
STATISTICAL APPROACH OF STRUCTURE-ACTIVITY RELATIONSHIPS: A CASE STUDY      Sorana D. BOLBOACĂ and Lorentz JÄNTSCHI 
Structure/Activity/Property Relationships (SARs, SPRs, and PARs) appears with the studies of Louis Plack HAMMETT in 1937 [1]. The most important applications of Hammett’s equation were summarized in [2].Quantitative relationships 
(QSAR, QSPR, QPAR) occur when the property/activity is quantitative. Not all properties and activities of chemical compounds can be classified as quantitative. In fact, few properties meet all theoretical requirements to be quantitative [3]. 
From this reason in the last time are avoided to be used QSAR, QSPR, and QPAR, in their place being used (Q)SAR, (Q)SPR, and (Q)PAR, or more simple SAR, SPR, and PAR. Structure-based approaches have two levels (topological and 
geometrical). In the topological based level, an atom, a bond from a molecule can exist (and then are evidenced through electronic transitions and/or molecular vibrations and/or rotations) or not (being a matter of 0 and 1). Not so simple stays 
things related to molecular geometry (especially on liquid or gas phases). Heisenberg uncertainly principle [4] shows the uncertainly rules presented at micro level (molecular and atomic level). More than that, molecular geometry depends on the 
environment where the molecule is (vicinity of the molecule), temperature, pressure, so on, thus dealing with molecular geometry is both a matter of relativity and a matter of uncertainty. Thus, Structure-Property-Activity Relationships (SPARs) 
must deal with certainties (such as molecular topology), uncertainties (such as molecular geometry), relativities (such as biological activities) and evidences (such as physical and chemical quantitative properties). The Molecular Descriptors 
Family (MDF) is an original structure-based approach [5] which generates for given structure(s) a huge pool of quantum based [6] descriptors of structure (indices) using a unitary methodology [7] that incorporated both topological and 
geometrical approaches. SPARs MDF methodology [8] uses a genetic algorithm [9] in order to obtain so called MDF-SPARs (structure-property or structure-activity relationships with Molecular Descriptors Family members relating the 
structure). AIM: to assess the potential of MDF-SPARs for drug design. IDEA: to develop, test, and use a complete statistical methodology in the evaluation of obtained relationships, to estimate and predict the desired 
activity/property. METHODS: A (Q)SAR/(Q)SPR equation is often a Multiple Linear Regression (MLR) equation. Key statistics are given in table below. 

Parameter Mathematical formula Remarks General issues 
Simple 
correlation 
analysis 

rSP=r(Y,MDFi), pSP=p(rSP,m,df=1) rSP: correlation between Y and MDFi; 
pSP: probability of no linear dependence between Y and MDFi; 
a larger pSP (usually > 5%) leads to excluding of MDFi from MLR equation 

Inter-correlation 
analysis 

rIP=r(MDFi,MDFj), pIP=p(rIP,m,df=1) rIP: correlation between MDFi and MDFj; 
pIP: probability of no linear dependence between MDFi and MDFj; 
a larger rIP (usually larger than rMP) leads to a less predictive MLR equations; 
a solution can be excluding of MDFi (if rSP(Y,MDFi) < rSP(Y,MDFj) is true) or MDFj 
(if rSP(Y,MDFi) < rSP(Y,MDFj) is false) from MLR equation; 
same procedure can be applied for pMP>pIP 

Multiple 
correlation 
analysis 

rMP=r(Y,Ŷ), pMP=p(rMP,m,df=n) rMP: Pearson multiple correlation coefficient; 
pSP: probability of no linear dependence between Y and Ŷ; 
a larger pMP (usually > 5%) leads to rejecting of MLR equation 

MLR: Ŷ = ΣiaiMDFi; 
ai: real coefficients (MLR coefficients); 
Ŷ: estimator of the measured activity/property Y; 
MDFi: an MDF member (an array with m values); 
m: sample size; 
n: number of variables; 
i: vary from 1 to n; 
r: Pearson correlation coefficient; 
p: probability of wrong model (using either Fisher or Student distribution); 
df: degrees of freedom; 
i ≠ j (i < j is enough); 

Qualitative vs. 
quantitative 
analysis 

rMS=ρ(Y,Ŷ), pMS=p(rMS,m,df=n) 
rMτa=τa(Y,Ŷ), pMτa=pZ(rMτa,m,df=n) 
rMτb=τb(Y,Ŷ), pMτb=pZ(rMτb,m,df=n) 
rMτc=τc(Y,Ŷ), pMτc=pZ(rMτc,m,df=n) 
rMΓ=Γ(Y,Ŷ), pMΓ=pZ(rMΓ,m,df=n) 
rMSP=√rMS·rMP 

rMX: multiple qualitative correlation coefficients (X = S, τa, τb, τc, Γ); 
pMX: probability of no linear dependence between ranks of Y and Ŷ; 
a larger pMX (usually more than 5%) leads to rejecting of MLR equation 
rMSP: multiple semi-quantitative correlation coefficient; 
pMSP: probability of no linear semi-quantitative dependence between Y and Ŷ; 
a larger pMSP (usually > 5%) lead to rejecting of MLR equation 

ρ: Spearman ranks correlation coefficient;  
τa: Kendall tau-a ranks correlation coefficient; 
τb: Kendall tau-b ranks correlation coefficient; 
τc: Kendall tau-c ranks correlation coefficient; 
Γ: Goodman-Kruskal ranks correlation coefficient; 
PZ: probability of wrong model (using normal distribution Z); 

Leave-one-out 
cross-validation 
analysis 

rcv-loo=r(Y, ), pcv-loo=p(rcv-loo,m,df=n) Ŷ̂ rcv-loo: leave-one-out cross-validation correlation coefficient; 
pcv-loo: probability of no predictive linear model; 
a larger pMP (usually > 5%) leads to rejecting of MLR equation as predictive linear 
model; 

Ŷ̂ =( Y k, k = 1..n); Y k results from the following algorithm: ˆ̂ ˆ̂
÷ Remove molecule "k" from sample; 
÷ Then W:=Y\Yk; MDFWi = MDFi\MDFi(k); 
÷ Apply MLR: Ŵ = ΣibiMDFWi; bi: real coefficients (MLR coefficients); Ŵ estimator of W; 

÷ Ŵ predictor for Yk: Ŷ̂ k = ΣibiMDFi(k) 
Training vs. test 
experiment 

rtraining=r(Y|training,Ŷ|training), 
ptraining=p(rtraining,mtraining,df=n) 
rtest=r(Y|test,Ŷ|test), 
ptest=p(rtest,mtest,df=n) 

rtraining: correlation between measured (Y|training) and estimated (Ŷ|training) into training 
subset; 
ptraining: probability of no linear dependence into training subset; 
rtest: correlation between measured (Y|test) and predicted (Ŷ|test); 
ptest: probability of the no predictive ability of the MLR equation; 
a larger ptest (usually > 5%) combined with a small enough ptraining (usually < 5%) 
leads to rejecting of MLR equation as predictive linear model; 

test - a random subset of the sample (usually of size of m/3); 
training - remaining subset of the sample after removing of the test set (usually of size of 
2m/3); 
mtest - size of test subset of the sample; 
mtraining - size of training subset of the sample; 
mtraining = m - mtest; 
Y| st - measured activity/property for test subset; te
Y|training - measured activity/property for training subset; Y|training = Y\Ytest; 
Ŷ|test results from the following algorithm: 
÷ Apply MLR for training set: Û = ΣiciMDFi; ci: real coefficients (MLR coefficients obtained 

from training set); 
÷ Û estimator for Y|training: Ŷ|training(k) = ΣiciMDFi(k), k ∈ training; 
÷ Û predictor for Y|test: Ŷ|test(l) = ΣiciMDFi(l), l ∈ test; 

Correlated 
correlations 
analysis 

ZSteiger(Y,Ŷ1,Ŷ2,df12) ZSteiger<Z(5%)=1.96: hypothesis of correlated correlations between the estimators Ŷ1 
and Ŷ2 cannot be rejected with a confidence of 95%; 
ZSteiger can serve for comparing of two MDF-SPARs; 
ZSteiger can serve for comparing of a MDF-SPAR with previous reported SPARs; 

df1: model 1 degrees of freedom (m-n(Ŷ1)); 
df2: model 2 degrees of freedom (m-n(Ŷ2)); 
df12=min(df1,df2)-3; 
ZSteiger computes from r(Y,Ŷ1), r(Y,Ŷ2), r(Ŷ1,Ŷ2), and df12; 

EXPERIMENTAL: Following online applications were developed and used: 
http://l.academicdirect.org/Chemistry/SARs/MDF_SARs/k_browse_or_query.php?database=MDFSARs/ (1) Simple correlation analysis; Inter-correlation analysis; Multiple correlation 

analysis 
http://l.academicdirect.org/Statistics/linear_dependence/ (2) Qualitative vs. quantitative analysis 
http://l.academicdirect.org/Chemistry/SARs/MDF_SARs/loo/ (3) Leave-one-out cross-validation analysis 
http://l.academicdirect.org/Chemistry/SARs/MDF_SARs/qsar_qspr_s/ (4) Training vs. test experiment 
http://l.academicdirect.org/Statistics/tests/Steiger/ (5) Correlated correlations analysis  

(5) 

Snapshots of the applications (1)-(4) are presented in the table below: 
(1) (2) (3) (4) 

 

 

 
 

 

 

MATERIALS: 
The hydrophobicity on Hessa et al. scale [10] of 
fifteen standard amino acids was the property of 
interest.  
The experimental values of hydrophobicity were 
as follows: alanine (0.11), asparagine (2.05), 
aspartate (3.49), cysteine (-0.13), glutamine 
(2.36), glutamate (2.68), glycine (0.74), 
isoleucine (-0.6), leucine (-0.55), lysine (2.71), 
methionine (-0.1), phenylalanine (-0.32), serine 
(0.84), threonine (0.52), and valine (-0.31). 
 

MDF-SPAR completion: MDF Calculator & MDF Predictor. 

 

RESULTS: 
The model with one and two descriptors, 
respectively proved to has estimated and predictive 
abilities: 
Ŷmono =-0.58+iMDRoQg·8.53   Eq(1) 
Ŷbi =-1.36+iMDRoQg·6.03+ISPDwQg·0.08  Eq(2) 
The application of the parameters presented in the 
table bellow leads to the results presented bellow: 
Param. Eq(1) Eq(2) 
rSP; pSP 0.9514; 5.1·10-8  0.8806; 1.5·10-5  
rMP; pMP n.a.  0.9238; 6.2·10-9  
rIP; pIP n.a.  0.7726; 7.3·10-4  
rMS; pMS 0.9429; 1.4·10-7  0.9643; 7.1·10-9  
rMτa; pMτa 0.8286; 1.7·10-5  0.8857; 4.2·10-6  
rMτb; pMτb 0.8286; 1.7·10-5  0.8857; 4.2·10-6  
rMτc; pMτc 0.7733; 5.9·10-5  0.8267; 1.7·10-5  
rMΓ; pMΓ 0.8286; 3.6·10-4  0.8857; 4.6·10-5  
rMSP; pMSP 0.9471; 8.7·10-8  0.9714; 1.7·10-9  
rcv-loo; pcv-loo 0.8744; 9.6·10-7  0.9158; 1.7·10-7  
rtr

2; ptr 0.8619; 1.0·10-4  0.9572; 1.6·10-5  
rts

2; pts 0.9862; 4.3·10-3  0.9629; 4.8·10-2  
ZSteiger; p  1.7847; 0.074  

 

mtraining- Eq(1) = 10 (valine, cysteine, aspartate, 
methionine, isoleucine, threonine, glutamate, 
asparagine, glutamine, alanine); mtest = 5 amino 
acids. 
mtraining- Eq(2) = 10 (cysteine, alanine, threonine, 
leucine, glycine, glutamate, serine, aspartate, 
valine, phenylalanine) 
where:  = statistically significant &  = no 
difference 

DRUG DESIGN ► 
This facility of MDF-SAR allows that having: 
÷ A set of compounds of interest with known 

values of property/activity and MDF-SARs 
obtained, validated, and stored into the 
database; 

÷ One of more similar/alike with selected 
compound(s) set by made of: 

o MDF-SAR equation (MDF predictor); 
o building (with HyperChem) of topological 

(2D) and geometrical (3D) through same 
choices as were build the selected set 

to obtain predicted value(s) for the property / 
activity of the new compounds, even if this 
(these) compound(s) were not yet synthesized, in 
order to see if the new structure (virtual 
compound at this time) has or not improvements 
in desired property/activity. 
CONCLUSION 
MDF method and MDF-SAR methodology 
proved to be a very good tool for design of 
chemical compounds. 

(6) MDF Calculator (7) MDF Predictor 
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