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Abstract 

Aim: The paper aims to investigate the use of maximum likelihood estimation 

to infer measurement types with their distribution shape. Material and 

Methods: A series of twenty-eight sets of observed data (different properties 

and activities) were studied. The following analyses were applied in order to 

meet the aim of the research: precision, normality (Chi-square, Kolmogorov-

Smirnov, and Anderson-Darling tests), the presence of outliers (Grubbs’ test), 

estimation of the population parameters (maximum likelihood estimation 

under Laplace, Gauss, and Gauss-Laplace distribution assumptions), and 

analysis of kurtosis (departure of sample kurtosis from the Laplace, Gauss, 

and Gauss-Laplace population kurtosis). Results: The mean of most 

investigated sets was likely to be Gauss-Laplace while the standard deviation 

of most investigated sets of compound was likely to be Gauss. The MLE 

analysis allowed making assumptions regarding the type of errors in the 

investigated sets. Conclusions: The proposed procedure proved to be useful in 

analyzing the shape of the distribution according to measurement type and 

generated several assumptions regarding their association. 
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Introduction 

 
Experimental data plays an important role in the validity of quantitative Structure-

Activity Relationship (qSAR) models. The precision and accuracy of experimental data 

influence the uncertainty of a qSAR model. The variability in the descriptors values used in 

modeling [1], the correct choice of the variables involved, the factors that influence the 

activity/property [2] also influence the validity of qSAR models. The accuracy refers to how 

experiments are carried out. The two types of errors (gross errors) that may occur can be 

eliminated by checking instruments against the standard, repeating measurements, using 

standard procedures, calibrating devices, etc. These types of errors could be classified as 

instrumental (always limited by the equipment and protocol used) and human (natural human 

biases, as for example reading errors). Experimental accuracy could be related to the existence 

of systemic errors (e.g. differences between laboratories, differences between researchers, 

etc.) [3]. Consequently, the statistical identification of any types of errors in experimental data 

is a relevant issue in qSAR analyses due to its impact on the estimation / prediction model. 

Maximum likelihood (ML) [4] is a method used to find parameters that maximize the 

observation probability. The main properties of the maximum likelihood method are as 

follows [5]: ▪ consistency (the estimated MLE parameter is asymptotically consistent (n→∞)); 

▪ normality (the estimated MLE parameter is asymptotically, normally distributed with 

minimal variance); ▪ invariance (the maximum likelihood solution is invariant when 

parameters change); ▪ efficiency (if efficient estimators exist for a give problem, the 

maximum likelihood method will find them). The method may also be used to evaluate the 

uncertainty of qSAR models [6-9].  

The present research aimed to use the maximum likelihood estimation method in order 

to assess the association between measurement types and the power of error according to error 

type. 

 

 

Material and Method 

 

Sets of Compounds 

Twenty-eight sets of compounds with a different property / activity were investigated. 

The measured property or activity was taken from previously reported research. A summary 
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of the investigated sets of compounds expressed as sample size, set abbreviation, 

activity/property, existence of ties and associated references are presented in Table 1. 

 

Table 1. Investigated sets of compounds 
No. n Set [ref] Activity / Property  Ties

1 209 Y209 [10] Chromatographic retention times Yes
2 209 RRF [11] Relative response factor Yes
3 206 Y206 [12] Octanol-water partition coefficient (logKow) Yes
4 205 Y205 [13] Octanol-water partition coefficient (logKow) Yes
5 166 C166 [14] Thermodynamic solubility Yes
6 143 OrgPest [15,16] Soil sorption coefficients (KOC) Yes
7 126 Anthra [17-23] Toxicity on HepG2 cells (logIC50) c Yes
8 111 MPC [24-27] Molecular partition coefficient in n-octanol / water system (logP) Yes
9 105 MDL [28-38] Brain-blood partition coefficient (logBBP) Yes

10 88 Diamino [39,40] Antibacterial inhibitory activity (-logIC50) f Yes
11 87 lnCHF [41] Concentration high food (ng/g - lnCHF) Yes
12 69 AAT [42] Acute aquatic toxicity (-log[LC50]) LC50

a Yes
13 63 DZGALYL [43] Resistance index (RI) d (-log(RI[taxoid]/RI[paclitaxel])) No 
14 63 IMHH [44] Brain-blood partition coefficient (logBBP) Yes
15 57 InHIV [45] HIV1 inhibition (log(106/C50)) C50

b No 
16 58 InACE [46] ACE inhibition activity (log(1/IC50)) IC50

c Yes
17 57 Clark [47] Brain-blood partition coefficient (logBBP) Yes
18 48 BTA [46] Bitter tasting activity (log(1/T)) Yes
19 47 MASIS-CAII [48] Carbonic anhydrase II inhibitory activity (KI, nM)) Yes
20 45 MCY [49,50] Brain-blood partition coefficient (logBBP) No 
21 43 BKST [51] Protonation constant (pKa) No 
22 40 CAI [52] Carbonic anhydrase I inhibitory activity (logIC50, nM) Yes
23 40 CAII [52] Carbonic anhydrase II inhibitory activity (logIC50, nM) Yes
24 40 CAIV [52] Carbonic anhydrase IV inhibitory activity (logIC50, nM) Yes
25 39 Nitro [53] Toxicity (logLD50, LD50

f (mg/kg)) Yes
26 35 MGWTI [54] Cell growth inhibitory activity (log1/IC50, IC50 c) Yes
27 29 TTKSS-CAII [55] Carbonic anhydrase II inhibitory activity (logKc) Yes
28 25 ERBAT [56] Estrogen receptor binding affinity (logRBA, LBA e) Yes

n = sample size; 
Ties = existence of more than one compound with the same value of property/activity 
aLC50 = 50% lethal dose concentration 
bC50 = compound concentration required to achieve 50% protection of MT-4 cells against HIV 
cIC50 = compound concentration required for 50% growth inhibition 
d Inhibitory effect (IC50) to drug sensitive human breast carcinoma (MCF-7S) and multidrug-resistance 
human breast carcinoma (MCF-7R) – in vitro 
e Relative binding affinity to the estrogen receptor vis-à-vis E2

 

Method 

Experimental data were analyzed progressively in order to achieve the aim of the 

research: 

 Precision analysis. A series of statistical parameters were calculated in order to 

characterize the observed data (minimum, maximum, skewness, kurtosis, standard 

deviation, coefficient of variance (CV=s/m), variance-to-mean ratio (also knows as index 
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of dispersion, VMR = s2/m). Standard deviation is associated with errors in each 

individual measurement. The skewness evaluated the asymmetry of the distribution while 

the kurtosis showed how far away the distribution of data was from the Gaussian shape. 

The following interpretations for skewness were used [57]: -0.5 < skewness < 0.5: 

distribution is approximately normal; -1 < skewness < -0.5 or 0.5 < skewness > 1: 

distribution is moderately skewed; skewness < -1 or skewness > 1: distribution is highly 

skewed. The data were considered normally distributed if the kurtosis was approximately 

zero; a kurtosis value higher than 0 indicated a leptokurtic distribution; a kurtosis value 

below 0 indicated a platikurtic distribution [58]. 

 Distribution analysis. Three hypotheses regarding the distribution of observed data were 

tested (Laplace, Gauss and Gauss-Laplace) using the EasyFit software [59]. The following 

tests were applied: Chi square [60], Kolmogorov Smirnov [61] and Anderson Darling 

[62]. The Anderson-Darling test was applied because it gives more importance to the tails 

compared to the Kolmogorov-Smirnov test. Moreover, Anderson-Darling is sensitive to 

ties [61]. The outliers seem to bring type II errors to the Kolmogorov-Smirnov test (null 

hypothesis is accepted even if not true) and type I errors (null hypothesis is rejected even 

if true) to Anderson-Darling statistics [63]. 

 Grubbs analysis. Grubbs test [64] was applied whenever appropriate in order to adjust the 

obliquity of experimental data (skewness; -0.5 < skewness < 0.5: distribution was 

considered as approximately symmetric). The characteristics of Grubbs test are as follows: 

a) Grubbs’ statistics: 

G = [max|Yi - m|]/s Eq(1)

where I = identification number of compound from the data set (1 ≤ i ≤ n); m = sample mean; 

s = sample standard deviation. 

b) The test is rejected for two-sided hypothesis if:  

2
2-n),n2/(

2
2-n),n2/(

t2-n
t

n
)1-n(G

α

α

+
>  

Eq(2)

where n = sample size,  = critical value of the t-distribution with (n-2) degree of 

freedom at a significance level of α. 

2
2-n),n2/(tα

 Error analysis. Maximum likelihood estimation (MLE) was used as statistical method for 

fitting the experimental data of the investigated sets in order to estimate a series of 

parameters of the model. The following formulas were used: 
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where Xi = measured property / activity for compound i (1 ≤ i ≤ n); µ = population mean; σ = 

population standard deviation; p = power of error; Γ - gamma function. 

The GL(x;µ,σ,p) probability density function features two particular cases: when p = 1 

(fixed) it becomes the Laplace (or error) distribution, and when p = 2 (fixed) it becomes the 

Gauss (or normal) distribution. 

The sample mean of each set of compounds was considered the maximum likelihood 

estimation of the population mean; the sample variance was considered the maximum 

likelihood estimator of the population variance. Three cases of hypothetical distributions were 

investigated in this research: Laplace (p = 1), Gauss (p = 2), and Gauss-Laplace (power of 

error to be estimated) [13]. For each distribution, the population statistical parameters were 

calculated (mean and standard deviation; also power of error for Gauss-Laplace). 

The association of measurement type with the power of error (p) according to the type of 

error was also investigated (Laplace (p = 1) as model for relative error and Gauss (p = 2) for 

absolute error). 

 Kurtosis analysis. The kurtosis of the samples was computed for Laplace (p = 1), Gauss (p 

= 2) and Gauss-Laplace (p as resulted from MLE). The following kurtosis formula for the 

investigated distributions was used to analyze the distance between the sample kurtosis 

and the expected population kurtosis: 

( ) ( )
( )p3

p1p5)p(Kurtosis 2GL Γ
ΓΓ

=  
Eq(5)

The following two particular cases occurred: Laplace (p = 1) with KurtosisGL(1) = 6 and 

Gauss (p = 2) with KurtosisGL(2) = 3. 
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Results and Discussion 

 

Descriptive statistic parameters expressed as mean (m), standard deviation (s), minim 

(min), maxim (max), skewness (skew), kurtosis (kurt), coefficient of variance (CV) and 

variance-to-mean ratio (VMR) for the investigated sets of compounds were calculated and are 

presented in Table 2. 

 

Table 2. Descriptive statistics of investigated property / activity 
Set n min max m s skew kurt VMR CV (%) 

Y209 209 0.10 1.05 0.60 0.18 -0.13 2.72 0.054 30 
RRF 209 0.03 2.04 0.77 0.35 0.56 3.67 0.162 46 
Y206 206 4.15 9.60 6.48 0.83 0.25 3.85 0.106 13 
Y205 205 4.15 9.14 6.47 0.80 0.05 3.28 0.099 12 
C166 166 -6.00 3.35 -0.35 1.81 -0.49 3.20 n.a. n.a. 
OrgPest 143 0.42 5.31 2.52 0.91 0.77 3.68 0.327 36 
Anthra 126 3.45 7.70 4.74 0.78 1.60 5.94 0.127 16 
Anthra-GO 124 3.45 7.05 4.70 0.69 1.36 5.17 0.103 15 
MPC 111 -0.44 4.79 1.90 1.01 -0.03 2.98 0.538 53 
MDL 105 -2.00 1.44 -0.09 0.77 -0.47 2.86 n.a. n.a. 
Diamino 88 3.10 6.00 4.84 0.52 -0.81 4.18 0.056 11 
Diamino-GO 87 3.51 6.00 4.86 0.49 -0.58 3.56 0.049 10 
lnCHF 87 0.26 5.77 3.22 1.19 -0.23 2.69 0.442 37 
AAT 69 3.04 6.37 4.25 0.76 0.68 2.93 0.136 18 
DZGALYL 63 -0.57 2.28 0.74 0.68 0.34 2.66 n.a. n.a. 
IMHH 63 -2.15 1.04 -0.16 0.79 -0.61 2.70 n.a. n.a. 
InHIV 57 3.07 8.62 6.54 1.50 -0.60 2.36 0.345 23 
InACE 58 1.77 5.80 3.05 1.00 1.09 3.62 0.329 33 
Clark 57 -2.15 1.04 -0.14 0.79 -0.68 2.89 n.a. n.a. 
BTA 48 1.13 3.60 1.98 0.63 0.84 2.91 0.199 32 
MASIS-CAII 47 0.86 2.51 1.75 0.51 -0.25 1.79 0.149 29 
MCY 45 -2.00 1.04 0.00 0.71 -0.95 3.76 n.a. n.a. 
ERBAT 25 -2.00 2.22 0.38 1.38 -0.47 1.98 n.a. n.a. 
CAI 40 0.00 2.66 0.85 0.54 1.45 7.60 0.338 63 
CAII 40 -0.70 2.04 0.47 0.52 0.85 6.04 n.a. n.a. 
CAIV 40 -0.30 2.51 0.74 0.54 0.98 6.49 n.a. n.a. 
logCAII-GO 38 -0.70 0.95 0.39 0.38 -0.95 3.55 n.a. n.a. 
logCAIV-GO 38 -0.30 1.45 0.66 0.39 -0.93 3.78 n.a. n.a. 
Nitro 39 3.38 8.77 6.50 1.37 -0.53 3.07 0.291 21 
MGWTI 35 -2.00 1.74 -0.69 1.25 0.78 2.15 n.a. n.a. 
logCAI-GO 34 0.30 1.28 0.85 0.25 -0.25 2.78 0.076 30 
TTKSS-CAII 29 4.41 9.39 7.44 1.41 -0.48 2.29 0.267 19 
BKST 43 5.51 10.53 8.46 1.13 -0.49 3.13 0.151 13 
n = sample size; min = minimum; max = maximum; m = sample mean; s = sample standard deviation;  
skew = skewness; kurt = kurtosis; VMR = Variance-To-Mean Ratio; CV = coefficient of variance 

 

Thirteen out of thirty-three sets of compounds had negative values. The dispersion 

index and the variance coefficient could not be analyzed for these sets due to these negative 

values. 
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The analysis of the skewness revealed that 11 sets of compounds had a moderately 

skewed distribution (probability to be observed is between 1% and 5%), in 7 sets the 

distribution was highly skewed (less than 1% probability to be observed) and in 15 sets the 

distribution was approximately symmetric (no rejection of the symmetry at 5% risk being in 

error). The highly skewed sets comprised Soil sorption coefficients (OrgPest), Relative 

response factor (RRF), and some sets which referred to the concentration of compounds 

required for 50% growth inhibition (Anthra, CAI, InACE and Diamino, the Anthra set 

remained highly skewed following Grubbs test). According to this parameter, 15 sets of 

compounds were expected to have approximately symmetric distribution. The analysis of 

kurtosis revealed that 18 sets of compounds were leptokurtic and 15 platykurtic. According 

kurtosis values, the toxicity on HepG2 cells (Anthra) and Carbonic anhydrase inhibitory 

activity CAI, CAII and CAIV sets were expected to have the Laplace distribution (kurtosis > 

5). 

The analysis of variance-to-mean ratio of the investigated sets of compounds concluded 

that the data were under-dispersed (0 < VMR < 1) without exception. The analysis of the 

results obtained by the variation coefficients (as a measure of relative variation) showed a 

great relative variation (CV ≥ 20) of the experimental data in 17 sets and a small variation (10 

≤ CV < 20) in 9 sets. MPC and CAI presented greatest data variation according to the 

variation coefficients (see Table 2). The removal of the outlier whenever identified by Grubbs 

test did not shift the set of compounds between variation classes (see Table 2). 

The analysis of the results obtained following the investigation of the null hypothesis “the 

observed data followed the Laplace distribution” revealed the following (see Table 3): 

 All three applied tests rejected the null hypothesis at a significance level of 5% for 10 sets: 

RRF, OrgPest, Anthra, Anthra-GO, AAT, InHIV, InACE, BTA, CAII, and CAIV. 

 With two exceptions (AAT and IMHH sets), the Anderson-Darling test rejected the null 

hypothesis for the same sets of compounds as the Chi-square test: Y209, RRF, Y206, 

Y205, OrgPest, Anthra, Anthra-GO, MDL, InHIV, InACE, and BTA. 

 With few exceptions, the null hypothesis of Laplace distribution was rejected at different 

significance levels. The exceptions were: DZGALYL, Clark, MCY, BKST, CAI, Nitro, 

logCAI-GO, ERBAT. 

The Chi-square test rejected the null hypothesis of normality at a significance level of 5% 

in 5 (RRF, Anthra, Anthra-GO, InACE, and BTA) out of 28 cases (see Table 3). The 
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normality has also been rejected by the Kolmogorov-Smirnov and Anderson-Darling tests for 

the Anthra and Anthra-GO sets. These two sets of compounds were the ones in which all 

three normality tests agreed at a 5% significance level. Thus, it can be concluded that the 

toxicity on HepG2 cells did not respect the normal distribution. Note that the adjustment of 

the obliquity of experimental data (Grubbs test) from the Anthra set did not lead to a normal 

distributed data-set. This observation was also true for different significance levels for 

logCAII-GO and logCAIV-GO, which led to the conclusion that there were errors in the 

experimental data (unreliable data). 

 

Table 3. Results of Laplace distribution testing: Chi square (CS), Kolmogorov Smirnov (KS) 
and Anderson Darling (AD) tests 

Chi-square Kolmogorov-Smirnov Anderson-Darling Set 
Stat. df p Reject5% Rejectα% Stat. p Reject5% Rejectα% Stat. Reject5% Rejectα%

Y209 19.49 7 0.0068 Yes ≥0.01 0.08769 0.0756 No ≥0.1 2.7752 Yes ≥0.05 
RRF 28.99 7 1.44·10-4 Yes ≥0.01 0.1121 0.0096 Yes ≥0.02 3.2920 Yes ≥0.02 
Y206 21.97 7 0.0026 Yes ≥0.01 0.0844 0.1000 No 0.2 2.7284 Yes ≥0.05 
Y205 25.19 7 7.03·10-4 Yes ≥0.01 0.0920 0.0583 No ≥0.1 3.1799 Yes ≥0.05 
C166 11.13 7 0.1331 No 0.2 0.0996 0.0692 No ≥0.1 2.0107 No ≥0.1 
OrgPest 24.76 7 8.36·10-4 Yes ≥0.01 0.1299 0.0145 Yes ≥0.02 2.566 Yes ≥0.05 
Anthra 35.32 6 3.74·10-6 Yes ≥0.01 0.1784 5.56E-4 Yes ≥0.01 5.0544 Yes ≥0.01 
Anthra-GO 35.32 6 3.74·10-6 Yes ≥0.01 0.1610 0.0028 Yes ≥0.01 3.8716 Yes ≥0.01 
MPC 10.57 6 0.1026 No 0.2 0.1002 0.2011 No n.a. 1.5632 No 0.2 
MDL 19.49 7 0.0068 Yes ≥0.01 0.0877 .0756 No ≥0.10 2.7752 Yes ≥0.05 
Diamino 7.61 6 0.2682 No n.a. 0.1595 0.0202 Yes ≥0.05 2.040 No ≥0.10 
Diamino-GO 9.52 6 0.1460 No 0.2 0.1518 0.0324 Yes ≥0.05 1.8791 No 0.2 
lnCHF 9.17 6 0.1645 No 0.2 0.1086 0.2388 No n.a. 1.5085 No 0.2 
AAT 10.69 4 0.0303 Yes ≥0.05 0.1711 0.0309 Yes ≥0.05 2.0787 No ≥0.10 
DZGALYL 3.83 5 0.5738 No n.a. 0.1139 0.3598 No n.a. 0.9349 No n.a. 
IMHH 11.28 4 0.0236 Yes ≥0.05 0.1316 0.2063 No n.a. 1.8420 No 0.2 
InHIV 13.09 4 0.0108 Yes ≥0.02 0.1870 0.0322 Yes ≥0.05 2.8312 Yes ≥0.05 
InACE 14.26 5 0.0140 Yes ≥0.02 0.2011 0.0157 Yes ≥0.02 2.6301 Yes ≥0.05 
Clark 7.79 4 0.0996 No ≥0.10 0.1306 0.2614 No n.a. 1.5585 No 0.2 
BTA 12.64 3 0.0055 Yes ≥0.01 0.2518 0.0036 Yes ≥0.01 2.6130 Yes ≥0.05 
MASIS-CAII 8.46 4 0.0761 No ≥0.10 0.14928 0.2224 No n.a. 2.0537 No ≥0.10 
MCY 1.39 4 0.8458 No n.a. 0.14979 0.2398 No n.a. 1.1642 No n.a. 
BKST 4.01 4 0.4050 No n.a. 0.1100 0.6351 No n.a. 0.6320 No n.a. 
CAI 2.77 4 0.5967 No n.a. 0.1110 0.6667 No n.a. 0.6642 No n.a. 
CAII 15.34 3 0.0016 Yes ≥0.01 0.221 0.0658 No ≥0.10 2.6033 Yes ≥0.05 
CAIV 15.34 3 0.0016 Yes ≥0.01 0.2021 0.0658 No ≥0.10 2.6033 Yes ≥0.05 
Nitro 3.26 3 0.3527 No n.a. 0.1573 0.2611 No n.a. 0.9967 No n.a. 
logCAII-GO 6.67 3 0.0833 No ≥0.10 0.2667 0.0071 Yes ≥0.01 1.9159 No 0.2 
logCAIV-GO 7.28 4 0.1216 No 0.2 0.2288 0.0313 Yes ≥0.05 1.515 No 0.2 
MGWTI 6.07 3 0.1085 No 0.2 0.2556 0.0167 Yes ≥0.02 2.8245 Yes ≥0.05 
logCAI-GO 0.43 4 0.9796 No n.a. 0.1322 0.5477 No n.a. 0.5747 No n.a. 
TTKSS-CAII 5.47 3 0.1402 No 0.2 0.1698 0.3344 No n.a. 1.1505 No n.a. 
ERBAT 1.45 2 0.4831 No n.a. 0.1519 0.5601 No n.a. 1.1865 No n.a. 
Stat. = value of the statistics; df = degree of freedom;  
Reject5% = reject the hypothesis at a significance level of 5%;  
Rejectα% = the significance level at which the hypothesis is rejected, whenever appropriate; 
p = p-value; n.a. = not applicable 
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The hypothesis of normality was rejected at different significance levels by the Chi-square 

test in 14 cases (α = 0.2: Y206, MPC, AAT, InHIV, MASIS-CAII, CAI, logCAII-GO; α ≥ 

0.10: CAII; α ≥ 0.01: BTA, Anthra, Anthra-GO; α ≥ 0.01: RRF; α ≥ 0.05: IMHH, Clark). An 

agreement between the applied normality tests (different significance levels, see Table 4) was 

observed for the RRF and BTA sets. 

The Kolmogorov-Smirnov test rejected the hypothesis of normality at a 5% 

significance level in four sets: Anthra, Anthra-GO, MCY and logCAII-GO. Note that the 

hypothesis of normality was only rejected by the Kolmogorov-Smirnov test for the MCY and 

logCAII-GO sets. 

Anderson-Darling, a less conservative normality test, rejected the hypothesis of 

normality at a 5% significance level in only 2 cases (Anthra and Anthra-GO sets, see Table 

4). 

The normality analysis showed that the following sets of compounds were not 

expected to present  the shortest distance between the population (modelled through MLE) 

and the sample mean and between the population and sample standard deviation according to 

the Gauss assumption (p = 2): RRF, Anthra, Anthra-GO, Clark, BTA, MCY, and logCAII-

GO. 

The analysis of the results obtained following the investigation of the null hypothesis 

“the observed data followed the Gauss-Laplace distribution” revealed the following (see 

Table 5): 

 The null hypothesis of Gauss-Laplace distribution was rejected at a 5% significance level 

in all three tests for the Anthra and Anthra-GO sets. 

  The null hypothesis of Gauss-Laplace distribution was rejected at different 

significance levels in all three tests for the RRF and logCAII-GO sets. 

As far as the distribution analysis is concerned, the following conclusions could be 

drawn: 

 The null hypotheses of investigated distributions were rejected by at least two out of three 

applied tests at different significance levels in the following sets: RRF, Anthra, Anthra-

GO, Clark, BTA, CAII, logCAIV-GO, and MGWTI. 

 The following data sets proved to be normally distributed: Y209, Y205, C166, MDL, 

Diamino-GO, lnCHF, DZGALYL, BKST, CAIV, Nitro, logCAI-GO, TTKSS-CAII, and 

ERBAT. A MLR analysis should be applied to these sets. 
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 The Gauss-Laplace distribution proved to be less frequently rejected than the Gauss or 

Laplace distributions. 

 

Table 4. Results of Gauss distribution testing: Chi square (CS), Kolmogorov Smirnov (KS) 

and Anderson Darling (AD) tests 
Chi-square Kolmogorov-Smirnov Anderson-Darling Set 
Stat. df p Reject5% Rejectα% Stat. p Reject5% Rejectα% Stat. Reject5% Rejectα%

Y209 1.92 7 0.9641 No n.a. 0.0314 0.9823 No n.a. 0.1423 No n.a. 
RRF 17.15 7 0.0165 Yes ≥ 0.02 0.0857 0.0873 No ≥ 0.10 1.545 No 0.20 
Y206 11.00 7 0.1386 No 0.20 0.0335 0.9691 No n.a. 0.4443 No n.a. 
Y205 8.64 7 0.2793 No n.a. 0.0358 0.9469 No n.a. 0.3788 No n.a. 
C166 2.99 7 0.8862 No n.a. 0.0551 0.6743 No n.a. 0.5654 No n.a. 
OrgPest 8.06 7 0.3273 No n.a. 0.0849 0.2400 No n.a. 1.7042 No 0.20 
Anthra 24.80 5 1.52·10-4 Yes ≥ 0.01 0.1755 7.24·10-4 Yes ≥ 0.01 5.6393 Yes ≥ 0.01 
Anthra-GO 20.16 6 0.0026 Yes ≥ 0.01 0.1500 0.0067 Yes ≥ 0.01 4.3883 Yes ≥ 0.01 
MPC 8.70 6 0.1914 No 0.20 0.0493 0.9378 No n.a. 0.2463 No n.a. 
MDL 6.76 6 0.3438 No n.a. 0.1033 0.1987 No n.a. 1.0269 No n.a. 
Diamino 8.54 6 0.2008 No n.a. 0.1121 0.2029 No n.a. 1.4863 No 0.20 
Diamino-GO 7.31 6 0.2936 No n.a. 0.1079 0.2447 No n.a. 1.2040 No n.a. 
lnCHF 2.17 6 0.9032 No n.a. 0.0599 0.8954 No n.a. 0.3052 No n.a. 
AAT 8.05 5 0.1535 No 0.20 0.1093 0.3557 No n.a. 0.9161 No n.a. 
DZGALYL 4.37 5 0.4978 No n.a. 0.0733 0.8626 No n.a. 0.3885 No n.a. 
IMHH 11.39 4 0.0225 No ≥ 0.05 0.1398 0.1551 No 0.20 1.1324 No n.a. 
InHIV 7.59 4 0.1080 No 0.20 0.1472 0.1528 No 0.20 1.2268 No n.a. 
InACE 2.75 5 0.7384 No n.a. 0.1393 0.1915 No 0.20 1.8257 No 0.20 
Clark 10.90 4 0.0277 Yes ≥ 0.05 0.1479 0.1495 No 0.20 1.0176 No n.a. 
BTA 14.46 4 0.0060 Yes ≥ 0.01 0.1977 0.0405 No ≥ 0.05 1.4480 No 0.20 
MASIS-CAII 6.37 4 0.1735 No 0.20 0.1099 0.5831 No n.a. 0.9572 No n.a. 
MCY 5.93 4 0.2048 No n.a. 0.2003 0.0466 Yes ≥ 0.05 1.5082 No 0.20 
BKST 0.48 2 0.7855 No n.a. 0.1293 0.7505 No n.a. 0.6314 No n.a. 
CAI 5.55 5 0.1352 No 0.20 0.1643 0.2061 No n.a. 1.7636 No 0.20 
CAII 6.67 3 0.0833 No ≥ 0.10 0.1582 0.2427 No n.a. 1.4951 No 0.20 
CAIV 5.48 4 0.2413 No n.a. 0.1512 0.2898 No n.a. 1.2785 No n.a. 
logCAII-GO 7.01 4 0.1354 No 0.20 0.2197 0.0433 Yes ≥ 0.01 1.3180 No n.a. 
logCAIV-GO 0.84 3 0.8395 No n.a. 0.2010 0.0804 No ≥ 0.10 1.4905 No 0.20 
Nitro 0.34 3 0.9518 No n.a. 0.0985 0.8083 No n.a. 0.5312 No n.a. 
MGWTI 4.11 3 0.2498 No n.a. 0.1953 0.1206 No 0.20 1.9225 No 0.20 
logCAI-GO 0.43 4 0.9796 No n.a. 0.1051 0.8093 No n.a. 0.2895 No n.a. 
TTKSS-CAII 0.98 2 0.6125 No n.a. 0.1159 0.7891 No n.a. 0.4444 No n.a. 
ERBAT 2.46 5 0.7828 No n.a. 0.1217 0.5086 No n.a. 0.3568 No n.a. 
Stat. = value of the statistics; df = degree of freedom;  
Reject5% = reject the hypothesis at a significance level of 5%;  
Rejectα% = the significance level at which the hypothesis is rejected, whenever appropriate; 
p = p-value; n.a. = not applicable 

 

The maximum likelihood estimation was applied in order to estimate a series of 

population parameters. The obtained results expressed as MLE value, population mean and 

population standard deviation are presented in Table 6. The power of error and expected 
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kurtosis (KuGL) were also investigated according to the Gauss-Laplace distribution (see Table 

6). 

 

Table 5. Results of Gauss-Laplace distribution testing: Chi square (CS), Kolmogorov 

Smirnov (KS) and Anderson Darling (AD) tests 
Chi-square Kolmogorov-Smirnov Anderson-Darling Set 
Stat. df p Reject5% Rejectα% Stat. p Reject5% Rejectα% Stat. Reject5% Rejectα%

Y209 1.37 7 0.9864 No n.a. 0.0270 0.9971 No n.a. 0.1246 No n.a. 
RRF 17.94 7 0.0123 Yes ≥0.02 0.0922 0.0537 No ≥0.1 1.5687 No ≥0.2 
Y206 11.60 7 0.1144 No 0.2 0.0511 0.6359 No n.a. 0.7665 No n.a. 
Y205 7.65 7 0.3642 No n.a. 0.0444 0.7976 No n.a. 0.4958 No n.a. 
C166 2.98 7 0.8864 No n.a. 0.0525 0.7286 No n.a. 0.5541 No n.a. 
OrgPest 7.37 7 0.3913 No n.a. 0.0874 0.2116 No n.a. 1.6051 No 0.2 
Anthra 35.32 6 3.74·10-6 Yes ≥0.01 0.1779 5.87E-4 Yes ≥0.01 5.0393 Yes ≥0.01 
Anthra-GO 28.45 6 7.74·10-5 Yes ≥0.01 0.1528 0.0054 Yes ≥0.01 3.7083 Yes ≥0.02 
MPC 8.83 6 0.1835 No 0.2 0.0499 0.9321 No n.a. 0.2458 No n.a. 
MDL 1.37 7 0.9864 No n.a. 0.0230 0.9971 No n.a. 0.1246 No n.a. 
Diamino 8.42 6 0.2091 No n.a. 0.1338 0.0778 No ≥0.10 1.4811 No 0.2 
Diamino-GO 8.21 6 0.2228 No n.a. 0.1178 0.1652 No 0.2 1.1734 No n.a. 
lnCHF 2.08 6 0.9124 No n.a. 0.0509 0.9695 No n.a. 0.2982 No n.a. 
AAT 8.05 5 0.1534 No 0.2 0.1071 0.3804 No n.a. 0.9035 No n.a. 
DZGALYL 6.97 5 0.2231 No n.a. 0.0816 0.7652 No n.a. 0.425 No n.a. 
IMHH 11.86 4 0.0184 Yes ≥0.02 0.1416 0.1451 No 0.2 1.1271 No n.a. 
InHIV 4.71 4 0.3179 No n.a. 0.1368 0.2157 No n.a. 1.0520 No n.a. 
InACE 3.13 5 0.6798 No n.a. 0.1572 0.1021 No 0.2 1.8734 No 0.2 
Clark 11.37 4 0.0227 Yes ≥0.05 0.1498 0.1398 No 0.2 1.0195 No n.a. 
BTA 14.46 4 0.0060 Yes ≥0.01 0.1953 0.0444 Yes ≥0.05 1.4305 No 0.2 
MASIS-CAII 4.52 4 0.3406 No n.a. 0.0838 0.8690 No n.a. 0.5835 No n.a. 
MCY 4.52 4 0.3407 No n.a. 0.1845 0.0819 No ≥0.10 1.300 No n.a. 
ERBAT 1.28 5 0.9373 No n.a. 0.1194 0.5325 No n.a. 0.3477 No n.a. 
CAI 2.77 4 0.5967 No n.a. 0.1110 0.6667 No n.a. 0.6642 No n.a. 
CAII 2.24 5 0.8149 No n.a. 0.1536 0.2731 No n.a. 0.7541 No n.a. 
CAIV 3.81 4 0.4319 No n.a. 0.1284 0.4850 No n.a. 1.0265 No n.a. 
Nitro 0.59 3 0.8989 No n.a. 0.1010 0.7845 No n.a. 0.5278 No n.a. 
logCAII-GO 6.91 4 0.1406 No 0.2 0.2303 0.0296 Yes ≥0.05 1.3749 No 0.2 
logCAIV-GO 8.75 4 0.0676 No ≥0.10 0.2090 0.0620 No ≥0.10 1.3723 No n.a. 
MGWTI 3.86 3 0.2771 No n.a. 0.1739 0.2140 No n.a. 1.8354 No 0.2 
logCAI-GO 0.42 3 0.9371 No n.a. 0.1130 0.7361 No n.a. 0.3097 No n.a. 
TTKSS-CAII 0.12 3 0.9887 No n.a. 0.0890 0.9601 No n.a. 0.3719 No n.a. 
BKST 0.56 2 0.7561 No n.a. 0.1319 0.7290 No n.a. 0.6084 No n.a. 
Stat. = value of the statistics; df = degree of freedom; Reject5% = reject the hypothesis at a significance level of 5%;  
Rejectα% = the significance level at which the hypothesis is rejected, whenever appropriate; p = p-value; n.a. = not applicable 

 

The analysis of the distance between the sample and the population (expected) mean 

and between the sample and the population standard deviation revealed the following (see 

Table 6, Figure 1):  

 The mean of most investigated sets was likely to be Gauss-Laplace. 

 The standard deviation of most investigated sets of compound was likely to be Gauss. 
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Table 6. Results of MLE analysis 
Laplace (p=1) Gauss (p=2) Gauss-Laplace Set G.O. MLE µ σ MLE µ σ MLE µ σ p KuGL

Y209 No 71.55  0.606 0.205 89.27 0.599 0.180 89.85 0.598 0.180 2.331 2.732
RRF No -116.37  0.722 0.383 -112.97 0.769 0.352 -111.19 0.746 0.353 1.552 3.648
Y206 Yes -378.84  6.514 0.931 -365.87 6.481 0.829 -365.32 6.479 0.828 1.791 3.245
Y205 No -371.62  6.511 0.914 -354.21 6.465 0.801 -354.21 6.465 0.801 2.010 2.990
C166 No -489.39  -0.261 2.008  -480.78 -0.348 1.802 -480.65 -0.325 1.802 1.846 3.173
OrgPest No -272.75  2.400 0.976 -271.92 2.518 0.904 -269.83 2.443 0.906 1.443 3.901
Anthra Yes -188.80  4.560 0.735 -211.20 4.740 0.773 -186.89 4.560 0.787 0.784 8.883
Anthra-GO No -171.53  4.560 0.679 -187.79 4.695 0.691 -171.04 4.560 0.702 0.879 7.296
MPC No -236.94  1.960 1.142 -228.42 1.903 1.007 -228.39 1.900 1.007 2.083 2.922
MDL No -176.34  -0.049 0.833 -173.75 -0.094 0.762 -173.47 -0.063 0.764 1.635 3.488
Diamino Yes -94.06  4.959 0.546 -96.56 4.841 0.518 -93.87 4.914 0.519 1.302 4.330
Diamino-GO No -87.34  4.959 0.521 -87.40 4.86 0.485 -86.35 4.907 0.487 1.458 3.863
lnCHF No -208.09  3.190 1.365 -199.63 3.224 1.187 -199.17 3.206 1.187 2.468 2.649
AAT No -119.01  4.180 0.860 -113.34 4.254 0.755 -112.98 4.316 0.757 2.595 2.582
DZGALYL No -96.32  0.669 0.751 -92.60 0.744 0.670 -92.44 0.768 0.672 2.489 2.637
IMHH No -109.06  -0.082 0.864 -106.94 -0.158 0.785 -106.08 -0.306 0.800 3.851 2.213
InHIV No -155.61  7.010 1.726 -149.45 6.542 1.489 -146.27 6.337 1.465 3.500 2.282
InACE No -120.63  2.788 1.100 -118.13 3.051 0.993 -117.98 2.989 0.993 1.724 3.341
Clark No -97.59  -0.074 0.852 -96.18 -0.138 0.779 -96.16 -0.228 0.786 2.775 2.502
BTA No -66.72  1.737 0.682 -65.47 1.983 0.622 -64.54 2.149 0.634 4.000 2.188
MASIS-CAII No -56.91  1.826 0.602 -49.87 1.749 0.505 -44.75 1.749 0.510 4.000 2.188
MCY No -66.51  0.0008 0.732 -69.54 0.0004 0.706 -66.51 0.0006 0.732 1.000 6.000
BKST No -96.36  8.500 1.230 -94.88 8.457 1.117 -94.79 8.485 1.117 1.749 3.304
CAI Yes -35.90  0.845 0.485 -45.16 0.849 0.529 -35.03 0.845 0.528 0.746 9.749
CAII Yes -35.83 0.477 0.484 -43.50 0.474 0.514 -32.76 0.477 0.573 0.588 16.361
CAIV Yes -35.87 0.750 0.484 -45.19 0.743 0.529 -33.16 0.701 0.570 0.587 16.430
logCAIV-GO No -21.45  0.699 0.385 -25.02 0.657 0.382 -21.11 0.699 0.396 0.885 7.217
logCAII-GO No -13.62  0.477 0.338 -14.25 0.442 0.318 -14.09 0.472 0.319 1.620 3.515
Nitro No -100.78  6.524 1.560 -96.98 6.496 1.356 -96.95 6.485 1.356 2.150 2.864
MGWTI No -84.13  -1.200 1.374 -82.01 -0.692 1.228 -79.96 -0.692 1.246 3.999 2.189
logCAI-GO No -4.12 0.845 0.283 -1.661 0.846 0.250 -1.61 0.844 0.250 2.259 2.781
TTKSS-CAII No -77.55  7.530 1.660 -72.97 7.444 1.384 -71.16 7.258 1.365 3.774 2.227
ERBAT No -65.36  0.531 1.593 -62.19 0.379 1.357 -60.14 0.379 1.385 3.999 2.189
G.O. = Grubbs outliers at significance level of 5%; MLE = Maximum Likelihood Estimation;  
µ = population mean; σ = population standard error;  
KuGL = expected kurtosis under Gauss-Laplace assumption 
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Figure 1. Absolute frequency of the minimum difference between population and sample 
mean and between population and sample standard deviation (right graph: absolute 

difference) 
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 According to the difference between the population and the sample mean, the following 

sets of compounds had an activity/property mean that was: 

a) Slightly higher than the expected Laplace mean: logCAI-GO, CAI, lnCHF, RRF, AAT, 

DZGALYL, OrgPest, Anthra-GO, logCAII-GO, Anthra, BTA, InACE, MGWTI. 

b) Slightly higher than the expected Gauss mean: logCAII-GO, Diamino-GO, CAII, 

Anthra, OrgPest, CAI, Diamino, RRF, Y205, AAT, ERBAT, CAIV, MGWTI, Anthra-

GO, C166, TTKSS-CAII, Nitro. 

c) Slightly higher than the expected Gauss-Laplace mean: InHIV, TTKSS-CAII, logCAII-

GO, Anthra, IMHH, Anthra-GO, Clark, OrgPest, InACE, CAIV, RRF, lnCHF, Nitro, 

CAI, MPC, logCAI-GO, Y206, Y209, Y205, ERBAT. 

 According to the difference between the population and the sample standard deviation, the 

following sets of compounds proved to present errors in each individual measurement (the 

sample standard deviation was higher than the population (expected) MLE standard 

deviation) in terms of:  

a) Laplace (p = 1): CAIV, CAI, logCAII-GO, Anthra, CAII, and Anthra-GO. 

b) Gauss (p = 2): all investigated sets. 

c) Gauss-Laplace: logCAII-GO, TTKSS-CAII, InHIV, Nitro, BKST, InACE, CAI, 

lnCHF, MPC, C166, logCAI-GO, AAT, DZGALYL, Y206, Y205, MDL, 

Diamino, Diamino-GO, OrgPest, Y209, MASIS-CAII, Clark, and ERBAT. 

Laplace obtained a higher number of agreements in terms of the minimum difference 

between population and sample mean as well as between population and sample standard 

deviation (23 sets when the difference was investigated, 33 sets when the absolute difference 

was investigated). The descending classification of the difference obtained was Laplace – 

Gauss-Laplace – Gauss and of the absolute difference obtained was Laplace – Gauss – Gauss-

Laplace. 

The analysis of the power of error (p) calculated by applying the MLE (Gauss-Laplace) 

revealed the following: 

 Values below 1 were obtained for the following sets: CAIV, CAII, CAI, Anthra, Anthra-

GO, logCAIV-GO. In all these sets of compounds the activity referred to the compound 

concentration required for 50% growth inhibition. IC50 depends on several of factors: 

concentration of target molecule, concentration of inhibitor, substrate, and other 

experimental conditions [65, 66]. 
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 The MCY set was the only set for which an integer number (of 1) was obtained. This set 

was small, with a sample size of 45 compounds, and did not present any ties. The blood 

(Cblood) and brain (Cbrain) concentrations, measured in mmol/L with variations in net 

charge at pH = 7.4 [67] ranged from -2.00 to 1.04.  

 Values higher than 1 and smaller than 2 were obtained for the following sets: Diamino, 

Diamino-GO, OrgPest, RRF, logCAII-GO, MDL, InACE, BKST, Y206, and C166. Some 

sets referred to the compound concentrations required for 50% growth inhibition 

(Diamino, Diamino-GO, logCAII-GO, and InACE), which are subject to different 

instrumental and human errors. The MDL set comprises a series of compounds collected 

from different previously reported research. The absence of the same experimental 

protocol could lead to the obtained results (the blood brain barrier was the observed 

activity with experimental values ranging from -2.00 to 1.44, very close to the MCY but 

on a sample of 105 compounds). Other sets from this class referred to the IC50 activity: 

Diamino, Diamino-GO, logCAII-GO, InACE. The OrgPest set had the soil sorption 

coefficient of pesticide that measured the chemicals’ propensity to adsorb soil particles. 

The determination of this coefficient depends on a variety of operational difficulties and 

experimental artifacts related to the separation of phases, agitation speed, time for 

equilibration, exposure of new separation phases during agitation, speed of sorption [68]. 

The response factor was the property investigated for the RRF set. The response factor 

comprised the area of the target analyte and corresponding internal standard and by their 

concentrations (subject to instrumental errors and the researcher’s skills). The protonation 

constant (BKST) and partition coefficient (Y206) belong to the same class of 

experimental determinations. The thermodynamic solubility of C166 also belongs to this 

class and it depends on a series of factors (phase, physical properties of solute, 

temperature, pressure, etc) that could, together with the human factor, influence 

experimental determinations [69]. 

 A value almost equal with 2 was obtained for the octanol-water partition coefficient after 

removal of the identified outlier [12] (Y205). 

 A value higher than 2 was observed for the following sets: MPC (Molecular partition 

coefficient in n-octanol / water system), Nitro (Toxicity (logLD50), logCAI-GO 

(Carbonic anhydrase I inhibitory activity (logIC50), Y209 (Chromatographic retention 

times), lnCHF (Concentration high food), DZGALYL (Concentration high food), AAT 
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(Acute aquatic toxicity), Clark (Brain-blood partition coefficient), InHIV (HIV1 inhibition 

(log(106/C50), TTKSS-CAII (Carbonic anhydrase II inhibitory activity), IMHH (Brain-

blood partition coefficient), MGWTI (Cell growth inhibitory activity (log(1/IC50)), 

ERBAT (Estrogen receptor binding affinity), BTA (Bitter tasting activity), and MASIS-

CAII (Carbonic anhydrase II inhibitory activity). The value higher than 2 could be 

explained by the existence of absolute measurement errors. All these sets must be rejected 

if a MLR (Multiple-Linear regression) analysis on qSAR (quantitative Structure-Activity 

Relationships) models is conducted. 

 The bitter tasting activity (BTA), a purely subjective activity, proved to have a value of 4. 

Due to the nature of the observed activity, BTA was expected to have a power of error 

higher than 2 (Gauss). 

The removal of the identified outliers classified the sets of compounds into a higher 

power of error class as compared with the entire compounds from a data set (an exception 

from this rule was observed in the logCAIV-GO set). Since this behaviour was only observed 

in the CAIV set (not in the CAI and CAII sets that belong to the same researchers and are 

subject to the same errors) it could be concluded that this is related to the carbonic anhydrase 

IV inhibitory activity. 

The kurtosis analysis was performed in terms of distances between the expected 

population kurtosis (according to the Laplace, Gauss, and Laplace-Gauss assumptions) and 

the sample kurtosis. The trend evolution showed that the distances according to Gauss and to 

Laplace followed a similar pattern while the Gauss-Laplace pattern was chaotic (Figure 2). 

Five sets of investigated compounds proved to be close to the expected Laplace population 

kurtosis (Anthra, Anthra-GO, CAI, CAII, and CAIV sets). Eleven sets of compounds proved 

to be closest to the expected Gauss population kurtosis (AAT, BKST, BTA, Clark, IMHH, 

logCAII-GO, MCY, MDL, MPC, Nitro, and Y205). In most cases, the sample kurtosis proved 

to be closest to the expected Gauss-Laplace population kurtosis. A significant negative 

correlation between the minimum distance of the expected Laplace population kurtosis and 

the sample kurtosis with p (determined by MLE) was obtained by Spearman’s rank 

correlation coefficient (ρ = -0.621, p = 1.1·10-4). The sample kurtosis proved to highly 

correlate with the expected Gauss-Laplace population kurtosis (ρ = 0.908, p = 1.1·10-6; 

Cronbach's Alpha coefficient = 0.712) as identified above. 
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Figure 2. Trends of distance from the expected population kurtosis (Gauss, Laplace and 

Gauss-Laplace assumptions) 
 

 

Conclusions 

 

The maximum likelihood approach was applied in order to classify experimental data 

of active biological compounds. A series of population parameters were estimated according 

to the Laplace, Gauss and Gauss-Laplace assumptions. The mean of most investigated sets 

was likely to be Gauss-Laplace while the standard deviation of most investigated sets of 

compound was likely to be Gauss. The MLE analysis allowed making assumptions regarding 

the type of errors in the investigated sets. The kurtosis analysis revealed that most 

investigated sets of compounds were closer to Gauss-Laplace general distribution than 

expected normal (Gauss) distribution and were not suitable for multiple linear regression 

analyses. 
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