
1275Biotechnol. & Biotechnol. eq. 23/2009/2

BIOINFORMATICS
ARTICleS

Keywords: gene sequence analysis, genetic algorithm, hard
problem, sequence alignment, classification

Introduction
Systems occurring in nature are considered the most complex
systems because they are the result of evolutionary processes
(15). nils Aall Barricelli applied evolutionary strategies
to computer algorithms (5). three years later, Alex Fraser
published his first paper on the simulation of the artificial
selection of organisms with multiple loci controlling a
measurable trait (24). Fraser’s simulations included all the
essential elements of modern genetic algorithms.

evolutionary algorithms are inspired by natural processes
and are developed in order to optimize difficult or hard
problems (9). A hard problem is defined as a problem with
exponential complexity; classical algorithms are not able to
provide an optimum solution to this kind of problems in real
time (21).

two different evolutionary algorithms were introduced
in the 1970s: genetic algorithms (GAs) (7, 31) and evolution
strategies (53, 57). holland investigated the adaptation rather
than the optimization of hard problems by studying the genetic
algorithm. he applied the decision theory to the discrete
domain. in contrast, Rechenberg and Schwefel investigated
mutation in very small populations in order to optimize
continuous parameters (53, 57). During the same period, two
heuristics were introduced for solving hard problems that
do not require the optimum solution: tabu search (26) and
simulated annealing (16).

the aim of this study was to show how GAs can be used to
solve gene hard problems from the field of sequence analysis.
The following were studied: the classification of hard problems
in gene sequence analysis; how genetic algorithms work; the
usefulness of genetic algorithms in sequence alignment; the
results of the classification of sequence alignments using
genetic algorithms.

Imposed Problems
Different bioinformatics methods are used to determine the
biological function and/or structure of genes and of encoded
proteins. Sequence analysis is an automated computer-based
method that comprises the following steps (20):

◊ Sequence alignment: comparison of sequences in terms of
similarity and dissimilarity;

◊ Sequence identification: identification of gene-structures,
reading frames, introns (regions that are not translated
into proteins), exons (the part of the open reading frame
that codes a specific portion of the complete protein) and
regulatory elements;

◊ Prediction of protein structures;
◊ Genome mapping;
◊ comparisons of homologous sequences for constructing

the molecular phylogeny.
in chemistry, sequence analysis comprises techniques

used to determine the sequence of a polymer made of several
monomers. in molecular biology and genetics this process is
called “sequencing”.

Multiple Sequence Alignment (MSA) is applied on three
or more biological sequences (e.g. protein, deoxyribonucleic
acid (DnA), or ribonucleic acid (RnA). it is assumed that
the investigated sequences had an evolutionary relationship
(a common ancestor). the simultaneous alignment of many
nucleic acids or amino acid sequences is one of the most
commonly used techniques in sequence analysis.

MSA was performed by using dynamic programming
methods (49, 64) (no more than three sequences due to the
computation requirements of the method) (28), heuristics (22,
62), Carrillor and Lipman Algorithm (12) or its modification
(45).

Multiple alignments are used to predict the secondary or
tertiary structure of new sequences (37); to analyze homology
(60); to construct phylogenetic trees (67), to find protein

HARD PROBLEMS IN GENE SEQUENCE ANALYSIS: CLASSICAL
APPROACHES AND SUITABILITY OF GENETIC ALGORITHMS

l. Jantschi1,3, S.D. Bolboaca2,3, R.e. Sestras3

technical University of cluj-napoca, cluj, Romania1

“Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj, Romania2

University of Agricultural Sciences and Veterinary Medicine cluj-napoca, cluj, Romania3

correspondence to: Sorana D. Bolboaca
e-mail: sbolboaca@umfcluj.ro

ABSTRACT
Genetic algorithms are based on observations of natural phenomena as well as on the simulation of the artificial selection of
organisms with multiple loci controlling a measurable trait. Genetic algorithms evolved into complex and strong informatics
tools able to deal with hard problems of decision, classification, optimization, or/and simulation. We aimed to show how genetic
algorithms can be used to solve hard problems on gene sequence analysis.

1276 Biotechnol. & Biotechnol. eq. 23/2009/2

families (48); and to suggest primers for polymerase chain
reaction (PcR) (66).

Genetic Algorithm Characteristics
Genetic Algorithms (GAs) are adaptive heuristic search
algorithms based on the evolutionary ideas of natural selection
and genetics. GAs are designed to simulate the natural processes
required for evolution, especially those which follow the “soft
inheritance” principle of Jean-Baptiste lamarck (42) and the
“survival of the fittest” principle of Charles Darwin (15). In
nature, the individuals’ competition for scanty resources results
in the fittest individuals dominating over the weaker ones.

Genetic algorithms are implemented as computer simulations
in which a population of abstract representations (chromosomes
or genotypes) of candidate solutions (individuals, creatures, or
phenotypes) is subject to an optimization problem in order for
better solutions to be obtained. GAs simulate the survival of
the fittest among consecutive generations of individuals for
solving a problem. each generation consists of a population
of character strings analogous to the DnA chromosomes. each
individual represents a point in a search space and a possible
solution. the individuals in the population evolve. GAs are
based on an analogy with the genetic structure and behaviour
of chromosomes within a population of individuals.

there are many variants and adaptations of GAs in
order to improve performances for a given type of problem.
the following are examples of using GAs for solving hard
problems in biological sciences: ant colony optimization (8),
bacteriologic algorithms (6), the cross-entropy method (18),
cultural algorithms (40), evolution strategies (58), evolutionary
programming (23), extremal optimization (2), Gaussian

adaptation (39), genetic programming (4), memetic algorithm
(61), hybrid search (17), etc.

A sample of a given size of chromosomes (entry 1 in Table
1) must be generated in order to use a classical GA for solving
a problem. A GA must have an evaluation function in order
to assess chromosome fitness and assign it a value. The GA
iterates as follows:

◊ Repeat:
• Step1: Select two chromosomes (sometimes

according to their fitness - better fitness followed by
better selection chances) by using a probability mass
function - entry 1, Table 1;

• Step2: crossover the parents by using a probability
mass function and create offspring - entry 2, Table 1;

• Step3: Mutate the offspring by using a probability
mass function - entry 3, Table 1;

• Step4: Add the offspring to the sample;
• Step5: Assess the fitness of the new members using

the evaluation function;
• Step6: Delete one or more members from the sample

based on their fitness by using a probability mass
function (steady-state selection is applied);

◊ Until the best fitness of a sample member satisfies the end
condition.

encoding, crossover and mutation are presented in Table 1.
Selection and fitness are shown in Table 2.

other related approaches include support vector machines
(10), rough sets (34), SPlASh (11), or probabilistic relational
models (59).

TABLE 1
encoding, crossover and mutation in genetic algorithms

Operator Example Comments

encoding
chromosome_1 U A G G A G

encode two chromosomes (U, A, G, c are the genes here)
chromosome_2 c G G G A A

crossover
offspring_1 C G G G A G

Select crossover points (here are 0 and 2) then interchange genes
offspring_2 U A G G A A

Mutation
offspring_3 c G C A A G

Mutate offspring randomly (A into c and GG into cA)
offspring_4 U C G G A A

TABLE 2
Fitness and selection in genetic algorithms

Method Fitness score Selection Comments

Proportional
fi=Fitness(chromosome_i)

pi=fi/Σifi
The chance of reproduction is proportional to the fitness
(using the probability)

Deterministic i | fi = max. or min. the best or worst individuals are reproduced (elitism)
tournament (fi,fj) Pairs of individuals compete for selection

normalization gi=(fi-n0)(fmax.-fmin.)/(n1-n0) pi=gi/Σigi
A fixed scale [N0,n1] normalizes fitness between different
generations

Ranking hi=Rank(fi)(fmax.-fmin.)/Size pi=hi/Σihi The reproduction chance is proportional to the fitness rank

1277Biotechnol. & Biotechnol. eq. 23/2009/2

As far as sequence analysis is concerned, the objective
function (a measure of overall alignment quality) is not used
to demonstrate that one alignment is preferred over another or
that the best possible alignment, given a set of parameters, was
found. therefore, progressive alignment (55), which provides
two main alternatives, could be used:

◊ Hidden Markov models (41, 46) simultaneously find
an alignment and a probability model of substitutions,
insertions and deletions that are most self consistent;

◊ objective functions (oFs) measure multiple alignment
quality and find the best scoring alignment (19, 27).
this approach has a further advantage: it may be used to
optimise any oF. the alignments can be evaluated using
an oF, which is a measure of multiple alignment quality
(Table 3).

the oF must deal with the following issues when used to
solve a gene sequence alignment problem (see Table 3):

◊ Matches and gaps: two objectives - maximizing matches
and minimizing gaps. A match may have a different
biological relevance (weight) than a gap.

◊ Sequence length: matches (and gaps) increase as sequence
lengths increase.

◊ Sequence shifts: shifting of a sequence will produce gaps
at the beginning and end of the aligned sequences; these
gaps must be treated separately.

there are many different approaches to constructing an oF.
Karlin and Altschul (38) presented four types of scores:

1. Based on charges: not all amino acids present the same
partial (or apparent) charge in a given environment (such
as in blood serum or muscle cells). charge values may
be obtained by averaging the values of an experiment;
alternatively, the pK (or pK-7) value (acid dissociation
constant) may be used.

2. Based on matches of a given amino-acid (e.g. A in Table 3).
3. Derived from target frequencies: different weights match

different amino acids;
4. Based on structure alphabets: when amino acids are

partitioned into classes (such as internal, external and
ambivalent).

classical GAs are slightly changed in order to solve a
specific problem. Thus, Notredame and Higgins (50) reported
a software package called SAGA (Sequence Alignment by
Genetic Algorithm) that uses a scheduling scheme to control
the usage of 22 different operators for combining alignments

or mutating them between generations. they implemented the
cost of a multiple alignment (A) as a linear superposition of
costs between pairs of aligned sub-sequences as oF:

where Wi and Wj are weights of the Ai and Aj sub-sequences
(in sequences); the cost(∙,∙) function includes gap opening and
extension penalties for opening and extending the gaps.

Altschul (1) made an extensive review describing the
different ways of scoring gaps in a multiple alignment. two
related questions derived from sequence alignment:

1. Is the alignment significant according to certain statistical
models?

2. how stable is the alignment? (Which are the alternative
alignments with similar alignment scores?)

The first question is related with the probability of
observing any particular alignment solely by chance. this
difficult problem has solutions under certain conditions (65).
the second question regards alignment interpretation (results
obtained by Vingron and Argos) (63).

When there is additional information (e.g. the secondary
structure of one protein from two aligned chains) the complexity
of the problem decreases. Such alignments include non-local
interactions and the solution proved to be a hard problem (43).
Under these conditions, the objective functions must take into
account this new challenge. corpet and Michot (14) proposed
an OF with two position-specific gap penalties: GOS (penalty
for opening a gap between two stacked pairs); Go (penalty for
opening a gap in non-structured regions), and GeP (penalty
for the gap length). corpet and Michot (14) suggested the
following predefined weights: GO=5, GOS=8, GEP=0.3, and
computed the total gap penalty as:

GapP(A)=a(A)∙GoS + b(A)∙Go + c(A)∙GeP
where a is the number of gaps between stacked pairs in

stems, b is the number of other non-terminal gaps and c is the
total length of all non-terminal gaps. the alignment score (the
oF) is calculated as follows:

OF(A) = Pr(A) + λ∙Se(A) - GapP(A)
where Pr(∙) is a function of the aligned pairs of residues in

the alignment, Se(∙) is based on the secondary structure and it
evaluates the stability of the folding induced by the master in
the slave sequence. Parameter λ (positive constant) balances the
contribution of primary and secondary structure information.

TABLE 3
example of gene sequence alignment

two unaligned sequences
Sequence_1 U A A G c c U c A G U A A
Sequence_2 A A c c c U c A U A

A possible alignment of the sequences
Sequence_1 U A A G C C U C A G U A A
Sequence_2 A A c C C U C A U A

1278 Biotechnol. & Biotechnol. eq. 23/2009/2

notredame et al. (50) implemented the model for RnA
sequence alignment proposed by corpet and Michot (14) and
observed that optimization was very difficult for λ>0 (the
secondary structure was taken into account). notredame et al.
(50) reported good results using a Homo sapiens mitochondrion
(X03205 and V00702) as protein with known structure and
a mitochondrion from different species (Drosophila virilis
X05914, Apis mellifera S51650, Penicillium chrysogenum
l01493, etc.) as protein with unknown secondary structure.
They showed that the best value for λ parameter varied from
1 (Oxytrichia nova X03948, Latimeria chalumnae Z21921,
Xenopus laevis M27605) to 6 (Saccharomyces cerevisiae
V00702) for the best pair matching resulting from the reference
alignment that varied from 66.6% to 84.9% in nine experiments
(with an average statistics of 79.3±4.6% at 95% confidence).

Software Applications
Parsons et al. (52) developed and implemented a genetic
algorithm for solving a DnA sequence assembly problem. the
fragments were ordered by using a sorted order representation.
Two fitness functions based on pairwise overlap strengths were
implemented and tested. The first fitness function aimed to
maximize the sum of overlap strengths in adjacent fragments.
The second fitness function aimed to minimize the function
described by churchill et al. (13). the performances of the
fitness functions were comparable; however, neither function
appeared to represent the desired layout appropriately. the
GA implementation suggested by Parsons et al. is a modified
GA previously implemented by Grefenstettle (30). the
GA implemented by Parsons et al. was better than the GA
implemented by huang (32).

Moore et al. (47) developed and applied a maximum-
likelihood (Ml) and Bayesian search using 61 plastid protein-
coding genes on five major lineages of mesangiosperms for
45 taxa. A genetic algorithm was applied in order to perform
rapid heuristic Ml searches (the GARli program) (68). For
Bayesian searches, they used MrBayes 3 program (54) which
implements a variant of Markov chain Monte carlo (McMc)
called Metropolis-coupled McMc (25). huelsenbeck et al.
(33) suggested that the Metropolis-coupled McMc was the
most useful numerical method for approximating the posterior
probability of a tree. the estimated Ml parameters presented
by Moore et al. (47) were assessed using the nonparametric
BS approach (3). the phylogenetic tree analysis carried out by
Moore et al. (47) revealed that GARli estimated parameters
were always extremely close to the fully optimized values.

Pan et al. (51) developed GABRiel (Genetic Analysis
by Rules incorporating expert logic), which is a rule-based
system (including similarity, pattern, and proband based rules)
designed to apply domain-specific and procedural knowledge
systematically and uniformly in order to analyse and interpret
data from DnA micro arrays. the effects of serum addition
on the biology of human fibroblasts (29, 36, 44, 56) were
used to analyse a dataset of 517 genes. the results revealed
altered transcription in human foreskin fibroblasts following

the addition of serum to growth-arrested cultures previously
published by iyer et al. (35). Pan et al. (51) used pattern-
based rules to obtain the setting of the following parameters
(not explicitly defined by Iyer et al.) (35): elevated, baseline,
immediately, remained, and short period. Pan et al. (51)
showed that the elevation required at least a 2-fold change
in the gene expression of each time points, and a baseline
zone between -1 and +1 (expressed as logarithms). they
specified the immediate/early (I/E) response gene using a
decision tree with time periods ranging from 15 min to 1 h
(51). Pattern search analysis (PSA) was conducted using
GAs (GABRiel software) in order to detect data organized
according to the interrelationships among component parts in
gene expression profiles (data sets portraying the features of
gene expression under specified conditions). PSA studies were
able to reconstruct the results previously reported by iyer et
al. (35). Furthermore, when the continuity-proband rule was
used (GABRiel), additional continuities not found by iyer
et al. (35) were detected through the analysis of hierarchical
clustering dendrograms. Pan et al. (51) remarked that the GA
was able to distinguish between expression profiles with subtle
differences not readily apparent by the visual scanning of data.
Moreover, in cases where the results differed from the ones
reported by iyer et al. (35), the GABRiel rule explanation
function indicated the statistical or threshold parameters
responsible for the differences. iyer et al. (35) suggests that the
key features of GABRiel may be useful for analysing large
data sets generated by other types of genomic and proteomic
approaches.

Conclusions
Genetic Algorithms can be implemented in a straightforward
manner to solve hard problems derived from gene sequence
analyses (sequence alignment, sequence databases, repeated
sequence search, sequence comparisons). Recent advances
in the integration of genetic algorithms with routines for
maximum-likelihood estimation, Markov chain Monte carlo
simulations, and rules incorporating expert logic approaches
proved able to investigate and explain hard questions of gene
sequence analysis.

Acknowledgments
the research was partly supported by national research grants
(iD1051/UeFiScSU, iD0458/UeFiScSU, PccP1177/
cnMP).

REFERENCES
1. Altschul S.F. (1989) J. theor. Biol., 138(3), 297-309.
2. Bak P., Sneppen K. (1993) Phys. Rev. lett., 71(24), 4083-

4086.
3. Baldwin B.G., Sanderson M.J. (1998) Proc. natl. Acad.

Sci. USA, 95(16), 9402-9406.

1279Biotechnol. & Biotechnol. eq. 23/2009/2

4. Banzhaf W., Nordin P., Keller R.E., Francone F.D. (1997)
Genetic Programming: An introduction: on the Automatic
evolution of computer Programs and its Applications,
Morgan Kaufmann Publishers, San Francisco, p. 450.

5. Barricelli N.A. (1954) Methodos, 45-68.
6. Benoit B., Fleurey F., Jézéquel J.-M., Le Traon Y. (2005)

ieee Software, 22(2),76-82.
7. Bosworth J., Norman F., Zeigler B.P. (1972) comparison

of Genetic Algorithms with conjugate Gradient Methods,
nASA contractor Reports, cR-2093.

8. Bouktir T., Slimani L. (2005) leonardo J. Sci., 4(7), 43-
57.

9. Bremermann H.J, Rogson J., Salaff S. (1966) Global
properties of evolution processes. in: natural Automata
and useful Simulations (h.h. Pattee, ed.), Proceedings of
Symposium on Fundamental Biological Models, Stanford
University 1965, pp. 3-42.

10. Brown M.P., Grundy W.N., Lin D., Cristianini N.,
Sugnet C.W., Furey T.S., Ares M.Jr., Haussler D. (2000)
Proc. natl. Acad. Sci. USA, 97(1), 262-267.

11. Califano A. (2000) Bioinformatics, 16(4), 341-357.
12. Carrillo H., Lipman D. (1988) SiAM J. Appl. Math., 48,

1073-1082.
13. Churchill G., Burks C., Eggert M., Engle M.L.,

Waterman M.S. (1993) Assembling DnA sequence
fragments by shuffling and simulated annealing, Tech.
Rep. LA-UR-93-2287, Los Alamos Scientific Laboratory
Publication, lA-UR-2287, p. 25.

14. Corpet F., Michot B. (1994) comput. Applicat. Biosci.,
10(4), 389-399.

15. Darwin C.R. (1859) on the origin of species by means of
natural selection, J. Murray, london, p. 459.

16. Davis L. (1987) Genetic Algorithms and Simulated
Annealing, M. Kaufmann, San Francisco, p. 216.

17. Davis L. (1991) the handbook of Genetic Algorithms,
Vn Reinhold, new York, p. 385.

18. De Boer P.-T., Kroese D.P., Mannor S., Rubinstein R.Y.
(2005) Ann. oper. Res., 134(1), 19-67.

19. Do C.B., Mahabhashyam M.S.P., Brudno M., Batzoglou
S. (2005) Genome Res., 15(2), 330-340.

20. Durbin R., Eddy S., Krogh A., Mitchison G. (2002)
Biological sequence analysis. Probabilistic models of
proteins and nucleic acids, 7th ed., cambridge University
Press, cambridge, UK, p. 356.

21. Falkenauer E. (1998) Genetic Algorithms and Grouping
Problems, Wiley, new York, p. 220.

22. Feng D., Doolittle R.F. (1987) J. Mol. evol., 25, 351-360.
23. Fogel L.J. (1999) intelligence through Simulated

evolution: Forty Years of evolutionary Programming,
Wiley interscience, new York, p. 162.

24. Fraser A. (1957) Aust. J. Biol. Sci., 10, 484-491.

25. Gilks W.R., Roberts G.O. (1996) Strategies for improving
McMc, in: Markov chain Monte carlo in Practice:
interdisciplinary Statistics (W.R. Gilks, S. Richardson, D.
Spiegelhalter, eds.), chapman & hall, london.

26. Glover F. (1977) Decision Sci., 8(1), 156-166.
27. Gondro C., Kinghorn B.P. (2007) Genet. Mol. Res., 6(4),

964-982.
28. Gotoh O. (1986) J. theor. Biol., 121, 327-337.
29. Greenberg M.E., Ziff E.B. (1984) nature, 311(5985),

433-438.
30. Grefenstette J.J. (1984) Genesis: A system for using

genetic search procedures. in: Proceedings of a conference
on intelligent Systems and Machines, Rochester, Mi, 161-
165.

31. Holland J.H. (1975) Adaptation in Natural and Artificial
Systems, Univ. of Michigan Press, Ann Arbor, p. 183.

32. Huang X. (1992) Genomics, 14, 18-25.
33. Huelsenbeck J.P., Ronquist F., Nielsen R., Bollback J.P.

(2001) Science, 294(5550), 2310-2314.
34. Hvidsten T.R., Komorowski J., Sandvik A.K., Laegreid

A. (2001) Pac. Symp. Biocomput., 6, 299-310.
35. Iyer V.R., Eisen M.B., Ross D.T., Schuler G., Moore

T., Lee J.C., Trent J.M., Staudt L.M., Hudson J.Jr.,
Boguski M.S., Lashkari D., Shalon D., Botstein D.,
Brown P.O. (1999) Science, 283(5398), 83-87.

36. Jähner D., Hunter T. (1991) Mol. cell. Biol., 11(7), 3682-
3690.

37. Joshi R.R. (2007) current Bioinformatics, 2(2), 113-131.
38. Karlin S., Altschul S.F. (1990) Proc. natl. Acad. Sci.

USA, 87(6), 2264-2268.
39. Kjellström G. (1991) J. optim. theor. Appl., 71(3), 589-

597.
40. Kobti Z., Reynolds R.G., Kohler T. (2004) SwarmFest

8(online), p. 8.
41. Krogh A., Brown M., Mian I.S., Sjolander K., Haussler

D. (1994) J. Mol. Biol., 235(5), 1501-1531.
42. Lamarck J.B.P.A. (1830) An exposition of Zoological

Philosophy, JB Baillère, Paris, p. 420 and p. 450 (in french).
43. Lathrop R.H. (1994) Protein engng., 7(9), 1059-1068.
44. Lau L.F., Nathans D. (1987) Proc. natl. Acad. Sci. USA,

84(5), 1182-1186.
45. Lipman D.J., Altschul S.F., Kececioglu J.D. (1989) Proc.

natl. Acad. Sci USA, 86(12), 4412-4415.
46. Löytynoja A., Goldman N. (2005) Proc. natl. Acad. Sci.

USA, 102(30), 10557-10562.
47. Moore M.J., Bell C.D., Soltis P.S., Soltis D.E. (2007)

Proc. natl. Acad. Sci. USA 104(49), 19363-19368.
48. Mulder N.J., Apweiler R. (2008) curr. Protoc.

Bioinformatics, Suppl. 21, 2.7.1-2.7.18.
49. Murata M., Richardson J.S., Sussman J.L. (1985) Proc.

natl. Acad. Sci. USA, 82, 3073-3077.

1280 Biotechnol. & Biotechnol. eq. 23/2009/2

50. Notredame C., O’Brien E.A., Higgins D.G. (1997)
nucleic Acid Res., 25(22), 4570-4580.

51. Pan K.-H., Lih C.-J., Cohen S.N. (2002) Proc. natl.
Acad. Sci. USA, 99(4), 2118-2123.

52. Parsons R., Forrest S., Burks C. (1993) Genetic
Algorithms for DnA Sequence Assembly, in: iSMB-93
Proceedings, 310-318.

53. Rechenberg I. (1973) evolutionsstrategies - optimierung
technischer Systeme nach Prinzipien der biologischen
information, Frommann-holzboog Verlag, Stuttgart.

54. Ronquist F., Huelsenbeck J.P. (2003) Bioinformatics,
19(12), 1572-1574.

55. Russell D.J., Otu H.H., Sayood K. (2008) BMc
Bioinformatics, 9, Article no. 306.

56. Ryder K., Lau L.F., Nathans D. (1988) Proc. natl. Acad.
Sci. USA, 85(5), 1487-1491.

57. Schefel H.-P. (1981) numerical optimization of computer
Models, John Wiley and Sons ltd, new York, p. 398.

58. Schwefel H.-P. (1995) evolution and optimum Seeking,
Wiley & Sons, new York, p. 456.

59. Segal E., Taskar B., Gasch A., Friedman N., Koller D.
(2001) Bioinformatics, 17(S1), 243-252.

60. Shevchenko A., Valcu C.-M., Junqueira M. (2009) J.
Proteomics, 72(2), 137-144.

61. Smith J.E. (2007) ieee trans. Syst. Man. cy. B, 37(1),
6-17.

62. Taylor W.R. (1986) J. Mol. Biol., 188, 233-258.
63. Vingron M., Argos P. (1990) Protein engng., 3(7), 565-

569.
64. Waterman M.S. (1984) Bull. Math. Biol., 46, 473-500.
65. Waterman M.S., Vingron M. (1994) Proc. natl. Acad.

Sci. USA, 91(11), 4625-4628.
66. Yuan J.S., Burris J., Stewart N.R., Mentewab A., Neal

Jr. C.N. (2007) BMc Bioinformatics, 8(Suppl. 7), Article
no. S6.

67. Zheng X., Qin Y., Wang J. (2009) Math. Biosci., 217(2),
159-166.

68. Zwickl D.J. (2006) Genetic algorithm approaches for
the phylogenetic analysis of large biological sequence
datasets under the maximum likelihood criterion. Ph.D.
dissertation, the University of texas at Austin.

