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Abstract 

This original work presents the construction of a set of ten sequence matrices 

and their applications for ordering vertices in graphs. For every sequence matrix 

three ordering criteria are applied: lexicographic ordering, based on strings of 

numbers, corresponding to every vertex, extracted as rows from sequence matrices; 

ordering by the sum of path lengths from a given vertex; and ordering by the sum of 

paths, starting from a given vertex. 

We also examine a graph that has different orderings for the above criteria. We 

then proceed to demonstrate that every criterion induced its own partition of graph 

vertex. 

We propose the following theoretical result: both LAVS and LVDS criteria 

generate identical partitioning of vertices in any graph. 

Finally, a coloring of graph vertices according to introduced ordering criteria 

was proposed. 
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1. Introduction 
 

The problem of vertex partitioning in graphs can be solved in different ways [1,2]. The 

most frequently used discriminating criteria are well-known square matrices that collect 

contributions of pairs of vertices from the graph. The adjacency matrix is the simplest matrix 

of this type. Some authors use characteristic polynomial and its eigenvalue to characterize a 

given graph [3]. The sequence of eigenvalues forms the graph spectrum [4]. A basic result in 

spectral geometry is the theorem of Cheng [5]. 

 Let us consider a sequence matrix. It is of dimension n×(n-1), where n is the number 

of vertices. Such a matrix can be used to compare different graphs (interstructural similarity), 

when analyzing the columns of sequence matrices, the sums by columns or global sums 

(generic indices) [6]. It is also possible to compare the vertices of a graph (intrastructural 

similarity), when analyzing the rows of sequence matrices and the sums by rows [7,8]. With 

this observation, a sequence matrix is an elegant method to investigate graphs [9]. Note that 

the ordering of graph vertices by using sequence matrices is of a partially ordered type 

[10,11]. 

Prior, Dobrynin reported the degeneracy of some sequence matrices [12,13]. 

Decomposition of graphs into congruent factors has interesting chemical implications [14,15]. 

Dobrynin [16] and Diudea [17,18] reported distance degree sequences (DPS in our notation) 

and their chemical applications. The path sequence matrix (APS in our notation) is calculated 

in order to study molecular similarity [19]. 

 

 

2. Theoretical Considerations 
 

Some definitions are required. Let G = (V, E) be an un-oriented graph. We are note 

the set of all path in G with P(G). The distance from i to j in G is d(G)i,j and detour is δ(G)i,j. 

For p ∈ P(G), l(p) denotes the length of path p. 

t = (vi)1≤i≤n is a terminal path if: 

(1) t ∈ P(G) and 

(2) ∀v ∈ V s. th. (vn, v) ∈ E then t ∪ (vn, v) ∉ P(G). 

The set of terminal paths starting with i in G is T(G)i = {t = (vi)1≤i≤n s. th. v1 = i and t 

terminal path}. The set of terminal paths in G is T(G) = (T(G)v)v∈V. 
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The set of distance paths from i to j in G is DP(G)i,j = {p=(xi)1≤i≤n s. th. p∈P(G), x1=i, 

xn=j & l(p)=d(G)i,j}. The set of distance path in G is DP(G) = {p = (xi)1≤i≤n s. th. p ∈ P(G) and 

l(p) = . 
n1 x,x)G(d }

 The set of detour paths from i to j in G is ∆P(G)i,j = {p=(xi)1≤i≤n s. th. p∈P(G), x1=i, 

xn=j & l(p)=δ(G)i,j}. The set of detour path in G is ∆P(G) = {p = (xi)1≤i≤n s. th. p ∈ P(G) and 

l(p) = }. 
n1 x,x)G(δ

 The set of distance terminal paths from i to j in G is DT(G)i,j = {t=(xi)1≤i≤n s. th. 

t∈T(G), x1=i, xn=j & l(t)=d(G)i,j}. 

The set of distance terminal path in G is DT(G) = {t = (xi)1≤i≤n s. th. t ∈ T(G) and l(t) = 

. 
n1 x,x)G(d }

 The set of detour terminal paths from i to j in G is ∆T(G)i,j = {t=(xi)1≤i≤n s. th. t∈T(G), 

x1=i, xn=j & l(t)= δ(G)i,j}. 

The set of detour terminal path in G is ∆T(G) = {t = (xi)1≤i≤n s. th. t ∈ T(G) and l(t) = 

}. 
n1 x,x)G(δ

 Note that if G = (V, E) is a connected graph, then ∀ v ∈ V, ∀ e ∈ E ∃ t ∈ T(G)v s. th. 

e ⊆ t. Thus, any connected graph can be reconstructed from the terminal path list starting 

from an arbitrary vertex. Also, ∀ i, j ∈ V, T(G)j can be constructed from T(G)i. Consequently, 

the sets of terminal paths T(G)v, v ∈ V are equivalent by construction. 

 In order to generate sequence matrices, we compute terminal paths. Let G = (V, E), V 

= {1, …, 8}, E = {(1, 2), (1, 3), (2, 4), (3, 5), (3, 6), (4, 5), (4, 7), (6, 7), (7,8)} shown in figure 

1: 

 

4 8

3
1

2 7

6
5

 
Fig. 1. Graph G (see above) 

 

 We have devised a 16-bit windows original computer program to list all terminal 

paths. For the graph in figure 1, we have obtained the following set of terminal paths for 

vertex 1: 

 39



Graph Theory. 2. Vertex Descriptors and Graph Coloring 

Lorentz JÄNTSCHI 
 

T(G)1

   1 2 4 5 3 6 7 8 

   1 2 4 7 8 

   1 2 4 7 6 3 5 

   1 3 6 7 8 

   1 3 6 7 4 2 

   1 3 6 7 4 5 

   1 3 5 4 7 6 

   1 3 5 4 7 8 

   1 3 5 4 2 
 

Fig. 2. Terminal paths of graph G from fig. 1 starting from vertex 1 

 

 
3. The Construction of Sequence Matrices of Numbering 

 
We extend the concept used for the distance degree sequence matrix and layer path 

(path degree sequence) matrix to construct a set of 10 sequence matrices. A sequence matrix 

is a matrix that collects vertex contribution in each row and elongation of paths in each 

column. The elements of the matrix cumulate a value of vertex property for a given 

elongation. Sequence matrices are of dimension n×(n-1) and are given by following 

definitions: 

SMN (sequence matrix of numbering) of paths (P) which starts with i and has length j 

is APS(G)i,j = |{p ∈ P(G), s. th. p1 = i, l(p) = j}|, where p1 is the first vertex from path p and 

operator |·| is the cardinal operator. 

SMN of distance P that starts with i and has length j is DPS(G)i,j = |{p ∈ APS(G)i,j, s. 

th. p ∈ DP(G)}|. 

SMN of detour P that starts with i and has length j is ∆PS(G)i,j = |{p ∈ APS(G)i,j, s. th. 

p ∈ ∆P(G)}|. 

SMN of terminal paths (T) which starts with i and has length j is ATS(G)i,j = |{t ∈ 

T(G), s. th. t1 = i, l(t) = j}}|. 

SMN of distance T that starts with i and has length j is DTS(G)i,j = |{p ∈ ATS(G)i,j, s. 

th. p ∈ DT(G)}|. 
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SMN of detour T that starts with i and has length j is ∆TS(G)i,j = |{p ∈ ATS(G)i,j, s. th. 

p ∈ ∆T(G)}|. 

SMN of the vertex situated at the end of paths that starts with i and has j edges is 

AVS(G)i,j = |{v∈V, s. th. ∃ p ∈ P(G), p1 = i, pj+1 = v, l(p) = j}|. 

SMN of the vertex situated at the end of distance paths that starts with i and has j 

edges is DVS(G)i,j = |{v∈V, s. th. ∃ p∈DP(G), p1 = i, pj+1 = v, l(p)=j}|. 

SMN of the vertex situated at the end of detour paths that starts with i and has j edges 

is ∆VS(G)i,j = |{v∈V, s. th. ∃ p∈∆P(G), p1 = i, pj+1 = v, l(p)=j}|. 

SMN of the cycles that contain vertex i and has j edges is ACS(G)i,j = |{p ∈ P(G), s. th. 

l(p) = j-1 and (pj,p1) ∈ E}|. 

 If an lexicographically ordering are applied to the sequence matrices of numbering 

(SMN), through permutation of one line with another, and the new matrix obtained can be 

used to make interstructural comparisons (with any other graph) because a lexicographically 

ordered matrix is independent with respect to labeling. 

When two vertices are compared, lexicographic ordering is also useful from the point 

of view of the selected criterion. 

The results of lexicographic ordering can be used to index the graph, by permuting the 

old indexing. 

The computer program used in lexicographic ordering (quicksort method), gives 

permutation of partial ordering (σ in what follows). 

 Ten sequence matrices, ten lexicographically associated matrices and ten permutations 

σ are computed. 

Two vertex indices in every case (from ten cases) are calculated. The first is sum of 

elements from the row (the number of total paths), the second is the weighted sum of elements 

from the row (the length of total paths).  

For the graph G from figure 1 we obtain a set of ten tables with three different 

ordering criteria (table 1-10). 
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Table 1. APS and LAPS numbered sequences 

APS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i LAPS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i 
1 2 3 4 7 6 2 1 25 97 1=σ(8) 1 2 3 4 5 5 2 22 99 
2 2 3 5 5 6 4 0 25 97 2=σ(1) 2 3 4 7 6 2 1 25 97 
3 3 3 5 7 3 0 0 21 67 3=σ(2) 2 3 5 5 6 4 0 25 97 
4 3 4 4 6 3 1 0 21 68 4=σ(6) 2 4 4 5 6 3 0 24 90 
5 2 4 5 5 4 5 1 26 102 5=σ(5) 2 4 5 5 4 5 1 26 102 
6 2 4 4 5 6 3 0 24 90 6=σ(7) 3 3 4 5 5 2 0 22 78 
7 3 3 4 5 5 2 0 22 78 7=σ(3) 3 3 5 7 3 0 0 21 67 
8 1 2 3 4 5 5 2 22 99 8=σ(4) 3 4 4 6 3 1 0 21 68 

 

Table 2. DPS and LDPS numbered sequences 

DPS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i LDPS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i 
1 2 3 2 2 0 0 0 9 22 1=σ(8) 1 2 3 2 0 0 0 8 22 
2 2 3 3 0 0 0 0 8 17 2=σ(1) 2 3 2 2 0 0 0 9 22 
3 3 3 1 0 0 0 0 7 12 3=σ(2) 2 3 3 0 0 0 0 8 17 
4 3 4 0 0 0 0 0 7 11 4=σ(5) 2 4 1 0 0 0 0 7 13 
5 2 4 1 0 0 0 0 7 13 5=σ(6) 2 4 2 0 0 0 0 8 16 
6 2 4 2 0 0 0 0 8 16 6=σ(3) 3 3 1 0 0 0 0 7 12 
7 3 3 2 0 0 0 0 8 15 7=σ(7) 3 3 2 0 0 0 0 8 15 
8 1 2 3 2 0 0 0 8 22 8=σ(4) 3 4 0 0 0 0 0 7 11 

 

Table 3. ∆PS and L∆PS numbered sequences 

∆PS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i L∆PS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i 
1 0 0 0 1 4 2 1 8 43 1=σ(1) 0 0 0 1 4 2 1 8 43 
2 0 0 0 1 4 4 0 9 48 2=σ(6) 0 0 0 1 4 3 0 8 42 
3 0 0 2 4 3 0 0 9 37 3=σ(2) 0 0 0 1 4 4 0 9 48 
4 0 0 2 4 2 1 0 9 38 4=σ(5) 0 0 0 4 0 4 1 9 47 
5 0 0 0 4 0 4 1 9 47 5=σ(4) 0 0 2 4 2 1 0 9 38 
6 0 0 0 1 4 3 0 8 42 6=σ(3) 0 0 2 4 3 0 0 9 37 
7 1 0 0 1 4 2 0 8 37 7=σ(8) 1 0 0 0 1 4 2 8 44 
8 1 0 0 0 1 4 2 8 44 8=σ(7) 1 0 0 1 4 2 0 8 37 
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Table 4. ATS and LATS numbered sequences 

ATS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i LATS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i 
1 0 0 0 3 4 1 1 9 45 1=σ(8) 0 0 0 0 1 3 2 6 37 
2 0 0 1 1 3 4 0 9 46 2=σ(1) 0 0 0 3 4 1 1 9 45 
3 0 0 1 5 3 0 0 9 38 3=σ(5) 0 0 1 1 0 4 1 7 38 
4 0 1 0 3 2 1 0 7 30 4=σ(2) 0 0 1 1 3 4 0 9 46 
5 0 0 1 1 0 4 1 7 38 5=σ(3) 0 0 1 5 3 0 0 9 38 
6 0 1 0 0 3 3 0 7 35 6=σ(6) 0 1 0 0 3 3 0 7 35 
7 1 0 0 1 3 2 0 7 32 7=σ(4) 0 1 0 3 2 1 0 7 30 
8 0 0 0 0 1 3 2 6 37 8=σ(7) 1 0 0 1 3 2 0 7 32 

 

Table 5. DTS and LDTS numbered sequences 

DTS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i LDTS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i 
1 0 0 0 2 0 0 0 2 8 1=σ(8) 0 0 0 0 0 0 0 0 0 
2 0 0 1 0 0 0 0 1 3 2=σ(1) 0 0 0 2 0 0 0 2 8 
3 0 0 1 0 0 0 0 1 3 3=σ(3) 0 0 1 0 0 0 0 1 3 
4 0 1 0 0 0 0 0 1 2 4=σ(5) 0 0 1 0 0 0 0 1 3 
5 0 0 1 0 0 0 0 1 3 5=σ(2) 0 0 1 0 0 0 0 1 3 
6 0 1 0 0 0 0 0 1 2 6=σ(4) 0 1 0 0 0 0 0 1 2 
7 1 0 0 0 0 0 0 1 1 7=σ(6) 0 1 0 0 0 0 0 1 2 
8 0 0 0 0 0 0 0 0 0 8=σ(7) 1 0 0 0 0 0 0 1 1 

 

Table 6. ∆TS and L∆TS numbered sequences 

∆TS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i L∆TS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i 
1 0 0 0 0 2 1 1 4 23 1=σ(8) 0 0 0 0 0 2 2 4 26 
2 0 0 0 0 1 4 0 5 29 2=σ(5) 0 0 0 0 0 3 1 4 25 
3 0 0 0 2 3 0 0 5 23 3=σ(6) 0 0 0 0 1 3 0 4 23 
4 0 0 0 2 1 1 0 4 19 4=σ(2) 0 0 0 0 1 4 0 5 29 
5 0 0 0 0 0 3 1 4 25 5=σ(1) 0 0 0 0 2 1 1 4 23 
6 0 0 0 0 1 3 0 4 23 6=σ(4) 0 0 0 2 1 1 0 4 19 
7 1 0 0 0 2 2 0 5 23 7=σ(3) 0 0 0 2 3 0 0 5 23 
8 0 0 0 0 0 2 2 4 26 8=σ(7) 1 0 0 0 2 2 0 5 23 
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Table 7. AVS and LAVS numbered sequences 

AVS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i LAVS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i 
1 3 6 7 8 8 8 8 48 212 1=σ(8) 2 4 7 8 8 8 8 45 207 
2 3 6 8 8 8 8 8 49 215 2=σ(1) 3 6 7 8 8 8 8 48 212 
3 4 7 8 8 8 8 8 51 218 3=σ(2) 3 6 8 8 8 8 8 49 215 
4 4 8 8 8 8 8 8 52 220 4=σ(5) 3 7 8 8 8 8 8 50 217 
5 3 7 8 8 8 8 8 50 217 5=σ(6) 3 7 8 8 8 8 8 50 217 
6 3 7 8 8 8 8 8 50 217 6=σ(3) 4 7 8 8 8 8 8 51 218 
7 4 7 8 8 8 8 8 51 218 7=σ(7) 4 7 8 8 8 8 8 51 218 
8 2 4 7 8 8 8 8 45 207 8=σ(4) 4 8 8 8 8 8 8 52 220 

 

Table 8. DVS and LDVS numbered sequences 

DVS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i LDVS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i 
1 2 3 1 1 0 0 0 7 15 1=σ(8) 1 2 3 1 0 0 0 7 18 
2 2 3 2 0 0 0 0 7 14 2=σ(1) 2 3 1 1 0 0 0 7 15 
3 3 3 1 0 0 0 0 7 12 3=σ(2) 2 3 2 0 0 0 0 7 14 
4 3 4 0 0 0 0 0 7 11 4=σ(5) 2 4 1 0 0 0 0 7 13 
5 2 4 1 0 0 0 0 7 13 5=σ(6) 2 4 1 0 0 0 0 7 13 
6 2 4 1 0 0 0 0 7 13 6=σ(3) 3 3 1 0 0 0 0 7 12 
7 3 3 1 0 0 0 0 7 12 7=σ(7) 3 3 1 0 0 0 0 7 12 
8 1 2 3 1 0 0 0 7 18 8=σ(4) 3 4 0 0 0 0 0 7 11 

 

Table 9. ∆VS and L∆VS numbered sequences 

∆VS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i L∆VS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i 
1 0 0 0 1 3 2 1 7 38 1=σ(1) 0 0 0 1 3 2 1 7 38 
2 0 0 0 1 3 3 0 7 37 2=σ(2) 0 0 0 1 3 3 0 7 37 
3 0 0 1 3 3 0 0 7 30 3=σ(6) 0 0 0 1 3 3 0 7 37 
4 0 0 1 3 2 1 0 7 31 4=σ(5) 0 0 0 2 0 4 1 7 39 
5 0 0 0 2 0 4 1 7 39 5=σ(4) 0 0 1 3 2 1 0 7 31 
6 0 0 0 1 3 3 0 7 37 6=σ(3) 0 0 1 3 3 0 0 7 30 
7 1 0 0 1 3 2 0 7 32 7=σ(8) 1 0 0 0 1 3 2 7 38 
8 1 0 0 0 1 3 2 7 38 8=σ(7) 1 0 0 1 3 2 0 7 32 
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Table 10. ACS and LACS numbered sequences 

ACS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i LACS 1 2 3 4 5 6 7 ΣiSi,j ΣiSi,j·i 
1 0 0 0 1 1 0 0 2 11 1=σ(8) 0 0 0 0 0 0 0 0 0 
2 0 0 0 1 1 0 0 2 11 2=σ(1) 0 0 0 0 1 1 0 2 11 
3 0 0 0 2 1 0 0 3 16 3=σ(2) 0 0 0 0 1 1 0 2 11 
4 0 0 0 2 1 0 0 3 16 4=σ(6) 0 0 0 0 1 1 0 2 11 
5 0 0 0 2 0 0 0 2 10 5=σ(7) 0 0 0 0 1 1 0 2 11 
6 0 0 0 1 1 0 0 2 11 6=σ(5) 0 0 0 0 2 0 0 2 10 
7 0 0 0 1 1 0 0 2 11 7=σ(3) 0 0 0 0 2 1 0 3 16 
8 0 0 0 0 0 0 0 0 0 8=σ(4) 0 0 0 0 2 1 0 3 16 

 

 

4. Graph Partitioning 

 
Three operators on SMN matrices were applied for vertex comparison: LSMN 

(lexicographically ordered matrix of numbering), SMNΣpnp (sum of all path number that 

satisfy selected criteria) and SMNΣpnp·l(p) (sum of all length of path that satisfy selected 

criteria). 

Every operator induces a partial ordering in V (the set of vertices form the graph), and 

partitions the vertices in classes of equivalence that it correspond to equal operator values. 

 For example, 1 is equivalent with 2 by APSΣpnp, with 6,7 and 8 by ∆PSΣpnp, with 2, 6, 

7 by ACS and ACSΣpnp·l(p), with 2, 5, 6, 7 by ACSΣpnp, with 4, 5, 6 and 8 by ∆TSΣpnp. All 

vertices are equivalent by ∆VSΣpnp and DVSΣpnp. Vertex 1 is singulary according to 

APSΣpnp·l(p), DPSΣpnp, ∆PSΣpnp·l(p), ATSΣpnp·l(p), LDTS, DTSΣpnp, DTSΣpnp·l(p), LAVS, 

AVSΣpnp, AVSΣpnp·l(p), LDVS, DVSΣpnp·l(p) and L∆VS. 

 This example demonstrates the flexibility of sequence matrix criteria in the 

characterization of various properties of vertices. 

 Let us look at all partial orderings induced in the graph by every sequence matrix. 

 LAPS discriminates all vertices for the graph in fig. 1. The values obtained by 

applying Σpnp and Σpnp·l(p) operators are degenerate in the case of APS. APSΣpnp partitioning 

V(G) in 5 classes of equivalence: 

P(V(G), APSΣpnp) = {(3,4), (7,8), (6), (1,2), (5)}. 

APSΣpnp·l(p) partitions V(G) in 7 classes of equivalence: 
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P(V(G), APSΣpnp·l(p)) = {(7), (8), (6), (4), (2,3), (1), (5)}. 

 LDPS discriminates all vertices for the graph in fig. 1. The values for Σpnp and 

Σpnp·l(p) operators are degenerate in the case of DPS. 

DPSΣpnp partitions V(G) in 3 classes of equivalence: 

P(V(G), DPSΣpnp) = {(3,4,5), (2,6,7,8), (1)}. 

DPSΣpnp·l(p) partitions V(G) in 7 classes of equivalence: 

P(V(G), DPSΣpnp·l(p)) = {(8), (6), (4), (7), (5), (3), (1,2)}. 

All vertices for the graph from fig. 1 are discriminated by L∆PS criterion. The values 

for Σpnp and Σpnp·l(p) operators are degenerate according to ∆PS criterion. 

∆PSΣpnp partitions V(G) in 2 classes of equivalence: 

P(V(G), ∆PSΣpnp) = {(1,6,7,8), (2,3,4,5)}. 

∆PSΣpnp·l(p) partitions V(G) in 7 classes of equivalence: 

P(V(G), ∆PSΣpnp·l(p)) = {(3,7), (4), (6), (1), (8), (5), (2)}. 

LATS discriminates all vertices for the graph G. The values for Σpnp and Σpnp·l(p) are 

degenerate according to ATS. 

ATSΣpnp partitions V(G) in 3 classes of equivalence: 

P(V(G), ATSΣpnp) = {(8), (4,5,6,7), (1,2,3)}. 

ATSΣpnp·l(p) partitions V(G) in 7 classes of equivalence: 

P(V(G), ATSΣpnp·l(p)) = {(4), (7), (6), (8), (3,5), (1), (2)}. 

LDTS partitions the vertices of G in 5 classes of equivalence: 

P(V(G), LDTS) = {(8), (1), (2,3,5), (4,6), (7)}. 

The values for Σpnp and Σpnp·l(p) operators are degenerate according to DTS. 

DTSΣpnp partitions V(G) in 3 classes of equivalence: 

P(V(G), DTSΣpnp) = {(8), (2,3,4,5,6,7), (1)}. 

DTSΣpnp·l(p) partitions V(G) in 5 classes of equivalence: 

P(V(G), DTSΣpnp·l(p)) = {(8), (7), (4,6), (2,3,5), (1)}. 

 L∆TS discriminates all vertices for the graph in fig. 1. The values for Σpnp and 

Σpnp·l(p) operators are degenerate in ∆TS criteria. 

∆TSΣpnp partitions V(G) in 2 classes of equivalence: 

P(V(G), ∆TSΣpnp) = {(1,4,5,6,8), (2,3,7)}. 

∆TSΣpnp·l(p) partitions V(G) in 5 classes of equivalence: 

P(V(G), ∆TSΣpnp·l(p)) = {(4), (1,3,6,7), (5), (8), (2)}. 
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LAVS partitions the vertices of G in 6 classes of equivalence: 

P(V(G), LAVS) = {(8), (1), (2), (5,6), (3,7), (4)}. 

The values for Σpnp and Σpnn·l(p) are degenerate in AVS criteria. 

AVSΣpnp partitions V(G) in 6 classes of equivalence: 

P(V(G), AVSΣpnp) = {(8), (1), (2), (5,6), (3,7), (4)}. 

AVSΣpnp·l(p) partitions V(G) in 6 classes of equivalence: 

P(V(G), AVSΣpnp·l(p)) = {(8), (1), (2), (5,6), (3,7), (4)}. 

LDVS partitions the vertices of G in 6 classes of equivalence: 

P(V(G), LDVS) = {(8), (1), (2), (5,6), (3,7), (4)}. 

The values for Σpnp and Σpnp·l(p) are degenerate in DVS criteria. 

DVSΣpnp does not discriminate the vertices of G: 

P(V(G), DVSΣpnp) = {(1,2,3,4,5,6,7,8)}. 

DVSΣpnp·l(p) partitions V(G) in 6 classes of equivalence: 

P(V(G), DTSΣpnp·l(p)) = {(4), (3,7), (5,6), (2), (1), (8)}. 

L∆VS partitions V(G) in 7 classes of equivalence: 

P(V(G), L∆VS) = {(1), (2,6), (5), (4), (3), (8), (7)}. 

The values for Σpnp and Σpnp·l(p) operators are totally degenerate in ∆VS criteria. 

∆VSΣpnp partitions does not discriminate the vertices: 

P(V(G), ∆VSΣpnp) = {(1,2,3,4,5,6,7,8)}. 

∆VSΣpnp·l(p) partitions V(G) in 6 classes of equivalence: 

P(V(G), ∆VSΣpnp·l(p)) = {(3), (4), (7), (2,6), (1,8), (5)}. 

LACS partitions V(G) in 4 classes of equivalence: 

P(V(G), LACS) = {(8), (1,2,6,7), (5), (3,4)}. 

The values for Σpnp and Σpnp·l(p) are degenerate in ACS. 

ACSΣpnp partitions V(G) in 3 classes: 

P(V(G), ACSΣpnp) = {(8), (1,2,5,6,7), (3,4)}. 

ACSΣpnp·l(p) partitions V(G) in 4 classes of equivalence: 

P(V(G), ACSΣpnp·l(p)) = {(8), (5), (1,2,6,7), (3,4)}. 

Note that the matrices LAVS and LDVS contain different values, but induce the same 

ordering "σ" for vertices: 

 

σLAVS =  = σ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
17548632
87654321

LDVS      (σP) 
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The property (σP) was verified by a set of various graphs, with different numbers of 

cycles, edges and vertices. In each case, the LAVS and LDVS criteria induce the same partial 

ordering for vertices. 

 

 

5. Vertices Coloring 
 

According to the partitions induced and presented in tables 1-10 a graph vertices 

coloring are making. In colorings, a code color was used. In increasing order of values for 

selected criteria, the colors used are red, gold, blue, lavender, lime, green and brown. For the 

partitions that discriminate all vertices no coloring was made.  
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Fig. 3. Graph G vertices colorings from fig. 1; partitions: LAPS, APSΣpnp and APSΣpnp·l(p) 
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Fig. 4. Graph G vertices colorings from fig. 1; partitions: LDPS, DPSΣpnp and DPSΣpnp·l(p) 
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Fig. 5. Graph G vertices colorings from fig. 1; partitions: L∆PS, ∆PSΣpnp and ∆PSΣpnp·l(p) 
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Fig. 6. Graph G vertices colorings from fig. 1; partitions: LATS, ATSΣpnp and ATSΣpnp·l(p) 
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Fig. 7. Graph G vertices colorings from fig. 1; partitions: LDTS, DTSΣpnp and DTSΣpnp·l(p) 
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Fig. 8. Graph G vertices colorings from fig. 1; partitions: L∆TS, ∆TSΣpnp and ∆TSΣpnp·l(p) 
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Fig. 9. Graph G vertices colorings from fig. 1; partitions: LAVS, AVSΣpnp and AVSΣpnp·l(p) 
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Fig. 10. Graph G vertices colorings from fig. 1; partitions: LDVS, DVSΣpnp and DVSΣpnp·l(p) 
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Fig. 11. Graph G vertices colorings from fig. 1; partitions: L∆VS, ∆VSΣpnp and ∆VSΣpnp·l(p) 

 

4 8 

3 
1 

2 7

6
5 

 4 8 

3
1

2 7 

6 
5

4 8

3
1

2 7

6
5

Fig. 12. Graph G vertices colorings from fig. 1; partitions: LACS, ACSΣpnp and ACSΣpnp·l(p) 

 

 

6. Conclusions 
 

The analyzed matrix critters are capable to partitioning vertices in equivalence classes by 

different properties (i.e. number of paths, length of paths, et all). 

All criteria give a specific partitioning of vertices, excepting LAVS and LDVS ordering. 

For LAVS and LDVS criterion, an interesting property result: although the individual matrix 

values are different, comparison rules match, so that the two matrices induce identical 

partitioning. Testing on a large set of graphs, the partitioning rule LADS ≡ LVDS remain 

same. 

That is a subject for a new theorem that will be proved later. 

More, all AVS criterion (AVSΣpnp and AVSΣpnp·l(p) and LAVS) make same partitioning 

of graph vertices for the given graph G from fig. 1. More, the ordering is the same (see fig. 9). 

Vertex partitioning can be applied in graph coloring [20], the theory of traffic (lights), 

distributed electric circuits, computer networks [21], and chemical graphs [22]. Edge 

partitioning is another problem that can be solved using terminal path structure. For more 

details about this subject, please consult [23]. 
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