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An exact probabilities method is proposed for computing the confidence limits of 
medical binomial parameters obtained based on the 2×2 contingency table. The 
developed algorithm was described and assessed for the difference between two 
binomial proportions (a bidimensional parameter). The behavior of the proposed method 
was analyzed and compared to four previously defined methods: Wald and Wilson, with 
and without continuity corrections. The exact probabilities method proved to be 
monotonic in computing the confidence limits. The experimental errors of the exact 
probabilities method applied to the difference between two proportions has never 
exceeded the imposed significance level of 5%. 
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INTRODUCTION 

The problem of computing confidence limits for a binomial success probability is not new; however, a 

consensus has not yet been reached. Most methods of computing the confidence interval are implemented 

in order to exclude both tails, but they could also be expressed to exclude only one tail. The confidence 

interval is used to report research results as a criterion of assessment of the trustworthiness or robustness 

of the finding[1,2], allowing a better interpretation of the results. 

The following approaches are frequently used to construct the confidence interval for binomial 

proportions:  

 Cumulative probabilities of a binomial distribution (Clopper and Pearson construct confidence 

limits by intersecting one-sided lower and upper intervals)[3] 

 Approximation of binomial distribution with normal distribution (Wald method[4], also as normal 

approximation interval) 
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 Improvement of normal approximation interval (Wilson, the coverage probability is closer to the 

nominal value[5,6]; Agresti and Coull[7], Vollset[8], Bolboacă and Jäntschi[9], Hall[10], Gart 

and Nam[11]) 

 Exact intervals for binomial distribution (Sterne[12], Crow[13], Blyth and Still[14], Thomas[15], 

Korn and Graubard[16]) 

 Exact interval based on Poisson distribution (Crow and Gardner[17], Krishnamoorthy 

andLee[18]) 

 Optimized confidence interval (using two triangulations and simultaneously varying two pairs of 

three variables[19]) 

 Refinement methods (Casella[20], Casells and Robert[21], Newcombe[22]) 

 Asymptotic distribution (Sato[23], Cai[24]) 

By approximating binomial distributions with normal distributions, shorter intervals are obtained, but 

the coverage probability under the nominal level cannot be reduced. The Wald method, besides its 

inconveniences (poor coverage and poor accuracy), is widely used to report the confidence limits of 

medical parameters[25,26] implemented in various statistical programs. The main inconveniences of the 

Wald method used to compute confidence limits for binomial proportions are negative lower limits when 

the proportion is close to 1, upper limit higher than 1 when the proportion is close to 1[27,28], and a 

coverage from 65 to 85% instead of the desired 95% for small sample sizes (n < 20). 

The bidimensional binomial distribution law is used in medical studies when the results obtained by 

medical research are compared with the results obtained by other similar research. In this case, the 

expression of the medical binomial parameter accompanied by the confidence interval must be evaluated. 

The difference between two proportions is commonly used to report results in medical studies. Wald and 

its corrected form are the most commonly used methods for confidence limits although they have poor 

coverage and accuracy. Therefore, the Newcombe-Wilson methods with and without continuity 

correction are recommended[29,30]. 

The problem of computing confidence limits on small samples for bidimensional binomial 

distribution is still investigated by many researchers. Troendle and Frank developed a conditionally exact 

tail method using both tails simultaneously[31]. The validity of various methods of constructing an 

approximate confidence interval for odds ratio, where hypergeometric sampling is applied, was discussed 

by Brown[32]. Lawson conducted an analysis on 10 exact and asymptotic distribution methods of 

computing the confidence interval for the odds ratio and concluded that Woolf’s method[33], with the 

Haldane[34] and Anscombe[35] corrections, performed well especially as far as the length of the 

confidence interval was concerned[36]. The Laplace method[37] is recommended by Lewis and 

Sauro[38] when there is no expectation of the completion rate, by Wilson when the expectation rate is 

smaller than 0.5, and by Laplace when it is higher than 0.9. Otherwise, the maximum likelihood should be 

used[39]. Agresti[40] recommended using confidence methods for proportions, for the difference between 

proportions, and for odd ratios in three situations: when a lower bound on a coverage probability is 

desired, when an actual coverage probability near the nominal level is desired, and when teaching in a 

classroom. The confidence interval for the risk difference and attributable risk are frequently computed 

based on the Wald method[41], while recommendations are made according to sample size and value of 

the estimators[42]. 

The aim of our research was to develop an exact probabilities method (algorithm) in order to compute 

confidence limits for expressions of two binomial proportions. The algorithm was used to obtain the 

confidence limits for the difference between two proportions. It was also compared with the Wald and 

Wilson methods, with and without continuity corrections. 
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MATERIAL AND METHODS 

Binomial and Bidimensional Binomial Distribution 

A binomial sample was generated (m experiments are done and the number of x successes are counted). If 

p is the probability of success and q is the probability of failure (where q = 1-p) in the population, the 

probability to obtain x successes for a sample size of m is given by the formula presented in Eq. 1. 
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A bidimensional binomial distribution could be obtained when the cases (noted x and y) are extracted 

from two samples of sizes m and n. The main hypothesis in medical studies is that the two samples (m 

and n) belong to the same population. The hypothesis that must be verified is: “Is there a significant 

difference between the two samples under the hypothesis that both are representative for the population?” 

The probability that the binomial variable X (sample size of m and mean of x) and Y (sample size of 

n and mean of y) occur simultaneously and independently is given by Eq. 3. 

)n,y,Y(P)m,x,X(P)n,y,Y,m,x,X(P BBBB         (3) 

where PBB = probability of bibinomial distribution. 

The probability that pairs (X,Y) occur in sample sizes of 10 (m = n = 10) was obtained by applying 

Eq. 3 (Fig. 1). 

                                        
FIGURE 1. Bidimensional probability function; event: simultaneous extraction of X and Y from 

independent binomial samples (x,10) and (y,10). Probability for X = 3 and Y = 7. 
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Algorithm of the Exact Probabilities Method 

Confidence limits depend on the binomial distribution function calculated based on the values of the 

studied variables (as is shown in Fig. 1). 

The lower and upper boundaries of the confidence interval could be obtained by the sum of the 

probabilities of simultaneous occurrence of values adjacent to the binomial values observed in the 

investigated samples (the sum of the segments on the plane XOY in Fig. 1). 

A series of home-made PHP (recursive acronym for Hypertext Preprocessor) programs were 

developed in order to compute the confidence lower and upper limits at a significance level of 5%. The 

algorithm was developed and implemented after a previous analysis. 

The algorithm is presented below: 

for every observation vx from sample m 

for every observation vy from sample n 

for every random X drawn from the binomial distribution (vx,m) 

for every random Y drawn from the binomial distribution (vy,n) 

compute PBB(vx,X,m,vy,Y,n) given by Eq. 3 

compute a medical-like indicator (MLI) using a formula for X, 

m, Y, n: MLI=MLI(X,m,Y,n) 

sort the table (ascending, maintaining associations) containing PBB, 

and MLI by MLI values (procedure done in Table 3) 

group (summing the PBB values) the values from sorted table by MLI 

values (procedure done in Table 4) - named TabSortSum (containing MLI and 

ΣPBB) 

use (set) two keys: one for the top of the table (key is 1) and one 

for the bottom of the table (key is count of distinct MLI values), key_low 

& key_upp 

Set cumulated_probability to 0.0 

Repeat 

if entry key_low is lower than entry key_upp in Table TabSortSum 

for ΣPBB (TabSortSum[key_low, ΣPBB] < TabSortSum[key_upp, ΣPBB]) then 

if cumulated_probability + TabSortSum[key_low, ΣPBB] > 

desired_probability then break 

cumulated_probability += TabSortSum[key_low, ΣPBB] 

key_low++ 

continue 

if entry key_low is higher than entry key_upp in Table TabSortSum 

for ΣPBB  (TabSortSum[key_low, ΣPBB] > TabSortSum[key_upp, ΣPBB]) then 

if cumulated_probability + TabSortSum[key_upp, ΣPBB] > 

desired_probability then break 

cumulated_probability += TabSortSum[key_upp, ΣPBB] 

key_upp-- 

continue 

if entry key_low is higher than entry key_upp in Table TabSortSum 

for ΣPBB  (TabSortSum[key_low, ΣPBB] = TabSortSum[key_upp, ΣPBB]) then 

if cumulated_probability + TabSortSum[key_low, ΣPBB] > 

desired_probability then break 

cumulated_probability += TabSortSum[key_low, ΣPBB] 

key_low++ 

if cumulated_probability + TabSortSum[key_upp, ΣPBB] > 

desired_probability then break 

cumulated_probability += TabSortSum[key_upp, ΣPBB] 

key_upp-- 

continue 

Until (false) 
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Algorithm Assessment 

The algorithm for computing the confidence interval was assessed on the excess risk (a measure of the 

association between a specified risk factor and a specified outcome)[43].  

The excess risk is computed based on a 2×2 contingency table by using the formulas presented by Eq. 

4. 

ER = (bc-ad)/[(a+b)(c+d)]         (4) 

where ER = excess risk; a = true positive; b = false positive; c = false negative; d = true negative. 

The mathematical function associated to Eq. 4 is presented in Eq. 5. 

f4(X1,X2,X3,X4) = f1(X3,X4)-f1(X1,X2)        (5) 

where f4 = mathematical function for Eq. 4; f1(X1,X2) = X1/(X1+X2), f1(X3,X4) = X3/(X3+X4). 

The substituted function associated to Eq. 4 and used by the proposed algorithm is presented in Eq. 6. 

y/n-x/m            (6) 

where x, y = binomial distributed variables; m, n = sizes of the samples. 

Two experiments were conducted for equal sample sizes of 15 (m = n = 15): 

1. (0≤x≤15,15,14,15), where x varied from 0 to 15, y had to be equal to 14, and m and n sample size 

were equal to 15 

2. (xrandom,15,yrandom,15), where x and y were random variables and the sample sizes m and n were 

equal to 15 

The following methods for computing the 95% confidence interval (significance level of 5%) were 

applied: exact probabilities (abbreviated as Exact.p) (proposed algorithm); Wald method (abbreviated as 

DWald)[4]; Wald with continuity correction (abbreviated as DWaldC; used only in the random 

experiment)[30]; Wilson (abbreviated as DWilson)[5]; and Wilson with continuity correction 

(abbreviated as DWilsonC)[29]. 

Four parameters were computed and assessed: the value of excess risk, the lower and upper 95% 

boundaries for each method (α = 5%), and the associated error for each method.  

RESULTS 

Examples of Bidimensional Binomial Distribution 

The bidimensional probability matrix was constructed in order to meet the research objective. The 

bidimensional probability matrix obtained by applying Eq. 2, which corresponds to the extraction of the 

value (Y) from the binomial sample of (y = 1, n = 10) (see rows in the matrix) simultaneously with the 

extraction of the value (X) from the binomial sample of (x = 9, m = 10) (see columns in the matrix), is 

presented in Table 1. The intersection of a row with a column contains the values obtained by applying 

Eq. 3. 

The probabilities associated with a bidimensional binomial distribution ([x,m],[y,n]) could be used to 

calculate probabilities for any mathematical function of the ff(x,m,y,m) type.  

The values of probabilities for Eq. 6 when m = 5, n = 5, x = 1, y = 2 (f4[1,5,2,5] = 2.00·10
–1

) are 

included in Table 2. 

The data in Table 2 are presented in ascending order according to the values of f4(X,5,Y,5).  
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TABLE 1 
Bidimensional Probability Matrix (from Eq. 3) 

1.000 3.49·10
–1

 3.87·10
–1

 1.94·10
–1

 5.74·10
–2

 1.12·10
–2

 1.49·10
–3

 1.38·10
–4

 8.75·10
–6

 3.65·10
–7

 9.00·10
–9

 1.00·10
–10

 

1.00·10
–10

 3.5·10
–11

 3.9·10
–11

 1.9·10
–11

 5.7·10
–12

 1.1·10
–12

 1.5·10
–13

 1.4·10
–14

 8.7·10
–16

 3.6·10
–17

 9.0·10
–19

 1.0·10
–20

 

9.00·10
–9

 3.1·10
–9

 3.5·10
–9

 1.7·10
–9

 5.2·10
–10

 1.0·10
–10

 1.3·10
–11

 1.2·10
–12

 7.9·10
–14

 3.3·10
–15

 8.1·10
–17

 9.0·10
–19

 

3.65·10
–7

 1.3·10
–7

 1.4·10
–7

 7.1·10
–8

 2.1·10
–8

 4.1·10
–9

 5.4·10
–10

 5.0·10
–11

 3.2·10
–12

 1.3·10
–13

 3.3·10
–15

 3.6·10
–17

 

8.75·10
–6

 3.1·10
–6

 3.4·10
–6

 1.7·10
–6

 5.0·10
–7

 9.8·10
–8

 1.3·10
–8

 1.2·10
–9

 7.7·10
–11

 3.2·10
–12

 7.9·10
–14

 8.7·10
–16

 

1.38·10
–4

 4.8·10
–5

 5.3·10
–5

 2.7·10
–5

 7.9·10
–6

 1.5·10
–6

 2.1·10
–7

 1.9·10
–8

 1.2·10
–9

 5.0·10
–11

 1.2·10
–12

 1.4·10
–14

 

1.49·10
–3

 5.2·10
–4

 5.8·10
–4

 2.9·10
–4

 8.5·10
–5

 1.7·10
–5

 2.2·10
–6

 2.1·10
–7

 1.3·10
–8

 5.4·10
–10

 1.3·10
–11

 1.5·10
–13

 

1.12·10
–2

 3.9·10
–3

 4.3·10
–3

 2.2·10
–3

 6.4·10
–4

 1.2·10
–4

 1.7·10
–5

 1.5·10
–6

 9.8·10
–8

 4.1·10
–9

 1.0·10
–10

 1.1·10
–12

 

5.74·10
–2

 2.0·10
–2

 2.2·10
–2

 1.1·10
–2

 3.3·10
–3

 6.4·10
–4

 8.5·10
–5

 7.9·10
–6

 5.0·10
–7

 2.1·10
–8

 5.2·10
–10

 5.7·10
–12

 

1.94·10
–1

 6.8·10
–2

 7.5·10
–2

 3.8·10
–2

 1.1·10
–2

 2.2·10
–3

 2.9·10
–4

 2.7·10
–5

 1.7·10
–6

 7.1·10
–8

 1.7·10
–9

 1.9·10
–11

 

3.87·10
–1

 1.4·10
–1

 1.5·10
–1

 7.5·10
–2

 2.2·10
–2

 4.3·10
–3

 5.8·10
–4

 5.3·10
–5

 3.4·10
–6

 1.4·10
–7

 3.5·10
–9

 3.9·10
–11

 

3.49·10
–1

 1.2·10
–1

 1.4·10
–1

 6.8·10
–2

 2.0·10
–2

 3.9·10
–3

 5.2·10
–4

 4.8·10
–5

 3.1·10
–6

 1.3·10
–7

 3.1·10
–9

 3.5·10
–11

 

TABLE 2 
Bidimensional Probability for Function f4 for m = 5, n = 5, x = 1, y = 2 

X Y f4(X,5,Y,5) PBB(X,1,5,Y,2,5)  X Y f4(X,5,Y,5) PBB(X,1,5,Y,2,5) 

0 0 0.00·10
+0

 2.55·10
–2

  3 0 –6.00·10
–1

 3.98·10
–3

 

0 1 2.00·10
–1

 8.49·10
–2

  3 1 –4.00·10
–1

 1.33·10
–2

 

0 2 4.00·10
–1

 1.13·10
–1

  3 2 –2.00·10
–1

 1.77·10
–2

 

0 3 6.00·10
–1

 7.55·10
–2

  3 3 0.00·10
+0

 1.18·10
–2

 

0 4 8.00·10
–1

 2.52·10
–2

  3 4 2.00·10
–1

 3.93·10
–3

 

0 5 1.00·10
+0

 3.36·10
–3

  3 5 4.00·10
–1

 5.24·10
–4

 

1 0 –2.00·10
–1

 3.19·10
–2

  4 0 –8.00·10
–1

 4.98·10
–4

 

1 1 0.00·10
+0

 1.06·10
–1

  4 1 –6.00·10
–1

 1.66·10
–3

 

1 2 2.00·10
–1

 1.42·10
–1

  4 2 –4.00·10
–1

 2.21·10
–3

 

1 3 4.00·10
–1

 9.44·10
–2

  4 3 –2.00·10
–1

 1.48·10
–3

 

1 4 6.00·10
–1

 3.15·10
–2

  4 4 0.00·10
+0

 4.92·10
–4

 

1 5 8.00·10
–1

 4.19·10
–3

  4 5 2.00·10
–1

 6.55·10
–5

 

2 0 –4.00·10
–1

 1.59·10
–2

  5 0 –1.00·10
+0

 2.49·10
–5

 

2 1 –2.00·10
–1

 5.31·10
–2

  5 1 –8.00·10
–1

 8.29·10
–5

 

2 2 0.00·10
+0

 7.08·10
–2

  5 2 –6.00·10
–1

 1.11·10
–4

 

2 3 2.00·10
–1

 4.72·10
–2

  5 3 –4.00·10
–1

 7.37·10
–5

 

2 4 4.00·10
–1

 1.57·10
–2

  5 4 –2.00·10
–1

 2.46·10
–5

 

2 5 6.00·10
–1

 2.10·10
–3

  5 5 0.00·10
+0

 3.28·10
–6

 

The data presented in Table 3 were reorganized according to the sum of the probabilities 

corresponding to the identical values of the f4(X,m,Y,n) function (Table 4). The cumulated probabilities 

from extreme values towards the value of the f4(x,m,y,n) function were also included in Table 4 (last 

column). 
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TABLE 3 
Bidimensional Probability Function: Data Sorted Ascending by f4(X,5,Y,5) 

X Y f4(X,5,Y,5) PBB(X,1,5,Y,2,5)  X Y f4(X,5,Y,5) PBB(X,1,5,Y,2,5) 

5 0 –1.00·10
+0

 2.49·10
–5

  3 3 0.00·10
+0

 1.18·10
–2

 

4 0 –8.00·10
–1

 4.98·10
–4

  4 4 0.00·10
+0

 4.92·10
–4

 

5 1 –8.00·10
–1

 8.29·10
–5

  5 5 0.00·10
+0

 3.28·10
–6

 

3 0 –6.00·10
–1

 3.98·10
–3

  0 1 2.00·10
–1

 8.49·10
–2

 

4 1 –6.00·10
–1

 1.66·10
–3

  1 2 2.00·10
–1

 1.42·10
–1

 

5 2 –6.00·10
–1

 1.11·10
–4

  2 3 2.00·10
–1

 4.72·10
–2

 

2 0 –4.00·10
–1

 1.59·10
–2

  3 4 2.00·10
–1

 3.93·10
–3

 

3 1 –4.00·10
–1

 1.33·10
–2

  4 5 2.00·10
–1

 6.55·10
–5

 

4 2 –4.00·10
–1

 2.21·10
–3

  0 2 4.00·10
–1

 1.13·10
–1

 

5 3 –4.00·10
–1

 7.37·10
–5

  1 3 4.00·10
–1

 9.44·10
–2

 

1 0 –2.00·10
–1

 3.19·10
–2

  2 4 4.00·10
–1

 1.57·10
–2

 

2 1 –2.00·10
–1

 5.31·10
–2

  3 5 4.00·10
–1

 5.24·10
–4

 

3 2 –2.00·10
–1

 1.77·10
–2

  0 3 6.00·10
–1

 7.55·10
–2

 

4 3 –2.00·10
–1

 1.48·10
–3

  1 4 6.00·10
–1

 3.15·10
–2

 

5 4 –2.00·10
–1

 2.46·10
–5

  2 5 6.00·10
–1

 2.10·10
–3

 

0 0 0.00·10
+0

 2.55·10
–2

  0 4 8.00·10
–1

 2.52·10
–2

 

1 1 0.00·10
+0

 1.06·10
–1

  1 5 8.00·10
–1

 4.19·10
–3

 

2 2 0.00·10
+0

 7.08·10
–2

  0 5 1.00·10
+0

 3.36·10
–3

 

TABLE 4 
The Sum of Probabilities from Table 3 

f4(1,5,2,5) f4(X,5,Y,5) ΣPBB(X,1,5,Y,2,5) 

2.00·10
–1

 –1.00·10
+0

 2.49·10
–5

 

2.00·10
–1

 –8.00·10
–1

 5.81·10
–4

 

2.00·10
–1

 –6.00·10
–1

 5.75·10
–3

 

2.00·10
–1

 –4.00·10
–1

 3.15·10
–2

 

2.00·10
–1

 –2.00·10
–1

 1.04·10
–1

 

2.00·10
–1

 0.00·10
+0

 2.15·10
–1

 

2.00·10
–1

 2.00·10
–1

 2.78·10
–1

 

2.00·10
–1

 4.00·10
–1

 2.24·10
–1

 

2.00·10
–1

 6.00·10
–1

 1.09·10
–1

 

2.00·10
–1

 8.00·10
–1

 2.94·10
–2

 

2.00·10
–1

 1.00·10
+0

 3.36·10
–3

 

Exact Probabilities Method: Experimental Errors 

The experimental errors associated with the 95% confidence boundaries, when the implemented 

algorithm for excess risk (m = n = 15) was computed, are shown in Fig. 2. The values of errors varied 

from 0.00 to 4.95, with a mean of 3.56 and a standard deviation of 0.93. 
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FIGURE 2. Distribution of experimental errors (in ‰): difference between 
two proportions m = n = 15. 

Results of the (0≤x≤15,15,14,15) Experiment 

The 95% confidence boundaries for the (0≤x≤15,15,14,15) experiment were calculated and the results are 

presented in Fig. 3. 

The following results were obtained when the confidence limits presented in Fig. 3 were analyzed to 

see whether they fit in the “golden standard” interval (the Exact.p method): 

 The DWald method proved to be the closest method to the proposed Exact.p approach. The lower 

and upper limits obtained by applying the DWald method respected the Exact.p intervals for the 

lower and upper limit in 10 out of 16 cases (~63%). 

 The Wilson methods (DWilson and DWilsonC) performed similarly with one exception 

(DWilson for (13,15,14,15)): the lower and upper boundaries were not included in the intervals 

obtained by the Exact.p method. 

The descriptive statistics parameters associated with the experimental error for all the methods were 

computed and the results are presented in Table 5. The errors associated with the investigated methods (at 

a significance level of 5%) are presented in Fig. 4. 

Results of the (xrandom,15,yrandom,15) Experiment 

Forty-five values for x and y were assigned randomly by applying the (0≤x≤m and 0≤y≤n) criteria. The 

obtained results are presented in Table 6. Table 6 also summarizes the inclusion of the limits obtained by 

each applied method into the range of boundaries obtained by the Exact.p method (under the assumption 

that the Exact.p method is the most restrictive method). 

The variation of the experimental errors obtained by applying all the methods when computing the 

95% confidence interval and when using the “|5-abs(Err)|” criterion is presented in Fig. 5. 

DISCUSSION 

The aim of the research was to develop and assess an exact method for computing confidence boundaries 

for medical parameters computed on the 2×2 contingency table. The exact probabilities method proved to  

0–1 = red 
1–2 = green 
2–3 = blue 
3–4 = cyan 

4–5 = magenta 
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FIGURE 3. 95% Confidence boundaries for the (0≤x≤15,15,14,15) experiment. 

TABLE 5 
(0≤x≤15,15,14,15) Experiment: Summary of Experimental  

Error (expressed as %) 

Method abb. Min Max Mean Standard Deviation 

Exact.p 1.49 4.80 3.27 0.99 

DWald 2.50 7.38 4.65 1.86 

DWilson 0.22 35.55 8.83 8.42 

DWilsonC 0.18 35.53 6.82 9.18 

be useful in computing the confidence limits on binomial samples with small sample sizes and provided 

reliable results. The Exact.p method provides confidence limits within 95% (significance level of 5%) or 

better no matter how small the sample size. 

Computing the binomial probability matrix was the first step in applying the proposed method. The 

obtained probabilities were used later to construct confidence limits for binomial parameters. As 

expected, the repetitions of the value associated with the f4(X,m,Y,n) function used for exemplification 

(see Table 3) were not identified when the confidence limits were calculated. This observation applies to 

any function of the ff type (ff[x,m,y,m]). 

The analysis of the results presented in Tables 1–3 revealed an important conclusion. The values of X 

and Y proved to be relevant only for the calculation of probabilities and for computing the values of 

functions. These values proved not to be important in the addition of probabilities used to construct the 

confidence limits. The adding of probabilities associated to bibinomial distribution values from the two 

extremes (lowest and highest - beginning and end of last column) proved to be a reliable solution in 

constructing the confidence limits by using the imposed probability and the experimental errors (see 

Table 4). These experimental errors are the real values of the probability errors obtained for the computed 

confidence limits. The experimental errors of the Exact.p method never exceeded the imposed 

significance level (4.95 was the maximum value, see Fig. 2). 
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FIGURE 4. Distribution of errors associated to confidence limits computed with different methods. 

The boundaries calculated by using the exact probabilities approach are, in fact, intervals for both the 

lower and the upper limit, as shown in Fig. 3. The Exact.p method is considered the “golden standard” in 

the evaluation of the 95% confidence interval according to the values of the experimental errors (Tables 5 

and 6). The errors varied in the (0≤x≤15,15,14,15) experiment from 0.18% (DWilsonC) to 35.55% 

(DWilson), the lowest variation being obtained by the Exact.p method (3.32 was the difference between 

the maximum and the minimum error). The errors varied in the (xrandom,15,yrandom,15) experiment from 

0.03% (DWilsonC) to 35.55% (DWilson), the lowest variation was obtained by the Exact.p method (3.34 

was the difference between the maximum and the minimum error). 

The analysis of experimental errors (Tables 5 and 6, Figs. 4 and 5) led to the following observations: 

 The experimental errors of the proposed method of constructing confidence limits has never 

exceeded the imposed significance (α = 5%). 

 The DWald method proved to perform better than the DWilson method and its continuity 

correction, but similarly with the DWaldC method. The means of errors in the random experiment 

was 5.24 (1.86 standard deviation) when the DWald method was used and 5.00 (1.84 standard 

deviation) when the DWaldC method was used. 

The DWald errors exceeded the imposed significance level of 5% in: 

 Six out of 16 cases, with a maximum of 7.38 (for the [0,15,14,15], [0≤x≤15,15,14,15] 

experiment) 

 27 out of 45 cases, with a maximum of 8.22 (for the [13,15,12,15], [xrandom,15,yrandom,15] 

experiment) 

The errors exceeded the imposed significance level of 5% in: 

 25 out of 45 cases, with a maximum of 7.38 (for the [14,15,12,15], [xrandom,15,yrandom,15] 

experiment) 
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TABLE 6 
Experimental Errors and Coverage Obtained in the (xrandom,15,yrandom,15) Experiment 

x m y n y/n-x/m 
Exact Probabilities Method Error Coverage 

LowerBound UpperBound Exact.p DWald DWaldC DWilson DWilsonC DWald DWaldC DWilson DWilsonC 

0 15 3 15 0.20 –6.67·10
–2

,0.0·10
–1

 4.00·10
–1

,4.67·10
–1

 1.81 1.81 1.81 1.81 0.42     

0 15 5 15 0.33 6.67·10
–2

,1.33·10
–1

 6.00·10
–1

,6.67·10
–1

 2.79 5.02 5.02 3.31 1.08     

0 15 7 15 0.47 2.00·10
–1

,2.67·10
–1

 7.33·10
–1

,8.00·10
–1

 4.11 6.64 6.64 4.19 3.54     

1 15 0 15 –0.07 –2.67·10
–1

,–2.00·10
–1

 0.00·10
–1

,6.67·10
–2

 1.49 7.38 7.38 0.22 0.22     

1 15 3 15 0.13 –1.33·10
–1

,–6.67·10
–2

 4.00·10
–1

,4.67·10
–1

 3.13 5.25 5.25 5.25 1.33     

1 15 4 15 0.20 –6.67·10
–2

,0.00·10
–1

 4.67·10
–1

,5.33·10
–1

 4.52 7.18 7.18 4.73 2.07     

1 15 15 15 0.93 7.33·10
–1

,8.00·10
–1

 ≤ 1.00·10
0
 1.49 7.38 7.38 35.55 35.53     

2 15 2 15 0.00 –2.67·10
–1

,–2.00·10
–1

 2.67·10
–1

,3.33·10
–1

 3.68 5.80 5.80 5.80 1.56     

2 15 7 15 0.33 –6.67·10
–2

,0.00·10
–1

 6.00·10
–1

,6.67·10
–1

 3.37 5.19 5.19 9.21 3.37     

2 15 12 15 0.67 3.33·10
–1

,4.00·10
–1

 8.67·10
–1

,9.33·10
–1

 4.83 7.89 2.34 10.84 10.38     

2 15 14 15 0.80 5.33·10
–1

,6.00·10
–1

 ≤ 1.00·10
0
 2.50 2.50 2.50 18.37 18.37     

3 15 15 15 0.80 5.33·10
–1

,6.00·10
–1

 ≤ 1.00·10
0
 1.81 1.81 1.81 17.14 3.60     

4 15 1 15 –0.20 –5.33·10
–1

,–4.67·10
–1

 0.00·10
–1

,6.67·10
–2

 4.52 7.18 7.18 4.52 2.07     

4 15 6 15 0.13 –2.67·10
–1

,–2.00·10
–1

 4.67·10
–1

,5.33·10
–1

 2.97 2.97 2.97 7.63 5.28     

4 15 12 15 0.53 2.00·10
–1

,2.67·10
–1

 8.00·10
–1

,8.67·10
–1

 4.78 4.78 4.78 6.83 6.05     

5 15 4 15 –0.07 –4.00·10
–1

,–3.33·10
–1

 2.67·10
–1

,3.33·10
–1

 4.82 7.02 7.02 7.02 4.85     

6 15 4 15 –0.13 –5.33·10
–1

,–4.67·10
–1

 2.00·10
–1

,2.67·10
–1

 2.97 2.97 2.97 7.63 5.32     

6 15 7 15 0.07 –3.33·10
–1

,–2.67·10
–1

 4.00·10
–1

,4.67·10
–1

 4.04 4.04 4.04 9.49 4.04     

6 15 10 15 0.27 –1.33·10
–1

,–6.67·10
–2

 6.00·10
–1

,6.67·10
–1

 3.47 3.47 3.47 5.95 5.95     

7 15 3 15 –0.27 –6.00·10
–1

,–5.33·10
–1

 6.67·10
–2

,1.33·10
–1

 4.52 6.70 6.70 9.02 4.64     

7 15 15 15 0.53 2.00·10
–1

,2.67·10
–1

 7.33·10
–1

,8.00·10
–1

 4.11 6.64 6.64 4.11 3.38     

8 15 5 15 –0.20 –6.00·10
–1

,–5.33·10
–1

 1.33·10
–1

,2.00·10
–1

 3.66 3.66 3.66 6.29 6.29     

8 15 9 15 0.07 –3.33·10
–1

,–2.67·10
–1

 4.00·10
–1

,4.67·10
–1

 4.04 4.04 4.04 9.49 4.04     

8 15 12 15 0.27 –1.33·10
–1

,–6.67·10
–2

 5.33·10
–1

,6.00·10
–1

 4.52 6.70 6.70 8.99 4.52     

9 15 10 15 0.07 –3.33·10
–1

,–2.67·10
–1

 4.00·10
–1

,4.67·10
–1

 3.50 3.50 3.50 8.56 3.50     

10 15 1 15 –0.60 –9.33·10
–1

,–8.67·10
–1

 –3.33·10
–1

,–2.67·10
–1

 2.62 2.62 2.62 11.58 5.05     

10 15 13 15 0.20 –1.33·10
–1

,–6.67·10
–2

 4.67·10
–1

,5.33·10
–1

 4.36 4.36 4.36 4.36 2.85     

11 15 1 15 –0.67 –9.33·10
–1

,–8.67·10
–1

 –4.00·10
–1

,–3.33·10
–1

 4.12 6.93 6.93 10.52 10.52     

11 15 5 15 –0.40 –7.33·10
–1

,–6.67·10
–1

 –6.67·10
–2

,0.00·10
–1

 4.65 6.95 6.95 9.31 4.88     

11 15 8 15 –0.20 –6.00·10
–1

,–5.33·10
–1

 1.33·10
–1

,2.00·10
–1

 3.13 3.13 3.13 5.57 5.57     

11 15 14 15 0.20 –6.67·10
–2

,0.00·10
–1

 4.67·10
–1

,5.33·10
–1

 4.52 7.18 7.18 4.73 2.07     

12 15 0 15 –0.80 ≥–1.00·10
0
 –6.00·10

–1
,–5.33·10

–1
 1.81 1.81 1.81 16.42 6.11     

12 15 3 15 –0.60 –9.33·10
–1

,–8.67·10
–1

 –3.33·10
–1

,–2.67·10
–1

 3.61 3.61 3.61 12.99 6.11     

12 15 5 15 –0.47 –8.00·10
–1

,–7.33·10
–1

 –1.33·10
–1

,–6.67·10
–2

 3.66 5.71 5.71 8.14 7.65     

12 15 8 15 –0.27 –6.00·10
–1

,–5.33·10
–1

 6.67·10
–2

,1.33·10
–1

 4.52 6.70 6.70 9.02 4.64     

12 15 10 15 –0.13 –4.67·10
–1

,–4.00·10
–1

 2.00·10
–1

,2.67·10
–1

 3.90 5.82 5.82 5.82 3.94     

13 15 10 15 –0.20 –5.33·10
–1

,–4.67·10
–1

 6.67·10
–2

,1.33·10
–1

 4.36 4.36 4.36 4.36 2.86     

13 15 12 15 –0.07 –4.00·10
–1

,–3.33·10
–1

 2.00·10
–1

,2.67·10
–1

 2.59 8.22 2.59 2.59 2.59     

14 15 15 15 0.07 –6.67·10
–2

,0.00·10
–1

 2.00·10
–1

,2.67·10
–1

 1.49 7.38 7.38 0.22 0.03     

15 15 4 15 –0.73 –1.00·10
0
,–9.33·10

–1
 –5.33·10

–1
,–4.67·10

–1
 3.50 3.50 3.50 7.71 7.71     

15 15 5 15 –0.67 –9.33·10
–1

,–8.67·10
–1

 –4.00·10
–1

,–3.33·10
–1

 2.79 5.02 5.02 9.05 3.08     

15 15 6 15 –0.60 –8.67·10
–1

,–8.00·10
–1

 –3.33·10
–1

,–2.67·10
–1

 3.65 6.10 6.10 3.90 3.43     

15 15 8 15 –0.47 –8.00·10
–1

,–7.33·10
–1

 –2.67·10
–1

,–2.00·10
–1

 4.11 6.64 6.64 4.11 3.38     

15 15 10 15 –0.33 –6.67·10
–1

,–6.00·10
–1

 –1.33·10
–1

,–6.67·10
–2

 2.79 5.02 5.02 2.79 1.08     

15 15 14 15 –0.07 –2.67·10
–1

,–2.00·10
–1

 0.00·10
–1

,6.67·10
–2

 1.49 7.38 7.38 0.22 0.22     

The DWald and DWaldC methods proved to obtain the highest values of the experimental errors 

([13,15,12,15] and [14,15,12,15], respectively). In these cases, the Exact.p method obtained experimental 

errors equal to 2.59 and 1.49%. 

 The DWilson and DWilsonC methods had similar performances: the minimum value of the 

experimental errors was <1 while the maximum value of experimental error was 30. The 

DWilsonC method performed better in terms of exceeding the imposed significance level 

compared to DWilson, DWald, and DWaldC, as it exceeded the imposed significance level in only  
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FIGURE 5. 5% Deviation of the experimental errors from the imposed significance level. 

15 out of 45 cases in the random experiment. Furthermore, the mean of experimental errors in the 

random experiment was equal to 5, with a standard deviation of 5.65. The highest value of errors 

was obtained by both Wilson methods for (1,15,15,15) in the random experiment. 

 The hierarchy of experimental errors for values 5% was Exact.p (100%), DWilsonC (67%), 

DWaldC (44%), DWald (40%), DWilson (36%). 

 The classification in descending order, based on the maximum value of the errors associated with 

the 95% confidence limits, was: DWilson (35.55 for [1,15,15,15]), DWilsonC (35.53 for 

[1,15,15,15]), DWald (8.22 for [13,15,12,15]), DwaldC (7.38 for [1,15,0,15]), Exact.p (4.83 for 

[2,15,12,15]). 

The confidence limits obtained in the random experiment were checked to see whether they fit in the 

“golden standard” interval (the Exact.p method, according to the values of the experimental errors). The 

following proved to be true (see Table 6): 

 The DWaldC method had the highest inclusion: 19 out of 45 cases. It was closely followed by the 

DWald method: 18 out of 45 cases. 

 The DWilson method performed slightly better than DWilsonC: eight inclusions out of 45 

compared with six inclusions out of 45. 

The newly introduced method for constructing the confidence limits for discrete distributions using 

the probability distribution matrix proved to respect, without any exception, the imposed significance 

level. The proposed algorithm was assessed in two experiments by using the excess risk parameter, which 

is a binomial parameter computed on the 2×2 contingency table. The algorithm was assessed in terms of 

the difference between two proportions, but it could also be applied to construct the confidence limits of 

any parameter computed based on the 2×2 contingency table, since computing the confidence limits is 

based on the probability matrix. 

CONCLUSIONS 

The proposed algorithm obtained the exact domain for the lower and upper limits of the confidence 

interval for f, X, Y, m, n, α, and their associated experimental errors. The implemented algorithm required 
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that the desired value for the experimental errors was as close as possible to the imposed significance 

level α without exceeding this level. 

The proposed algorithm proved to be monotone and never exceeded the imposed significance level in 

small sample sizes (m = n = 10, m = n = 15). Further studies will be conducted in order to analyze the 

behavior of the implemented algorithm on different sample sizes and different discretely distributed 

parameters. 
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