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The major goal of this study was to investigate the broad application of graph polynomials to the analysis of Henry’s law
constants (solubility) of nonane isomers. In this context, Henry’s law constants of nonane isomers were modelled using
characteristic and counting polynomials. The characteristic and counting polynomials on the distance matrix (CDi), on the
maximal fragments matrix (CMx), on the complement of maximal fragments matrix (CcM) and on the Szeged matrix (CSz)
were calculated for each compound. One of the nonane isomers, 4-methyloctane, was identified as an outlier and was
withdrawn from further analysis. This report describes the performance and characteristics of most significant models. The
results showed that Henry’s law constants of nonane isomers could be modelled by using characteristic polynomial and
counting polynomial on the distance matrix.
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1. Introduction

Computational methods are being used today for the

characterisation of chemical compounds and to get a

better understanding of the relationships between their

structure and physical, chemical and/or biological

properties.

The characteristic polynomial is defined in algebra as a

polynomial associated to any square matrix [1].

The characteristic polynomial encodes several properties

of a matrix, the most important being the matrix

eigenvalues, its determinant and its trace [2].

A characteristic polynomial can be defined as:

wðG;XÞ ¼ det½XI 2 AðGÞ�; ð1Þ

where A(G) is the adjacency matrix of a pertinently

constructed skeleton graph and I is the identity matrix [3].

Many studies were reported on the application of

characteristic polynomials in different research fields such

as mathematics [4,5], computer science [6–8], engineer-

ing [9], chemistry [10–12], physics [13,14] and manage-

ment [15]. The characteristic polynomial is the most

popular and the most extensively studied graph poly-

nomial in chemical graph theory [3]. The characteristic

polynomials proved their performances in correlations as

molecular descriptors in the characterisation of the

properties of chemical compounds [16].

Counting polynomials are also used in chemical graph

theory. The general formula of a counting polynomial is:

X

k$0

akX
k; where ak ¼ j{Mi; jjMi; j ¼ k}j; ð2Þ

ak being the polynomial-count and i, j ¼ 1; . . . ; n.

Some methods that use the distance matrix, the Szeged

matrix or the Cluj matrix were reported in literature as

methods for counting polynomials [3].

Solvation is extremely important, because the large

majority of (bio)chemical processes takes place in the

liquid phase. Solvation free energies (free energies for the

transfer of solute from the gas phase to solution) can be

calculated by quantum chemical methods in conjunction

with implicit solvent models like solvent reaction field

[17,18] and Langevin dipoles [19,20] or by molecular

dynamics simulations in conjunction with explicit solvent

and free energy perturbation [21]. However, since such

calculations are extremely time consuming, there exists an

urgent need for development of simpler approaches to

accurately predict solvation free energies.

The aim of this study was to analyse the Henry’s law

constant (solubility) of nonane isomers by using

characteristic and counting polynomials and to prove

that characteristic and counting polynomials can be used to

characterise the relationship between structure and

chemical properties for this class of compounds.
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2. Materials and methods

Alkanes are acyclic saturated hydrocarbon structures that

normally have a linear configuration. The general chemical

formula is CnH2nþ2. It is well known that the number of

isomers increases with the number of carbon atoms, for the

alkanes with 1–10 carbons, the number of isomers being

equal with 1, 1, 1, 2, 3, 5, 9, 18, 35, and 75, respectively.

This study focuses on nonane isomers with the general

chemical structure C9H20. The systematic names of the

compounds studied are: 4-methyloctane (a_01), 3-ethyl-

2,3-dimethylpentane (a_02), 3,3-diethylpentane (a_03),

2,2,3,3-tetramethyl-pentane (a_04), 2,3,3,4-tetramethyl-

pentane (a_05), nonane (a_06), 2,3,3-trimethylhexane

(a_07), 3,3,4-trimethylhexane (a_08), 3-ethyl-3-methyl-

hexane (a_09), 2,2,3,4-tetra-methylpentane (a_10), 3,4-

dimethylheptane (a_11), 2,3,4-trimethylhexane (a_12), 3-

ethyl-4-methylhexane (a_13), 3-ethyl-2,2-dimethylpen-

tane (a_14), 3-ethyl-2,4-dimethylpentane (a_15), 2,3-

dimethylheptane (a_16), 3,3-dimethylheptane (a_17),

4,4-dimethylheptane (a_18), 3-ethylheptane (a_19), 4-

ethyl-heptane (a_20), 2,2,3-trimethylhexane (a_21), 2,2,5-

trimethylhexane (a_22), 2,4,4-trimethylhexane (a_23), 3-

ethyl-2-methylhexane (a_24), 2,2,4,4-tetramethylpentane

(a_25), 3-methyloctane (a_26), 2,5-dimethylheptane

(a_27), 3,5-dimethyl-heptane (a_28), 2,3,5-trimethylhex-

ane (a_29), 2-methyloctane (a_30), 2,2-dimethylheptane

(a_31), 2,4-dimethylheptane (a_32), 2,6-dimethylheptane

(a_33), 2,2,4-trimethyl-hexane (a_34) and 4-ethyl-2-

methyl-hexane (a_35), respectively.

The Henry’s law constant (solubility of a gas in

water) of alkanes expressed as trace gases of potential

importance in environmental chemistry was the property

of interest. The measured values were taken from

previously reported research [22] (kH, Table 1) and were

given as M/atm unit measurements (M/atm ¼ [molaq/

dm 3
aq]/atm).

The Henry’s law constant was modelled by using

characteristic and counting polynomials (Equations (1)

and (2), respectively). Four matrices were used for

counting polynomials: the distance matrix (CDi), the

maximal fragments matrix (CMx), the complement of the

maximal fragments matrix (CcM) and the Szeged matrix

(CSz) [23,24].

A monovariate model based on characteristic poly-

nomials was constructed in order to identify the outliers.

The correlation coefficient between measured and

estimated values by the model greater than 0.2 (even if it is

well known that a value less than 0.25 indicate the absence

of a linear relationship [25]) was the criterion imposed in

identification of the characteristic and counting poly-

nomials models. The multivariate models were obtained

by using homemade software that implemented a

systematic search using rational numbers ( p/q) as roots

based on the imposed criterion:2100 # p, q # 100. For the

models with good estimated ability (r . 0.75 [26]; r,

correlation coefficient) a systematic search was

applied for 0 , p, q # 50 considering the whole sample

of 35 and sampled obtained by excluding the outliers

(if any exists).

The methodology applied to assess the validity and

reliability of the identified polynomials models was as

follows:

. Step 1: leave-one-out cross-validation analysis.

The techniques employed a number of training sets

equal to the number of investigated molecules minus

one, and from each of these samples one compound

was excluded. A model was obtained and it was used

to predict the property of excluded compound for

each training set.
. Step 2: leave-n%-out cross-validation as internal

validation analysis (n, valid sample size). A number

of 1/3 from the total number of compound in the

sample was randomly chosen to be included into the

test set. The remained compounds were used to build

the model; the model was applied on test set. The

model obtained in test set was considered valid and

stable when the correlation coefficient on test set was

not statistically different by the correlation coeffi-

cient on training set.
. Step 3: leave-n%-out cross-validation as external

validation analysis. The sample of valid compounds

(excluding the outliers if any exists) was randomly

split into training and test set. One-third of

compounds were included into test set. The training

set compound were used in order to identify the

characteristics and counting polynomial on

different matrixes according to the abilities

obtained when all compounds were investigated.

The criterion used in roots search was2100 # p,

q # 100. The obtained model with higher abilities in

estimation was used in order to predict the property

on test set. The correlation coefficient and associated

95% confidence interval (95%CI), the Fisher

parameter and associated significance were used in

order to validate the model, on both training and

test set.
. Step 4: correlation coefficient comparison analysis

between and within models. The correlation

coefficients obtained by different models were then

analysed and compared using the Steiger’s Z-test

[27] at a significance level of 5%.

3. Results and discussion

The characteristic polynomial (ChP) and CDi, CMx, CcM,

CSz counting polynomials were calculated for each nonane.

To determine the irreducible or primer factors, the

characteristic and counting polynomials obtained as
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described above were factorised. The generic formulas are

described below:

. ChP:

PðXÞChP ¼ X 7ðX 2 2 8Þ þ X·QðXÞChP; ð3Þ

. CDi:

PðXÞCDi ¼ 2X 2QðXÞCDi þ 16X þ 9; ð4Þ

. CMx:

PðXÞCMx ¼ 16X 8 þ XQðXÞCMx þ 2X þ 9; ð5Þ

. CcM:

PðXÞCcM ¼ 2X 8 þ XQðXÞCcM þ 16X þ 9; ð6Þ

. CSz:

PðXÞCSz ¼ 2X 8 þ XQðXÞCSz þ 4X þ 9; ð7Þ

where P(X)ChP, P(X)CDi, P(X)CMx, P(X)CcM, P(X)CSz are

the characteristic polynomial and counting polynomials on

the: CDi, CMx, CcM and on the Szeged matrix,

respectively. The Q(X) values for each type of polynomial

are presented in Table 1.

By analysing the polynomials described above, it can

be observed that the characteristic polynomial (Equation

(3)) can be easily factorised while the counting polynomials

(Equations (4)–(7)) are not. The characteristic polynomial

includes other invariants called characteristic solutions

and this could explain the observation above.

Regarding the formulas obtained for counting

polynomials (Equations (4)–(7)) the following similarities

can be observed:

(1) All formulas contain the “a1Xþ9”, where a1 varies

from 2 to 16, but is always an even number. The

generic formula for CMx, CcM and CSz counting

polynomials is: PðXÞ ¼ a0X
8 þ XQðXÞþ a1X þ 9,

where a0 and a1 are even integers with values from

two to sixteen;

(2) The term Q(X) could be factorised in limited cases

(see Table 1).

The monovariate model obtained using the character-

istic polynomial was:

ŶChP–mono ¼ 19:54 þ 0:17·Pð2923=1725Þ; ð8Þ

where ŶChP-mono is the characteristic polynomial. A square

correlation coefficient of 0.2968 was obtained for model

(8) when all compounds were included and 0.6301 when

the compound 4-methyloctane was withdrawn. Therefore,

compound 4-methyloctane was considered an outlier and

was excluded from further analysis.

There could not be identified any valid model by using

neither CMx nor the CcM.

A number of valid models were obtained using the

characteristic polynomial (ChP) and the counting poly-

nomials on the distance matrix (CDi) and on the Szeged

matrix on the sample of 34 compounds (more than one

model with the same value of determination coefficient).

As justified above, the 4-methyloctane was considered

outlier and was not included in analysis. The measured

value of the Henry’s law constant of the excluded

compound had a lower value comparing with the rest of

compounds (see Table 1); this means that an error could

have occurred during the experimental process.

. Characteristic polynomial:

ŶChP ¼ 258:11 2 329:00·Pð1=100Þ

þ 8:39·Pð35=97Þ þ 7:81

£ 1023·Pð72=23Þ; ð9Þ

where P(Xi) are the characteristic polynomials.
. Counting polynomial on the distance matrix:

ŶCDi ¼ 142:20 þ 5:70·Pð223=71Þ

2 10:00·Pð5=18Þ2 2:11

£ 1028·Pð99=10Þ; ð10Þ

where P(Xi) are the CDi.
. Counting polynomial on the Szeged matrix:

ŶCSz ¼ 234:39 þ 0:04·Pð229=39Þ

þ 1:19·Pð11=9Þ2 0:64·Pð59=45Þ; ð11Þ

where P(Xi) are counting polynomials on the Szeged

matrix.

The analysis of the models described above was

performed by calculating the correlation coefficient (r) and

the associated 95% confidence intervals (95%CIr), the

standard error of the estimated (SErr) and the Fisher

parameter of the model (F) and its significance for the

sample size of 34 compounds. The above parameters and

the confidence intervals for intercept and polynomial

coefficients used by Equations (9)–(11) are presented in

Table 2.

All models described by Equations (9)–(11) were

statistically significant (the probability associated to the

wrong model less than 0.001, see Table 2). The analysis of

the correlation coefficients and associated 95%CI leads

to the conclusion that the best model is the one described
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by the counting polynomial on the distance matrix

presented in Equation (10). Eighty-five percent of the

Henry’s law constant variation of the nonane isomers

included in this study can be explained by its linear

relationship with the variation of counting polynomial on

the distance matrix used in the model.

Two counting polynomials models revealed to have

estimated abilities, counting polynomial on the distance

matrix and on the Szeged matrix. The difference between

the correlation coefficient obtained by Equations (10) and

(11) was of 0.2051. Almost 53% of the Henry’s law

constant variation of studied nonane isomers can be

explained by its linear relationship with the variation of

counting polynomial on the Szeged matrix.

The analysis of the correlation coefficients and their

associated 95%CI showed that there are no significant

differences between models from Equations (9) and (10)

or between models in Equations (9)–(11), respectively,

due to the existence of the overlap of those intervals.

The results obtained in leave-one-out internal vali-

dation analysis (see Table 3) showed a difference between

correlation coefficient of the model and correlation

coefficient obtained in leave-one-out analysis of 0.05 for

the models from Equations (9) and (10), and of 0.12 for the

model from Equation (11). These results sustain the

stability of the models from Equations (9)–(11) [25].

Steiger’s Z-test was then used to test the hypothesis

that there were no significant differences between

correlation coefficients obtained by models from

Equations (9)–(11). The matrix of p-values associated to

the Z parameters is presented in Table 4. The results

revealed that the models from Equations (9) and (10) had

the same ability in estimates of the relationship between

nonane isomers structure and property of interest.

The ability of the models from Equations (9) and (10)

was investigated by applying the following systematic

search 0 , p, q # 50. Three sample sizes were

considered: 35 (all compounds), 34 (excluding the 4-

methyloctane compound that proved to be an outlier) and

33 (excluding the 4-methyloctane and nonane, nonane

seems to be an outlier if the distribution of the measured

property is analysed), respectively.

The models from Equations (12) to (14) were obtained

when the characteristic polynomial was investigated:

ŶChP ¼ 27828:32 2 435:57·Pð1=50Þ

þ 33:31·Pð12=47Þ þ 7:75 £ 1024·Pð34=7Þ; ð12Þ

where P(Xi) are the characteristic polynomials. Statistical

characteristics of the models are as follows: r ¼ 0.5884,

95%CIr [0.3173 – 0.7705], SErr ¼ 1.89, F ¼ 5,

p ¼ 3.89 £ 1023; rloo ¼ 0.4692 (correlation coefficient

obtained in leave-one-out cross-validation analysis),

Floo ¼ 3 (Fisher parameter obtained in leave-one-outT
ab
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cross-validation analysis), ploo ¼ 7.51 £ 1022 (signifi-

cance of the model obtained in leave-one out analysis).

ŶChP ¼ 21683:73 2 441:75·Pð1=50Þ

þ 33:65·Pð12=47Þ þ 4:46 £ 1024·Pð50=9Þ; ð13Þ

where P(Xi) are the characteristic polynomials. Statistical

characteristics of the models are as follows: r ¼ 0.8690,

95%CIr [0.7517 – 0.9329], SErr ¼ 0.89, F ¼ 31,

p ¼ 2.68 £ 1029; rloo ¼ 0.8206 (correlation coefficient

obtained in leave-one-out cross-validation analysis),

Floo ¼ 20 (Fisher parameter obtained in leave-one-out

cross-validation analysis), ploo ¼ 2.43 £ 1027 (signifi-

cance of the model obtained in leave-one out analysis).

Note that there were identified a number of 1252 models

that had a determination coefficient of 0.755.

ŶChP ¼ 20:21 2 117:95·Pð1=50Þ þ 8:40·Pð1=4Þ

þ 5:28 £ 1022·Pð50=23Þ; ð14Þ

where P(Xi) are the characteristic polynomials. Statistical

characteristics of the models are as follows: r ¼ 0.9194,

95%CIr [0.8417 – 0.9597], SErr ¼ 0.71, F ¼ 53,

p ¼ 7.16 £ 10212; rloo ¼ 0.8958 (correlation coefficient

obtained in leave-one-out cross-validation analysis),

Floo ¼ 39 (Fisher parameter obtained in leave-one-out

cross-validation analysis), ploo ¼ 2.74 £ 10210 (signifi-

cance of the model obtained in leave-one out analysis).

Note that a number of 1352 models had a determination

coefficient of 0.845.

The analysis of Equations (12)–(14) revealed the

followings:

. Even if the model from Equation (12) is statistically

significant and the correlation coefficient in test set

is included into the 95%CI of the correlation

coefficient obtained in training sent, the model in

test set is not statistically significant;
. A significant increase of correlation coefficient is

observed when the 4-methyloctane compound is

excluded, proving that it is an outlier;
. A determination of 85% is obtained when both 4-

methyloctane and nonane are excluded from the

sample when the best model is searched. This

suggests that the nonane compound could be also an

outlier.

The following models were obtained by investigation of

counting polynomial on the distance matrix:

ŶCDi ¼ 219:74 2 0:15·Pð235=36Þ

þ 0:29·Pð19=13Þ þ 6:53 £ 1022·Pð43=24Þ; ð15Þ

where P(Xi) are the counting polynomial on the distance

matrix. Statistical characteristics of the models are as follows:

r ¼ 0.5912, 95%CIr [0.3212–0.7722], SErr ¼ 1.89, F ¼ 6,

p ¼ 3.61 £ 1023; rloo ¼ 0.4512 (correlation coefficient

obtained in leave-one-out cross-validation analysis),

Floo ¼ 2 (Fisher parameter obtained in leave-one-out cross-

validation analysis), ploo ¼ 1.74 £ 1021 (significance of the

model obtained in leave-one out analysis).

ŶCDi ¼ 152:42 2 6:28·Pð211=35Þ

2 11:16·Pð4=15Þ þ 2:28 £ 1028·Pð49=5Þ; ð16Þ

where P(Xi) are the counting polynomial on the distance

matrix. Statistical characteristics of the models are as follows:

r ¼ 0.9239, 95%CIr [0.8518–0.9616], SErr ¼ 0.69,

F ¼ 58, p ¼ 1.27 £ 10212; rloo ¼ 0.8844 (correlation coef-

ficient obtained in leave-one-out cross-validation analysis),

Floo ¼ 35 (Fisher parameter obtained in leave-one-out cross-

validation analysis), ploo ¼ 6.05 £ 10210 (significance of the

model obtained in leave-one out analysis). Note that there

were identified a number of 563 models that had a

determination coefficient of 0.854.

ŶCDi ¼ 39:33 þ 13:19·Pð211=47Þ

2 9:80·Pð15=32Þ þ 3:31·Pð24=35Þ; ð17Þ

Table 3. Leave-one-out cross validation results.

Model
rpred

[95%CI] SErrpred Fpred (ppred)

Equation (9) 0.8206 [0.6644–0.9080] 1.04 21 (2.43 £ 1027)
Equation (10) 0.8714 [0.7534–0.9349] 0.89 31 (2.7 £ 1029)
Equation (11) 0.6008 [0.3243–0.7826] 1.47 5 (5.15 £ 1023)

r, correlation coefficient; 95%CI, 95% confidence interval of r; SErr, standard error of predicted; Fpred, Fisher parameter in leave-one-out analysis; ppred, probability associated to
Fpred

Table 4. Correlated correlation analysis: Steiger’s Z-test
applied on Equations (9)–(11).

Models Steiger Z parameter p-value

Equations (9)–(10) 21.6794 9.53 £ 1021

Equations (9)–(11) 2.84439 2.22 £ 1023

Equations (10)–(11) 3.53456 2.04 £ 1024
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where P(Xi) are the counting polynomial on the distance

matrix. Statistical characteristicsof themodels areas follows:

r ¼ 0.9234, 95%CIr [0.8493–0.9617], SErr ¼ 0.70,

F ¼ 56, p ¼ 3.54 £ 10212; rloo ¼ 0.8873 (correlation coef-

ficient obtained in leave-one-out cross-validation analysis),

Floo ¼ 34 (Fisher parameter obtained in leave-one-out cross-

validation analysis),ploo ¼ 9.34 £ 10210 (significance of the

model obtained in leave-one out analysis). Note that a

number of 6095 models had a determination coefficient of

0.853.

The analysis of the models from Equations (15)–(17)

revealed the followings:

(1) The model obtained by Equation (15) for test set is

not statistically significant.

(2) The models from Equations (16) and (17) are almost

identical in terms of correlation coefficients in both

training and test sets, standard error of estimated,

Fisher parameters and associated significances.

(3) A determination of 85% is obtained both when 4-

methyloctane, respectively, 4-methyloctane and non-

ane are excluded from the sample. The last

observation suggested that the nonane compound

could be also an outlier. In these conditions, the

nonane could not be considered as an outlier.

The external validation analysis was performed in order to

validate the contribution of the characteristic and counting

polynomial on the distance matrix in characterisation of

the relationship between nonane isomers’ structure and

Henry’s law constant. The following compounds were

assigned randomly into test set: 3-ethyl-2,3-dimethylpen-

tane (a_02), 3-methyloctane (a_26), 2,3,3-trimethylhexane

(a_07), 3,3-dimethylheptane (a_17), 3,3-diethylpentane

(a_03), 2-methyloctane (a_30), 2,5-dimethylheptane

(a_27), nonane (a_06), 4-ethyl-heptane (a_20), 2,2,3,4-

tetra-methylpentane (a_10) and 2,3,3,4-tetramethylpen-

tane (a_05).

A characteristic polynomial model obtained in external

validation analysis is presented in Equation (18):

ŶChP ¼ 263:06 2 218:52·Pð1=100Þ þ 4:72·Pð2=5Þ

þ 6:18 £ 1023·Pð77=24Þ; ð18Þ

where P(Xi) are the characteristic polynomials. Statistical

characteristics of the models are as follows: rtr ¼ 0.9092

(correlation coefficient in training set), 95%CIrtr [0.7948–

0.9611], SErrtr ¼ 0.63 (standard error of estimated),

Ftr ¼ 30 (Fisher parameter in training set), p ¼ 1.95 £

1027; rts ¼ 0.8042 (correlation coefficient in test set),

Fts ¼ 16 (Fisher parameter in test set), pts ¼ 2.84 £ 1023

(significance of the Fts). A number of 2045 models that

have a determination coefficient of 0.853 were obtained.

The external validation analysis revealed that the

characteristic polynomial leads to a valid and reliable

solution in characterisation of the relationship between the

structure of nonane isomers and property of interest

providing good models with abilities in estimation as well

as in prediction. The correlation coefficient obtained in

external validation on both training and test set is not

statistically significant different by the one provided by

Equation (9) (both correlation coefficients are included

into the 95%CI of correlation coefficient of model from

Equation (9)).

A counting polynomial on distance matrix model is

presented in Equation (19):

ŶCDi ¼ 95:07 þ 1:76·Pð249=97Þ2 4:94·Pð32=99Þ

þ 1:77 £ 1027·Pð22=5Þ; ð19Þ

where P(Xi) are the counting polynomial on the distance

matrix. Statistical characteristics of the models are as

follows: r ¼ 0.9058, 95%CIr [0.7876–0.9596], SErr ¼

0.64, F ¼ 29, p ¼ 2.70 £ 1027; rts ¼ 0.7429 (correlation

coefficient in test set), Fts ¼ 11 (Fisher parameter for test

set), pts ¼ 8.80 £ 1023 (significance of the model in test

set). Note that a number of 5001 models had a

determination coefficient of 0.821. The analysis of the

results obtained by counting polynomial on distance

matrix revealed that the correlation coefficient obtained in

test set is not contained into the 95%CI of the correlation

coefficient in training set. This suggested that there is a

statistically significant difference between estimated and

prediction ability of the model from Equation (19).

The comparison of those correlation coefficients leads to a

probability of a type I error of 0.096 (Z ¼ 1:307),

sustaining that there is no statistically significant

differences between them.

The Steiger Z-test was applied in order to identify if

there is a significant difference between correlation

coefficient obtained by Equation (18) and the one obtained

by Equation (19). The obtained Z-score of 0.1211

( p ¼ 4.52 £ 1021) leads to the conclusion that both

characteristic polynomial and counting polynomial on

distance matrix had good abilities in characterisation of

the link between nonane isomers structure and property of

interest.

No significant differences were identified between

correlation coefficients obtained by the characteristic

polynomial (Equations (9) and (18)) and by the counting

polynomial on the distance matrix (Equations (10)

and (19)). Thus, it can be concluded that there are no

differences between characteristic polynomial model and

counting polynomial on the distance matrix model, these

two polynomials being considered useful in characteris-

ation of the relationship between structure and property of

interest on the investigated sample. There could not be

identified any model with estimated ability when CMx and

on the CcM were investigated. The model obtained by
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using the counting polynomial on the Szeged matrix

proved to have significantly lower performances compared

with characteristic polynomial and CDi in characterisation

of the link between structure of nonane isomers and

investigated property.

The aim of the research was to model the Henry’s law

constant by using characteristic and counting polynomials

and the results showed that this is a feasible approach

when characteristic polynomial or counting polynomial on

distance matrix are used. The results of this study

constitute a novel direction in the analysis and

characterisation of chemical compounds by using

mathematical models. The broad application of charac-

teristic and counting polynomials in modelling nonane

isomers properties will be investigated by modelling other

physical and chemical properties of these compounds.

4. Conclusions

The Henry’s law constant of the nonane isomers can be

modelled using characteristic polynomial and counting

polynomial on the distance matrix. These polynomials

provided reliable and valid models, opening a new venue

for the characterisation of chemical compounds.

Current research in our laboratory is focused on the

characterisation of other properties and/or other chemical

compounds to test the usefulness of the characteristic and

counting polynomials in investigation of the structure–

property/activity relationships.
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