroups on the 
ingroup-only tree using the Shimodaira-Hasegawa test): 
PAUP* v4.0b10 (Fink, 1986);
■ For models of nucleotide substitution: ModelTest 
v3.06 (Posada and Crandall, 1998);
■ For nonparametric analysis of maximum likelihood 
load: GARLI v0.94 (Schultz et al., 2006), derived from 
GAML (Lewis, 1998);
■ For the Bayes analysis: MrBayes v3.1.2 (Ronquist 
and Huelsenbeck, 2003);
■ For divergence dating (ramification length estima-
tion) using the penalized likelihood approach: r8s v1.7 
(Sanderson, 2002; Sanderson, 2003).

The results of Schultz and Brady study (2008) on ants 
showed that living relics of species of attine ants occupying 
transitional phylogenetic positions in agricultural systems 
were identified. The methodology used included phyloge-
netic analysis (parsimony, maximum likelihood and diver-
gence dating), a nucleotide model of the Bayes type and a 
codon MCMC model plus a new approach - phylogenetic 
topography of agricultural systems:
■ Terminal taxa were associated with states in a char-
acter with six states representing four agricultural systems 
of attines and leaf cutter agriculture (no, lower, medium, 
higher, leaf cutter, coral-fungus);
■ Five species (Myrmicocrypta n. sp. Brazil, Myceta-
groicus triangularis, Cyphomyrmex n. sp., Cyphomyrmex 
morschi, Trachymyrmex irmgardae, and Pseudoatta n. sp.) 
whose states were considered unknown and Trachymyrmex 
papulatus received a “lower agriculture” state, associations 
of states based on a garden collection from Agentina (a 
second collection from the same location cultivated a typi-
cal garden of high attines);
■ The evolution of characters was optimized in a Bates 
codon-model consensus tree (with the length of branches) 
under the MacClade parsimony (Maddison and Mad-
dison, 2000) and maximum likelihood (the StochChar 
module of the Mesquite program) (Maddison and Mad-
dison, 2006);
■ In parsimony, the optimizations of ancestral states 
were non-ambiguous. In the hypothesis of the Markov 
model with k states and 1 parameter (Lewis, 2001), the 
likelihood that each agricultural system arose from the 

port Vector Machines (Brown et al., 2000); ■ Structural 
pattern localization analysis by sequential histograms 
(SPLASH) (Splash, 2000); and ■ Rough set (Hvidsten et 
al., 2001).

Hard Problems of Evolution and Phylogenetic Trees

Genetic algorithms are used to find the answer to hard 
problems of evolution. Thus, the chloroplast genome in 
Manihot esculenta and the atpF evolution in the Mal-
pighiales family are subject to research carried out by 
Daniell et al. (2008). The Taxus conifers and the evolu-
tion of the taxol biosynthesis genes TS and DBAT were 
discussed by Hao et al. (2009). The evolution of Chinese 
rose fragrances was tackled by Scalliet et al. (2008) while 
the evolution of the running plants Hemiptera and Psyl-
loidea in association with Anacardiaceae were systemati-
cally studied by Burckhardt and Basset (2000).

The study of phylogenetic trees using a correspondence 
with the set of perfect matchings in complete graphs ( Jän-
tschi and Diudea, 2009) was tackled by Diaconis and 
Holmes (1998). The authors showed that the analogy 
mentioned produces distance metrics between phyloge-
netic trees, thus allowing the enumeration of all trees in a 
minimum number of steps. The identification of the phy-
logenetic tree is a hard problem. Authors demonstrated 
that the Brauer algebra (Brauer, 1937) allows a simplest 
implementation of a genetic algorithm.

Problems related to large taxon samples in phylogenet-
ic estimations were discussed in (Lemmon and Milinko-
vitch, 2002), where a meta-populational genetic algorithm 
(metaGA) involving several tree populations that are 
forced to cooperate in search of the perfect tree was found 
suitable. An important result was provided by (Lemmon 
and Milinkovitch, 2002) who found that the frequencies 
with which the trees and cliques collected by the meta GA 
algorithm may correspond to unbiased estimators of pos-
terior probabilities (Huelsenbeck et al., 2001).

A phylogenetic tree analysis in the major lines of 
Brachycera was carried out by Wiegmann et al. (2003), 
who indicated that Brachycera originated in the late Trias-
sic or early Mesozoic and that all major inferior lines of 
Brachycera had contemporary origins in the middle Juassic 
before the origins of flowering plants (angiosperms). The 
authors obtained an increased phylogenesis resolution for 
Brachycera. Revised estimations on the fly age increased 
the temporal context of evolution interferences and the 
genomic comparisons between model flying organisms. 
Nucleotide sequences were manually aligned with an in-
teractive alignment editor called Genetic Data Environ-
ment 2.2 (Smith et al., 1994). Phylogenetic data included 
2220 characters from 28S rDNA (including 608 variables 
and 294 parsimony informative3 corresponding to all 
data; 493 variables and 296 informative in Brachycera and 
101 morphological characters (Yeates, 2002). The phylo-
genetic analysis of the combined data set was performed 



Bolboacă, S. D. et al. / Not. Bot. Hort. Agrobot. Cluj 38 (3) 2010, 51-63

58

ing productivity and energy consumption for cultivating 
sweet peppers (Capsicum annuum). 

The irrigation optimization (Montazar et al., 2008) 
and the identification of optimum cultivation rules (Bo-
zorg Haddad et al., 2008) for wheat, barley, corn, beetroot, 
sunflower, cucumbers, onion, potatoes, tomatoes, beans, 
lentil, trefoil and pear trees in arid areas are the most re-
cent results in the use of genetic algorithms.

Seginer and Ioslovich (1999) studied the optimization 
of production systems using a vegetation model with in-
dependent variables for production systems of lettuce in 
two development environments: quota- and area-limited 
production. The following conclusions were drawn:
■ Plants of all ages (in various development stages) may 
grow together in only one climatic compartment;
■ Spacing must be planned in order to maintain con-
stant planting density;
■ The optimum planting density is an ascending func-
tion of the light quantity and a descending function of the 
available temperature;
■ If the production costs are high as compared with 
the costs of maintaining the cultivated area (rent) and the 
energy costs, then the optimum cultivation intensity is re-
corded for area-limited usage and not for quota-limited 
usage; the opposite is true when the rent is high;
■ The cost difference for supplying extra light is low 
when natural light in more intense and lasts longer.

Cultivation models may be used as simulation instru-
ments for quantitative estimation. Thus Rodkaew et al. 
(2004) reported a genetic algorithm that incorporated L-
systems (Lindenmayer, 1968) for soybeans. 

Based on previous results and experimental measure-
ments carried out over two consecutive years a model for 
butterhead lettuce cultivation was created (Salomez and 
Hofman, 2007). The model expresses weight according 
to variations in ground temperature and small wave radia-
tions. 

Simulators based on genetic algorithms were suc-
cessfully used to predict the production of peanuts con-
taminated with alpha toxins (Henderson et al., 2000), to 
monitor growth using satellite data (Boken et al., 2008), 
to evaluate the effect of hard metals and PCBs (polychlo-
rinated biphenyls) on the picoplankton (fraction of plank-
ton composed by cells between 0.2 and 2 μm that can be 
either photosynthetic or heterotrophic) (Caroppo et al., 
2006), the effect of military waste on marine organisms 
( Jäntschi and Bolboacă, 2008), the toxicity of para-substi-
tuted phenols on Tetrahymena pyriformis ( Jäntschi et al., 
2008), as well as to analyze the complex associations be-
tween soil characteristics and abundant wild rice (Diaz et 
al., 2005). Rare events such as extreme temperatures may 
be incorporated into models based on genetic algorithms 
that stimulate plant growth, as pointed out by (Kysely and 
Dubrovsky, 2005).

The relations between phenotypes and their character-
istics have recently been researched in a few components 

most recent ancestor of the corresponding ant clique was, 
as percentage from the total likelihood distributed among 
the six states of the character, of 0.9831 for the lower, 
0.9995 for the median, 0.9905 for the higher, 0.9924 for 
the leaf-cutters and 0.9998 for coral-fungus.

Another phylogenetic analysis was carried out using ge-
netic algorithms for development of a set of rules required 
to model the geographical populational distributions of 
web and wiping apes by characterizing ecological niches 
(Ortiz-Martınez et al., 2008). Due to the random pro-
cesses involved in the model, each model obtained with 
only one data set was different; in order to capture the vari-
ability the authors created 100 models for each species and 
then selected 10 models that gave the lowest mapping and 
omission error, following the procedure described in (An-
derson et al., 2003). The authors concluded that cobweb 
ants take up higher an area and a higher altitude difference 
than weeping apes. The model was validated for web apes 
due to the suitable amount of available data for this spe-
cies. The validation of the model indicated that the pre-
dicted distribution of the species was statistically higher 
than the random one.

Hard Problems in Agro-Economic Systems

The applications of genetic algorithms in problems 
specific to agronomic systems were reviewed (Hashimoto, 
1997; Mayer et al., 1999). A series of important applica-
tions were reported in the literature of the time and new 
research perspectives were announced (Anisimova and 
Liberles, 2007).

Decision systems based on genetic algorithms may 
create models able of setting priorities (Smith, 2001), 
configuring production systems, and planning resource 
management (Kuo and Liu, 2003; Wardlaw and Bhakti-
kul, 2004).

Annevelink (1992) focused on fundamental aspects 
and presented a system able to assist decisions and man-
agement in horticultural systems. The system was imple-
mented as a program run from a personal computer (PC). 
The following observation should be made: programs 
based on genetic algorithms generally use many memory 
and time resources; therefore, they have to undergo major 
adaptations for PC use. This system, named IMAG IPP, 
has a high level of tactical planning and an interactive en-
vironment for space planning in the operational planning 
level. 

The creation of a decision system that may be used with-
in optimal control methodology was studied by Seginer et 
al. (2007). The decision system was created for operating a 
system of humidity control in a solarium with ventilation 
where humidity was the prevailing control character. 

Current research includes the theoretical grounds 
for a dynamic model for production control (Buwalda et 
al., 2006) as well as the use of such a model for optimiz-
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Optimal space allocation in pot-plant nurseries using 
heuristic techniques. Journal of Agricultural Engineering 
Research 51(C):167-177.

Auerbach, C., J. M. Robson and J. G. Carr (1947). The chemical 
production of mutations. Science 105(2723):243-247.

Ayala, F. J., A. Escalante, C. O’hugin and J. Klein (1994). 
Molecular genetics of speciation and human origins. 
Proceedings of the National Academy of Sciences of the 
United States of America 91(15):6787-6794.

Bak, P. and K. Sneppen (1993). Punctuated equilibrium and 
criticality in a simple model of evolution. Physical Review 
Letters 71(24):4083-4086.

Bălan, M. C., M. Damian and L. Jäntschi (2008). Preliminary 
results on design and implementation of a solar radiation 
monitoring system. Sensors 8(2):963-978.

Banzhaf, W., P. Nordin, R. E. Keller and F. D. Francone (1997). 
Genetic Programming: An Introduction: On the Automatic 
Evolution of Computer Programs and Its Applications. M 
Kaufmann Publishers, San Francisco. 450 pp.

Barricelli, N. A. (1954). Esempi numerici di processi di 
evoluzione. Methodos 45-68.

Barricelli, N. A. (1957). Symbiogenetic evolution processes 
realized by artificial methods. Methodos 143-182.

Benoit, B., F. Fleurey, J.-M. Jézéquel and Y. Le Traon (2005). 
Automatic Test Case Optimization: A Bacteriologic 
Algorithm. IEEE Software 22(2):76-82.

Boken, V. K., G. Hoogenboom, J. H. Williams, B. Diarra, 
S. Dione and G. L. Easson (2008). Monitoring peanut 
contamination in Mali (Africa) using AVHRR satellite 
data and a crop simulation model. International Journal of 
Remote Sensing 29(1):117-129.

Bosworth, J., F. Norman and B. P. Zeigler (1972). Comparison 
of Genetic Algorithms with Conjugate Gradient Methods. 
NASA Contractor Reports, CR-2093.

Bouktir, T. and L. Slimani (2005). Optimal Power Flow of 
the Algerian Electrical Network using an Ant Colony 
Optimization Method. Leonardo Journal of Sciences 
4(7):43-57.

Bozorg Haddad, O., M. Moradi-Jalal, M. Mirmomeni, M. 
Kholghi and M. A. Marino (2008). Optimal Cultivation 
Rules in Multi-Crop Irrigation Areas. Irrigation and 
Drainage 58(1):38-49.

Brady S. G., T. R. Schultz, B. L. Fisher and P. S. Ward (2006). 
Evaluating alternative hypotheses for the early evolution 
and diversification of ants. Proc Natl Acad Sci USA 
103(48):18172-18177.

Brauer R. (1937). On algebras which are connected with the 
semisimple continuous groups. Annals of Mathematics 
38(4):857-872.

Brown, M. P., W. N. Grundy, D. Lin, N. Cristianini, C. W. 
Sugnet, T. S. Furey, M. Jr. Ares and D. Haussler (2000). 
Knowledge-based analysis of microarray gene expression 
data by using support vector machines. Proceedings of 

of table wines (Larsen et al., 2007), the epistasis of self-
pollinated plants (Cui and Wu, 2005), the hemaggluti-
nating activity of Curcuma aromatic extracts in relation 
with the identity of the putative sequence (Tiptara et al., 
2008), as well as the Ficus carica L genotyping (de Masi et 
al., 2005).

A recent approach (Letort et al., 2008) predicted the 
phenotype characteristics in various environmental condi-
tions in order to create strategies for multiplying and im-
proving the desired characteristics. 

Machines able of learning based on genetic algorithms 
may be useful for classifications. Systems were thus created 
for the automatic discrimination of seeds (Chtioui et al., 
1996; Chtioui et al., 1997; Chtioui et al., 1998), mush-
rooms (Hruschka et al., 2003a; Hruschka et al., 2003b) 
and plant images stored in data bases (Zhu et al., 2008). 
Systems for differentiating sequences in the genomes of 
certain grass species and varieties were also reported (Saski 
et al., 2007).

Finally yet importantly, genetic algorithms are used 
in decision, classification, optimization and simulation 
problems for natural resources as indicated by the follow-
ing research.  Decision hard problems were identified in 
the following: construction of strategic energy policies 
(Dagdeviren and Eraslan, 2008), classification of relief 
shapes (Moore et al., 2003), and geological dating based 
on the uranium/lead ratio (Lundmark et al., 2007). The 
optimization of systems for ensuring energy resources in 
horticulture was reported by (Husmann and Tantau, 2001) 
while Morimoto et al. (1997) studied the optimization of 
thermal treatment in fruit and (Chen, 1997) focused on 
the management of water resources. Simulation is used to 
predict solar potential (Bălan et al., 2008; Sirdas and Sa-
hin, 2008) and the potential of water resources (Anandhi 
et al., 2008; Chen et al., 2008).

Other current research areas include the identification 
of natural resource sets for maximizing regional diversity 
and maintaining long-term biodiversity (Cabeza and Moi-
lanen, 2001) and the role of climate changes in modeling 
impact studies (Fowler et al., 2007).
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