Topological Substituent Descriptors

Mircea V. DIUDEA ${ }^{1^{*}}$, Lorentz JÄNTSCHI ${ }^{2}$, Ljupčo PEJOV ${ }^{3}$
${ }^{1}$ "Babeş-Bolyai" University Cluj-Napoca, Romania
${ }^{2}$ Technical University Cluj-Napoca, Romania
3"Sv. Kiril i Metodij" University Skopje, Macedonia
*corresponding author, diudea@chem.ubbcluj.ro

Abstract

Motivation. Substituted 1,3,5-triazines are known as useful herbicidal substances. In view of reducing the cost of biological screening, computational methods are carried out for evaluating the biological activity of organic compounds. Often a class of bioactives differs only in the substituent attached to a basic skeleton. In such cases substituent descriptors will give the same prospecting results as in case of using the whole molecule description, but with significantly reduced computational time. Such descriptors are useful in describing steric effects involved in chemical reactions. Method. Molecular topology is the method used for substituent description and multi linear regression analysis as a statistical tool. Results. Novel topological descriptors, $X_{\text {LDS }}$ and W_{s}, based on the layer matrix of distance sums and walks in molecular graphs, respectively, are proposed for describing the topology of substituents linked on a chemical skeleton. They are tested for modeling the esterification reaction in the class of benzoic acids and herbicidal activity of 2-difluoromethylthio-4,6-bis(monoalkylamino)-1,3,5-triazines. Conclusions. Ws substituent descriptor, based on walks in graph, satisfactorily describes the steric effect of alkyl substituents behaving in esterification reaction, with good correlations to the Taft and Charton steric parameters, respectively. Modeling the herbicidal activity of the seo of 1,3,5-triazines exceeded the models reported in literature, so far.

Keywords

Steric effect, Substituent descriptors, Molecular topology, Herbicidal activity.

Abbreviations and notations

MLR, multi linear regression; SVTI, substituent volume topological index; E_{s}, Taft's steric parameter; v, Charton's steric parameter.

1. Introduction

In the field of chemical reactivity, the first proposal of a substituent steric parameter is due to Taft [1, 2]. He tried to quantify the steric influence of a substituent located on the hydrocarbon part of organic esters in the acid-catalysed hydrolysis of aliphatic carboxylic esters, RCOOR'. His E_{s} steric parameter is defined as:

$$
\begin{equation*}
E_{S}=\log \left(k_{R} / k_{M e}\right)_{A} \tag{1}
\end{equation*}
$$

where $\log \left(k_{R} / k_{M e}\right)_{A}$ is the ratio of acid-catalysed hydrolysis rate constant of RCOOR' to that of MeCOOR'. By definition, $E_{S}(M e)=0$.

The E_{s} parameter has been defined empirically [3]. Taft himself pointed out that E_{s} varies parallel to the atom group radius. Charton also found that E_{s} is linearly dependent on the van der Waals radius of the substituent, thus defining a new steric parameter, v [4-8].

Murray [9] found correlations between the Taft parameter and the Randić [10] topological index, for a series of substituted alkyls. In this respect, Ivanciuc and Balaban [3] have proposed a topological descriptor, SVTI, which encodes the topological distances (i.e., the number of bonds/edges, $D_{i j}$, joining the atoms/vertices i and j on the shortest path) in a molecular graph, G.

It is defined on the fragment F (i.e. an alkyl group) attached to the vertex i of G, as:

$$
\begin{equation*}
\operatorname{SVTI}(F)=\sum_{\mathrm{j}=1}^{\mathrm{N}_{\mathrm{F}}} \mathrm{D}_{\mathrm{ij}} ; \quad \mathrm{D}_{\mathrm{ij}} \leq 3 \tag{2}
\end{equation*}
$$

The summation runs over all N_{F} vertices of F and the distance $D_{i j}$ is limited to 3, in agreement to the Charton's conclusion about the limit of the influence of the steric effect beyond the gamma carbon [5-8].

The calculation of SVTI is exemplified for the sec-butyl group ($\mathrm{R}=\mathrm{H}$) or higher homologues $(\mathrm{R} \neq \mathrm{H})$:

The above authors have tested their descriptors in describing the reaction rates of acidcatalysed hydrolysis of RCOOR' (the Taft's set).

In the present work, two novel descriptors for substituents are proposed. They are now tested in modeling the effector-receptor interaction in the herbicidal activity of 2 -difluoromethylthio-4,6-bis(monoalkylamino)-1,3,5-triazines.

2. Substituent Topological Descriptors, $\boldsymbol{X}_{\text {LDS }}$ AND W_{s}

The substituent descriptors $\boldsymbol{X}_{\text {LDS }}$ and W_{s} herein proposed are constructed with the aid of layer matrices.

Before defining our descriptors, let's recall some knowledges about the layer matrices [11-17].

A partition $G(i)$ with respect to the vertex i, in a graph, is defined $[11,14,15]$ as:

$$
\begin{equation*}
G(i)=\left\{G(u)_{j}, j \in\left[0, e^{e c c_{i}}\right] \text { and } u \in G(u)_{j}\right\} \tag{3}
\end{equation*}
$$

where $D_{i u}$ is the topological distance (see above) and ecc c_{i} is the eccentricity of i (i.e. the largest distance between i and any vertex in G). Figure 1 illustrates the relative partitions for the graph G_{1}.

Let $G(u)_{j}$ be the layer j of the vertices u located at distance j , in the relative partition G(i):

$$
\begin{equation*}
G(u)_{j}=\left\{u: D_{i u}=j\right\} \tag{4}
\end{equation*}
$$

The entries in a layer matrix, $\mathbf{L M}$, collect the topological property P_{u} for all vertices u belonging to the layer $G(u)_{j}$:

$$
\begin{equation*}
[\mathbf{L M}]_{\mathrm{ij}}=\sum_{\mathrm{u} \in \mathrm{G}(\mathrm{u})_{\mathrm{i}}} \mathrm{P}_{\mathrm{u}} \tag{5}
\end{equation*}
$$

G_{1}
$G_{1}(1,5)$
$G_{1}(1)=\{\{1\},\{2\},\{3,5\},\{4\}\} ;$
$G_{1}(2)=\{\{2\},\{1,3,5\},\{4\}\} ;$
$G_{1}(3)=\{\{3\},\{2,4\},\{1,5\}\} ;$
$G_{1}(5)=\{\{5\},\{2\},\{1,3\},\{4\}\}$.
j: $0123 \quad 012301230123$

Figure 1. Partitions of G_{1} with respect to each of its vertices

The matrix $\mathbf{L M}$ can be written as:

$$
\begin{equation*}
\mathbf{L M}(\mathbf{G})=\left\{[\mathrm{LM}]_{\mathrm{ij}} ; \mathrm{i} \in \mathrm{~V}(\mathrm{G}) ; \mathrm{j} \in[0, \mathrm{~d}(\mathrm{G})]\right\} \tag{6}
\end{equation*}
$$

where $V(G)$ is the set of vertices in graph and $d(G)$ is the diameter (i.e., the largest distance) of G. The dimensions of such a matrix are $N \times(d(G)+1)$.

Figure 2 illustrates the layer matrix of distance sums, LDS [13], the topological property \mathbf{M} which collects being the sum of distances joining a vertex i with all the remainder vertices in G. Note that the first column contains just the vertex topological property. (in this case, $D S_{i}=\sum_{j} D_{i j}$, marked in the weighted graph, $G_{2}\left\{D S_{i}\right\}$).

$i \backslash j:$	0	1	2	3	4
(1)	15	10	24	26	17
(2)	10	39	26	17	0
(3)	9	36	47	0	0
(4)	12	26	24	30	0
(5)	17	12	9	24	30
(6)	15	10	24	26	17
(7)	14	9	22	47	0
LDS $\left(G_{2}\right)$					

Figure 2. Matrix LDS for the graph G_{2}

This matrix and the invariants calculated on (e.g., the well-known Wiener index [18], counting all distances in G) are useful tools in topological description of molecular graphs [13, 14].

Another interesting matrix is the layer matrix of walk degrees [15], $\mathbf{L}^{e} \mathbf{W}$. A walk, W, is defined [19] as a continuous sequence of vertices, $v_{1}, v_{2}, \ldots, v_{m}$; it is allowed edges and vertices to be revisited.

If the two terminal vertices coincide ($v_{1}=v_{m}$), the walk is called a closed (or self returning) walk, otherwise it is an open walk.

If its vertices are distinct, the walk is called a path. The number e of edges traversed is called the length of walk.

Walks of length e, starting at the vertex i, ${ }^{e} W(i)$, can be counted by summing the entries in the row i of the $e^{\text {th }}$ power of the adjacency matrix \mathbf{A} (whose nondiagonal entries are 1 if two atoms are adjacent and zero otherwise):

$$
\begin{equation*}
{ }^{\mathrm{e}} \mathrm{~W}(\mathrm{i})=\sum_{\mathrm{j} \in \mathrm{~V}(\mathrm{G})}\left[\mathrm{A}^{\mathrm{e}}\right]_{\mathrm{ij}} \tag{7}
\end{equation*}
$$

where ${ }^{e} W(i)$ is called the walk degree (of rank e) of vertex i (or atomic walk count [15, 20]).
Walk degrees, ${ }^{e} W(i)$, can be also calculated by summing the first neighbours degrees of lower rank, according to an additive algorithm ${ }^{11}$ illustrated in figures 3 and 4.

Local and global invariants based on walks in graph were considered for correlating with physico-chemical properties [15, 20].

Figure 3 illustrates the layer matrix of walk degrees, $\mathbf{L}^{e} \mathbf{W}, \quad e=1-4$, for G_{2}. Note that the first column in $\mathbf{L}^{1} \mathbf{W}$ is just the vertex degree or the vertex valency. Note that the matrix $\mathbf{L}^{e} \mathbf{W}$ was re-invented by Randic in 2001, for $e=1$, under the name "valence shells" [21].

The substituent descriptor $\mathrm{X}_{\mathrm{LDs}}$ is the local "centrocomplexity index", X_{LM} [14], defined on the LDS matrix:

$$
\begin{equation*}
\mathrm{X}_{\mathrm{LDS}}(\mathrm{i})=\sum_{\mathrm{j}=0}^{\mathrm{ecc}}[\mathrm{LDS}]_{\mathrm{ij}} \cdot 10^{-\mathrm{zj}} \tag{8}
\end{equation*}
$$

where i is the attachment point of the substituent to a given chemical structure (see figure 4) and z denotes the number of bits of $\max [\mathbf{L D S}]_{i j}$ in G. Calculation of $X_{\text {LDS }}$ is exemplified in figure 4.

$G_{2}\left\{{ }^{1} W_{i}\right\}$
$\mathbf{L}^{1} \mathbf{W}$
$\mathbf{i} \backslash \mathbf{j} \quad \begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{llllll}1 & 1 & 3 & 4 & 3 & 1\end{array}$
$\begin{array}{llllll}2 & 3 & 5 & 3 & 1 & 0\end{array}$
$\begin{array}{llllll}3 & 3 & 6 & 3 & 0 & 0\end{array}$
$\begin{array}{lllll}6 & 12 & 8 & 0 & 0\end{array}$
$12 \quad 2614 \quad 0 \quad 0$
$26 \quad 5032 \quad 0 \quad 0$
$\begin{array}{llllll}4 & 2 & 4 & 4 & 2 & 0\end{array}$
$\begin{array}{lllll}4 & 8 & 8 & 6 & 2\end{array}$
$\begin{array}{lll}8 & 1618 \quad 10 \quad 0\end{array}$
$16343424 \quad 0$
$\begin{array}{llllll}5 & 1 & 2 & 3 & 4 & 2\end{array}$
$\begin{array}{llllll}6 & 1 & 3 & 4 & 3 & 1\end{array}$
$\begin{array}{lllll}2 & 4 & 6 & 8 & 6\end{array}$
$\begin{array}{lllll}3 & 5 & 9 & 7 & 2\end{array}$
$\begin{array}{lllll}5 & 12 & 17 & 14 & 4\end{array}$
$6122014 \quad 0$

Figure 3. Layer matrix of walk degrees, $L^{e} W$ for the graph G_{2} (calculated by summing the first neighbor degrees of lower rank)

$\left\{{ }^{1} W\right\}$

$\left\{{ }^{2} W\right\}$

$\left\{{ }^{3} W\right\}$

$\{D S\}$
(a)
$W_{s}(i)=7+7 / 2+11 / 3+8 / 4 \approx 16.167$;
$X_{\mathrm{LDS}}(i)=14 \cdot 10^{0}+10 \cdot 10^{-2}+8 \cdot 10^{-4}+8 \cdot 10^{-6}+12 \cdot 10^{-8}+12 \cdot 10^{-10}=14.1008081212 \approx 14.101 ;$
(b)

Figure 4. (a) Walk degrees, ${ }^{e}$ W, (calculated by summing the first neighbors degrees of lower rank) and distance sums, DS; (b) Evaluation of W_{s} and $X_{\text {LDS }}$ descriptors
W_{s} is based on the walks in a connected molecular graph. It is calculated from the layer matrix $\mathbf{L}^{3} \mathbf{W}$ by:

$$
\begin{equation*}
W_{s}(i)=\sum_{j=1}^{e c c_{i}}\left(\left[\mathbf{L}^{3} \mathbf{W}\right]_{i j} / j\right) \tag{9}
\end{equation*}
$$

where ${ }^{3} W$ is the walk number, of length 3 .
We limited here to elongation 3 by following the Charton's suggestion about the limit of the influence of steric effect (see above). The calculation of the parameter W_{s} is exemplified in figure 4.

The $X_{\text {LDS }}$ descriptor is similar to the SVTI parameter, both of them counting distances in the substituent.
W_{s} describes the branching in the vicinity of the attachment point i.
All these parameters suggest the steric influence of a substituent in the interaction of the skeleton (or a situs of it) with a partner (e.g., a reactant [3, 22] or a biological receptor). They are free of electronic contributions, at least in the variant in which the heteroatom is not considered.

3. Correlating Test

The utility of the substituent descriptors, $\mathrm{X}_{\mathrm{LDS}}$ and W_{s}, was proven on a set of thirty aminoalkyl fragments (table 1) involved in the inhibition of Hill reaction of triazines [23] (figure 5).

In this respect, the fragmental volumes, V , (in $\mathrm{cm}^{3} / \mathrm{mol}$) for the considered substituents have been calculated as described below. Other parameter herein considered was the number of atoms different from hydrogen, N .

All these descriptors have been calculated separately for the two sites, A and B (see figure 5).

Figure 5. Herbicidal bioactive triazines

Table 1. Topological descriptors and biological activity $\mathbf{p I}_{50}$ for the triazines in figure 5

No	A	B	N_{A}	N_{B}	$W_{s, ~}$	$W_{s, ~}$ B	$X_{\text {A }}$	$X_{\text {B }}$		V_{B}	pI_{50}
1	H_{2}	NH_{2}	1	1	1		1.1	1.	18.763	18.763	3.82
2	NH_{2}	NHCH_{3}	1	2		5		3.23	763	32.636	5.20
3	NH_{2}	$\mathrm{NHC}_{2} \mathrm{H}_{5}$	1	3		8.5	1.	46	. 763	. 908	
4	${ }_{2}$	$\mathrm{NH}-\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}$	1	4	1	13.66	1.1	61	18.763	60.766	5.83
5	NHCH_{3}		2	2			3.23	3.23	32.636	32.636	6.01
6	NHCH_{3}	$\mathrm{NHC}_{2} \mathrm{H}_{5}$	2	3	5	8.5	3.23	46	32.636	47.908	6.39
7	CH	$\mathrm{C}_{3} \mathrm{H}_{7}$	2	4	5	11.75	23	071	32.636	62.393	6.7
8		NH-C3 ${ }_{3}$	2	4	5		3.23	, 61	32.636	0.766	6.7
9	NHCH_{3}	$\mathrm{NHC}_{4} \mathrm{H}_{9}$	2	5	5		3.23	1	32.636	88	6.74
10	NHCH_{3}	$\mathrm{NH}-\mathrm{s}-\mathrm{C}_{4} \mathrm{H}_{9}$	2	5	5	15.16	3.23	. 091	32.636	75.039	6.76
11	NHCH_{3}	NH-t-C4 ${ }_{4}$	2	5	5	20.50	3.23	81	32.636	74.106	6.78
12			2	6	5	15.62	3.23	161	32.6	88.2	7.12
13	$\mathrm{NHC}_{2} \mathrm{H}_{5}$	$\mathrm{NHC}_{2} \mathrm{H}_{5}$	3	3	8.5	8.5		46	47.908	47.908	6.82
14		C_{3}	3	4	8.5	5	6.446	071	47.90	62.393	6.74
15			3	4	8.5	13.66	6.446	9.061	47.908	0.76	6.89
16		C_{4}	3	5	. 5	13.93	6.446	111	47.908	76.638	6.95
17	$\mathrm{NHC}_{2} \mathrm{H}_{5}$	C_{4}	3	5	8.5	16.16	6.446	101	47.90	74.4	7.01
18	$\mathrm{NHC}_{2} \mathrm{H}_{5}$	NH-s-C4 ${ }_{4}$	3	5	85		6.446	13.091	47	75.039	
19		N	3	5		20.50	6.446	12.081	47.9	74.106	6.97
20	NHC	NHC_{5}	3	6	8.5	15.62	6.446	161	47.908	88.241	6.94
21	$\mathrm{NHC}_{2} \mathrm{H}_{5}$	$\mathrm{NHC}_{6} \mathrm{H}_{13}$	3	7	8.5	. 00	6.446	222	47.908	102.032	7.21
22	$\mathrm{NHC}_{2} \mathrm{H}_{5}$	$\mathrm{NHC}_{7} \mathrm{H}_{15}$	3	8					47.908	116.672	7.01
23	$\mathrm{NHC}_{2} \mathrm{H}_{5}$	$\mathrm{NHC}_{8} \mathrm{H}_{17}$	3	9	8.5	8	6.446	3	47.908	28.7	6.8
24	NH	H_{7}	4	4	75	11.75	10.071	10.071	62.39	62.393	6.4
25	NH	$\mathrm{NHC}_{3} \mathrm{H}_{7}$	4	4	66	11.75	9.	10.071	60.76	62.393	6.75
26	$\mathrm{NH}-\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}$	NH-i-C3 H_{7}	4	4	66	13.66	9.061	. 61	60.76	0.76	6.7
27	NH-i-C	$\mathrm{NHC}_{4} \mathrm{H}_{9}$	4	5	66	. 93	. 61	111	60.766	76.638	6.7
28	$\mathrm{NH}-\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}$	NH-s-C4 H_{9}	4	5	. 66	15.16	9.061	. 091	60.766	75.039	6.88
29	$\mathrm{NH}-\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}$	NH-t-C4 ${ }_{4}$	4	5	. 66	20.50	9.061	12.081	60.766	74.106	6.7
30	$\mathrm{NH}-\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{NHC}_{5} \mathrm{H}_{11}$	4	6	13.66	15.62	9.061	21.161	60.766	88.241	6.69

[^0]Table 2. Statistics of multivariable regression (distinct variables on branches \mathbf{A} and B)

No.	X_{I}	b_{i}	A	r	S	v(\%)	F
1	$1 / N$, в	-3.786	7.549	0.8987	0.311	4.752	117.587
2	$1 / W_{s, B}$	-3.372	6.933	0.8298	0.396	6.047	61.899
3	$1 / X_{\text {B }}$	-3.806	7.038	0.8835	0.333	5.076	99.598
4	$1 / V_{\text {B }}$	-72.276	7.760	0.8975	0.313	4.779	115.936
5	$\begin{aligned} & 1 / N_{\mathrm{A}} \\ & 1 / N_{\mathrm{B}} \end{aligned}$	$\begin{aligned} & -1.234 \\ & -2.678 \end{aligned}$	7.810	0.9577	0.208	3.175	149.557
6	$\begin{array}{\|l\|} \hline 1 / W_{s, \mathrm{~A}} \\ 1 / W_{s, \mathrm{~B}} \end{array}$	$\begin{aligned} & -1.335 \\ & -2.077 \end{aligned}$	7.118	0.9615	0.199	3.030	165.554
7	$\begin{aligned} & 1 / X_{\mathrm{A}} \\ & 1 / X_{\mathrm{B}} \end{aligned}$	$\begin{aligned} & -1.317 \\ & -2.526 \end{aligned}$	7.252	0.9662	0.186	2.844	189.755
8	$\begin{aligned} & 1 / V_{\mathrm{A}} \\ & 1 / V_{\mathrm{B}} \end{aligned}$	$\begin{array}{\|l\|} \hline-22.999 \\ -52.514 \end{array}$	8.048	0.9478	0.231	3.519	119.237
9	$\begin{array}{c\|} \hline 1 / W_{s, \mathrm{~A}} \\ 1 / V_{\mathrm{B}} \end{array}$	$\begin{array}{\|c\|} \hline-1.114 \\ -47.194 \\ \hline \end{array}$	7.618	0.9714	0.172	2.619	226.162
10	$\begin{array}{\|c\|} \hline 1 / W_{s, \mathrm{~A}} \\ 1 / X_{\mathrm{B}} \end{array}$	$\begin{aligned} & -1.180 \\ & -2.458 \end{aligned}$	7.159	0.9729	0.167	2.550	239.280
11	$\begin{gathered} 1 / W_{s, \mathrm{~A}} \\ 1 / N_{\mathrm{B}} \end{gathered}$	$\begin{aligned} & -1.120 \\ & -2.484 \end{aligned}$	7.484	0.9746	0.162	2.472	255.491
12	$\begin{gathered} N_{\mathrm{A}} \\ 1 / N_{\mathrm{A}} \\ 1 / N_{\mathrm{B}} \end{gathered}$	$\begin{aligned} & \hline-0.385 \\ & -2.777 \\ & -2.444 \end{aligned}$	9.477	0.9834	0.134	2.039	254.937
13	$\begin{array}{\|c\|} \hline W_{s, \mathrm{~A}} \\ 1 / W_{s, \mathrm{~A}} \\ 1 / W_{s, \mathrm{~B}} \end{array}$	$\begin{aligned} & -0.025 \\ & -1.594 \\ & -2.056 \end{aligned}$	7.372	0.9661	0.190	2.903	121.327
14	$\begin{gathered} X_{\mathrm{A}} \\ 1 / X_{\mathrm{A}} \\ 1 / X_{\mathrm{B}} \end{gathered}$	$\begin{aligned} & -0.078 \\ & -2.047 \\ & -2.413 \end{aligned}$	7.876	0.9818	0.140	2.132	232.401
15	$\begin{gathered} V_{\mathrm{A}} \\ 1 / V_{\mathrm{A}} \\ 1 / V_{\mathrm{B}} \end{gathered}$	$\begin{array}{\|c\|} \hline-0.036 \\ -65.998 \\ -45.367 \end{array}$	10.649	0.9808	0.144	2.193	219.227
16	$\begin{gathered} X_{\mathrm{A}} \\ 1 / V_{\mathrm{A}} \\ 1 / V_{\mathrm{B}} \end{gathered}$	$\begin{array}{\|c\|} \hline-0.155 \\ -59.011 \\ -46.244 \end{array}$	9.762	0.9815	0.141	2.152	228.039
17	$\begin{gathered} X_{\mathrm{A}} \\ 1 / V_{\mathrm{A}} \\ 1 / X_{\mathrm{B}} \end{gathered}$	$\begin{array}{\|c\|} \hline-0.154 \\ -60.818 \\ -2.399 \end{array}$	9.337	0.9836	0.133	2.029	257.426
18	$\begin{gathered} X_{\mathrm{A}} \\ 1 / V_{\mathrm{A}} \\ 1 / N_{\mathrm{B}} \end{gathered}$	$\begin{array}{\|c\|} \hline-0.153 \\ -58.888 \\ -2.430 \end{array}$	9.614	0.9846	0.129	1.968	274.318

In table $2 A$ and b_{i} values are the coefficients of:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{calc}}=\mathrm{a}+\sum_{\mathrm{i}} \mathrm{~b}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \tag{10}
\end{equation*}
$$

and leave one out procedure (loo) has the results:

$$
\begin{align*}
& \operatorname{loo(12):~} \mathrm{r}=0.9768 ; \mathrm{s}=0.153 ; \mathrm{v}(\%)=2.332 ; \\
& \operatorname{loo}(18): \mathrm{r}=0.9778 ; \mathrm{s}=0.149 ; \mathrm{v}(\%)=2.271 . \tag{11}
\end{align*}
$$

The inhibitory activities of triazines on Chlorella have been taken from the study of Morita et al [24]. They are expressed as pI50, which represents the negative logarithm of concentration required for 50% inhibition of Hill reaction. The correlating results are listed in table 2.

4. Results and Discussion

In single variable regression, the descriptors for the substituents in branch B (table 2) are not satisfactory to model the inhibitory activity of triazines; the correlation coefficient, r , is lower than 0.9 (for those in A, r is still lower) and the coefficient of variance, v , is about 5 \%. Note that all these "steric" descriptors are taken as reciprocal values, suggesting that the triazine ring fits at the biological receptor as better as the substituent is less sterically involved.

In two variables regression, by adding the descriptors for the branch A the correlation is improved, as indicates the higher values for r and F (the Fisher ratio) and the drop in the dispersion, s, and $v(\%)$ values (entries $5-8$, table 2). When the descriptors for the two branches are heterogeneous, the result is still better (entries 9-11).

In three variables regression, the correlation is once more improved. Again the heterogeneous descriptors model the inhibition reaction better that the homogeneous ones (compare entries 16-18 with 12-15, Table 2).

The best model found (see also entry 18) was:

$$
\begin{align*}
& \mathrm{II}_{50}=9.614-0.153 \cdot X_{\mathrm{A}}-58.888 \cdot 1 / V_{\mathrm{A}}-2.430 \cdot 1 / N_{\mathrm{B}} ; \\
& \mathrm{n}=30 ; \mathrm{r}^{2}=0.9694 ; \mathrm{s}=0.129 ; \mathrm{v}(\%)=1.968 ; \mathrm{F}=274.3 ; \tag{10}
\end{align*}
$$

The cross validation (leave-one-out, "loo", procedure) test for the equations in entries 12 and 18 are given in the bottom of table 2.

Despite the excellent model offered by equation (10), a brief inspection on the general structure of these triazines showed a rather surprising error: the molecule is symmetric, so that the two branches A and B are interchangeable! In consequence, the two columns of descriptors have no meaning if they are taken as distinct descriptors. Thus, the contribution of the substituents in A and B in modeling the global biological activity must somehow be mixed!

The simple summation (or simple arithmetic mean) of contributions of the two branches, A and B, did not provide satisfactory results. More reliable appeared in other kinds of average: geometric ("geo") and harmonic ("har"). The best correlating results are included in table 3. The cross validation test, loo, is given for each entry.

From table 3 it appears that, in single variable regression, the descriptor $1 / X_{\text {(LDS)geo }}$ provides a rather good ($\mathrm{r}>0.95$) description of the activity, both in estimation and prediction, "loo" (entry 2).

The best prediction is offered by the three variables equation, in entry 6 ($\mathrm{r}>0.975$), all of them as harmonic average of the descriptors of A and B branches:

$$
\begin{align*}
& \mathrm{pI}_{50}=10.292-119.503 \cdot 1 / V_{\text {har }}-0.097 \cdot X_{\text {har }}-0.047 \cdot W_{s, \text { har } ;} \\
& \mathrm{n}=30 ; \mathrm{r}=0.9807 ; \mathrm{s}=0.144 ; \mathrm{v}(\%)=2.198 ; \mathrm{F}=218.158 ; \tag{11}
\end{align*}
$$

The corresponding arithmetic averaged descriptors used in (11) supplied a correlation of $r=0.955$ which is, of course, unsatisfactory.

This equation was chosen for a tempting prediction in the past. The experimental data for the compounds no. 3, 12, 21 and 24 (showing residuals, $\mathrm{y}_{\text {calc }}-\mathrm{y}_{\exp }$, about two times or larger than the value of standard error of estimate:

$$
s=+0.144 ;-0.254 ;+0.236 ;+0.301 \text { and }-0.398 \text {, respectively }
$$

were changed by the values:
5.6209; 6.8778; 6.9073 and 6.8471, respectively
calculated by equations:

$$
\begin{align*}
& \mathrm{pI}_{50}=10.292-119.5031 / V_{\text {har }}-0.097 X_{\text {har }}-0.047 W_{s, \text { har }} \\
& \mathrm{n}=26 ; \mathrm{r}=0.9932 ; \mathrm{s}=0.086 ; \mathrm{v}(\%)=1.309 ; \mathrm{F}=530.484 \tag{12}
\end{align*}
$$

The correlating data, obtained by using the new column of activities, $\mathrm{y}_{\text {cor }}$, are included in table 3 as the rows " $\mathrm{y}_{\text {cor" }}$. The improvement in the statistical parameters of the regression equations is obvious for all data of table 3 (where * means "leave one out" cross validation procedure; and ${ }^{* *}$ are y_{i} corrected for $\mathrm{i}=3,12,21$ and 24):

Table 3. Statistics of multivariable regression, $\mathbf{Y}_{\text {calc }}=\mathbf{a}+\sum_{\mathbf{i}} \mathbf{b}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}}$ (averaged variables)

No.	X_{i}	$\mathrm{b}_{\text {i }}$	a	r	s	v (\%)	F
1	1/W $\mathrm{W}_{\text {s, har }}$	-3.151	7.121	0.9553	0.210	3.204	292.215
	loo ${ }^{*}$			0.9467	0.229	3.489	
	$\mathrm{y}_{\text {cor }}{ }^{* *}$			0.9666	0.175	2.669	398.721
2	$1 / \mathrm{X}_{\text {geo }}$	-3.891	7.253	0.9621	0.194	2.956	348.097
	loo			0.9558	0.209	3.183	
	$\mathrm{y}_{\text {cor }}$			0.9793	0.138	2.108	655.776
3	$1 / \mathrm{V}_{\text {har }}$	-126.800	11.091	0.9763	0.156	2.387	275.063
	$\mathrm{N}_{\text {har }}$	-0.541					
	loo			0.9721	0.167	2.543	
	$\mathrm{y}_{\text {cor }}$			0.9924	0.086	1.307	875.466
4	$1 / \mathrm{V}_{\text {har }}$	-113.340	10.010	0.9777	0.152	2.318	292.278
	$\mathrm{X}_{\text {har }}$	-0.137					
	loo			0.9735	0.163	2.480	
	$\mathrm{y}_{\text {cor }}$			0.9907	0.095	1.446	713.286
5	$1 / \mathrm{N}_{\text {har }}$	-5.614	9.491	0.9798	0.147	2.247	208.342
	$\mathrm{X}_{\text {har }}$	-0.056					
	$\mathrm{W}_{\mathrm{s}, \text { har }}$	-0.057					
	loo			0.9742	0.160	2.446	
	Ycor			0.9918	0.091	1.380	523.336
6	1/V ${ }_{\text {har }}$	-119.503	10.292	0.9807	0.144	2.198	218.158
	$\mathbf{X}_{\text {har }}$	-0.097					
	$\mathbf{W}_{\text {s,har }}$	-0.047					
	loo			0.9752	0.157	2.397	
	$\mathbf{y c o r}^{\text {cor }}$			0.9938	0.079	1.204	690.328
7	$1 / \mathrm{V}_{\text {har }}$	-105.131	9.058	0.9824	0.141	2.144	172.608
	$\mathrm{X}_{\text {har }}$	-0.232					
	$\mathrm{W}_{\mathrm{s}, \text { har }}$	-0.081					
	$\mathrm{N}_{\text {har }}$	0.673					
	loo			0.9742	0.160	2.444	
	$\mathrm{y}_{\text {cor }}$			0.9938	0.080	1.226	499.253
8	$1 / \mathrm{N}_{\text {har }}$	-4.724	7.858	0.9825	0.140	2.139	173.400
	$\mathrm{X}_{\text {har }}$	-0.228					
	$\mathrm{W}_{\mathrm{s}, \text { har }}$	-0.070					
	$\mathrm{V}_{\text {har }}$	0.052					
	loo			0.9751	0.157	2.401	
	$\mathrm{y}_{\text {cor }}$			0.9924	0.089	1.358	405.773

More over, among the 24 descriptors ($N, V, W_{\mathrm{s}}, X_{\mathrm{LDS}}, 1 / N, 1 / V, 1 / W_{\mathrm{s}}, 1 / X_{\mathrm{LDS}}$, taken as "ari", "har" and "geo" average) used in single variable regression, in 20 of them an improvement of the statistics was recorded. Again the equation in entry 6 was the best model. This test suggested that the experimental data for the compounds, above mentioned, are "in error".

From eq 11 and table 3, it comes out that the inhibitory activity of triazines is controlled by the possibility of the triazine ring (i.e., the pharmacophor) to accommodate at the receptor situs.

This opinion is supported by the reciprocal values and the negative regression coefficient, and negative partial correlation index of these "steric" descriptors involved in an eq. of type 11. It suggests that the triazine ring fits at the biological receptor as better as the substituent is less sterically involved.

A plot of the observed vs. calculated (by eq 11) pI_{50} values is given in figure 6. For comparison, the plot for the same descriptors and " $\mathrm{y}_{\text {corr }}$ " is given in Figure 7.

Figure 6. Plot of experimental biological activity (VAR1) vs. $y_{\text {calc. }}$. (cf. eq 11) values

Figure 7. Plot of experimental biological activity (VAR1) vs. $y_{c o r}$ values

4. Computation of Fragmental Volumes

The geometries of the hydrocarbon fragments (in fact, the corresponding radicals) were fully optimized at the Unrestricted Hartree-Fock (UHF) level of theory, using the 631G** basis set (of DZP quality), which contains a single set of d polarization functions on carbons, and a single set of p polarization functions on hydrogens for better description of the radical wavefunctions.

The Berny's optimization algorithm was used (the energy derivatives with respect to nuclear coordinates were computed analytically [25]), along with the initial guess of the second derivative matrix.

Standard harmonic vibrational analysis was applied to test the character of the optimized geometries (stationary points at the potential energy hypersurfaces - PES). All stationary points corresponded to real minima on the explored PES.

Molecular volume calculations were performed for the optimized structures, by the Monte-Carlo method. Since Monte-Carlo method for calculating molecular volume (defined
as the volume inside a contour of 0.001 electrons $/$ Bohr 3 density) is stochastically based algorithm, it often leads to results accurate up to several percents.

Therefore, 11 volume calculations per fragment were performed for each fragment, and the arithmetic average value was taken as the closest approximation to the real one (at the level of theory employed).

In order to increase the density of points for a more accurate integration, the "Tight" option of the Gaussian "Volume" keyword was used. All calculations were performed with Gaussian 94 suite of programs [26].

5. Conclusions

The W_{s} descriptor, based on the walks in graph, satisfactorily describes the steric effect of alkyl substituents in the esterification reaction.

It is a pure steric parameter, not affected by the electronic effects. W_{s} correlate well to the fragmental volumes (over 0.92) and show a lower degeneracy in comparison to the SVTI, v and N_{c} parameters.

It is also well correlated ${ }^{18}$ to the Taft, E_{s}, (0.9637), and Charton, \boldsymbol{v}, (0.9587), parameters, which makes from W_{s} a promising alternative in describing the steric effect of alkyl substituents.

6. Acknowledgment

The work was supported in part by the Romanian GRANT CNCSIS 2002.

References

[1] R. W. Taft, Linear free energy relationships from rates of esterification and hydrolysis of aliphatic and ortho-substituted benzoate esters. J. Am. Chem. Soc. 1952, 74, 2729-2732.
[2] R. W. Taft, Polar and steric substituent constants for aliphatic and o-benzoate groups from rates of esterification and hydrolysis of esters. J. Am. Chem. Soc. 1952, 74, 3120-3128.
[3] O. Ivanciuc and A. T. Balaban, A new topological parameter for the steric effect of alkyl substituents. Croat. Chem. Acta, 1996, 69, 75-83.
[4] M. Charton, The nature of the ortho effect. II. Composition of the Taft steric parameters. J. Am. Chem. Soc. 1969, 91, 615-618.
[5] M. Charton, Steric effects. I. Esterification and acid-catalyzed hydrolysis of esters. J. Am. Chem. Soc. 1975, 97, 1552-1556.
[6] M. Charton, Steric effects. II. Base-catalyzed ester hydrolysis. J. Am. Chem. Soc. 1975, 97, 3691-3693.
[7] M. Charton, Steric effects. III. Bimolecular nucleophilic substitution. J. Am. Chem. Soc. 1975, 97, 3694-3697.
[8] M. Charton, Steric effects. IV. E1 and E2 eliminations. J. Am. Chem. Soc. 1975, 97, 6159-6161.
[9] W. J. Murray, J. Pharm. Sci. 1977, 66, 1352.
[10] M. Randić, On characterization of molecular branching. J. Am. Chem. Soc. 97 (1975) 6609-6615.
[11] V. A. Skorobogatov and A. A. Dobrynin, Metric analysis of graphs. Commun. Math. Comput. Chem (MATCH) 1988, 23, 105-151.
[12] M. V. Diudea, O. M. Minaliuc and A. T. Balaban, Regressive Vertex Degrees (New Graph Invariants) and Derived Topological Indices. J. Comput. Chem., 1991, 12, 527-535.
[13] T. Balaban and M. V. Diudea, Real Number Vertex Invariants: Regressive Distance Sums and Related Topological Indices. J. Chem. Inf. Comput. Sci., 1993, 33, 421-428.
[14] M. V. Diudea, Layer Matrices in Molecular Graphs. J. Chem. Inf. Comput. Sci. 1994, 34, 1064-1071.
[15] M. V. Diudea, M. I. Topan and A. Graovac, Layer Matrices of Walk Degrees. J. Chem. Inf. Comput. Sci. 1994, 34, 1072-1078.
[16] C. Y. Hu, L. Xu, A new algorithm for computer perception of topological symmetry. Anal. Chim. Acta 1994, 295, 127-134.
[17] Ch. Y. Hu, L. Xu, On highly discriminating molecular topological index. J. Chem. Inf. Comput. Sci. 1996, 36, 82-90.
[18] H. Wiener, Structural determination of parafin boiling point. J. Am. Chem. Soc., 1947, 69, 17-20.
[19] N. Trinajstić, Chemical Graph Theory; CRC Press, Inc.; Boca Raton, FL, 1983.
[20] G. Rücker, C. Rücker, Counts of all walks as atomic and molecular descriptors. J. Chem. Inf. Comput. Sci. 1993, 33, 683-695.
[21] M. Randić, Graph valence shells as molecular descriptors. J. Chem. Inf. Comput. Sci. 2001, 41, 627-630.
[22] C. M. Pop, M. V. Diudea and L. Pejov, Taft Revisited, Studia Univ."BabesBolyai", 1997, 42, 131-138.
[23] M. Šoškić, D. Plavšić, N. Trinajstić, 2-Difluoromethylthio-4,6-bis(monoalkylamino)-1,3,5-triazines as inhibitors of Hill reaction: a QSAR study with orthogonalized descriptors. J. Chem. Inf. Comput. Sci. 1996, 36, 146-150.
[24] K. Morita, T. Nagare, Y. Hayashi, Quantitative structure-activity relationships for herbicidal 2-Difluoromethylthio-4,6-bis(monoalkylamino)-1,3,5-triazines Agric. Biol. Chem., 1987, 51, 1955-1957.
[25] H. B. Schlegel, Optimization of Equilibrium Geometries and Transition Structures, J. Comp. Chem., 1982, 3, 214-220.
[26] M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K.

Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian 94 (Revision B.3), Gaussian, Inc., Pittsburgh PA, 1995.

[^0]: * The symbol X stands for $\mathrm{X}_{\mathrm{LDS}}$ (see text);
 ** Volume, [$\mathrm{cm}^{3} / \mathrm{mol}$].

